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Introduction

Last time we considered propositional formulas:

((A ∨ D)→ (D ∨ ¬B)) ∧ ¬(A← (B ∨ C ∧ D)

They consist of constants (>, ⊥), literals (A,B, . . . ), logical connectives
and punctuation.
First-order logic (FOL) extends this in two different ways:

quantifiers: ∀,∃
more complicated atomic formulas, consisting of:

variables: x , y , z , · · ·
functions: f (x), g(x , y), ..
predicates: P(x), x = y , · · · ,

First-order logic is powerful enough to formalize “all of mathematics”.
Example. Continuity

∀x .∀ε.ε > 0→ (∃δ.δ > 0→ (∀y .|x − y | < δ → |f (x)− f (y)| < ε))
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Admissible symbols

A FOL formula is a string of symbols from a certain alphabet.

The alphabet consists of

Propositional constants: > (true), ⊥ (false)

Logical operators: ¬,∧,∨
Punctuation: brackets ( ) and ,

Quantifiers: ∀,∃
Function symbols: f , g , . . .

Predicate symbols: P, Q, R, . . .

Variable symbols: x , y , z , . . .

We will define FOL formulas in three steps:

terms −→ atomic formulas −→ formulas

We often also want to fix the allowed function and predicate symbols (this
is called a “language”).
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FOL language

Definition (Language)

A first-order language (or signature) L is a pair (F ,P) where

F is a set of pairs (f , n) with f a function symbol and n a natural
number.

P is a set of pairs (P, n) with P a predicate symbol and n a natural
number.

The number n is called arity of the predicate or function symbol. A 0-ary
function symbol is also called a constant symbol.

Example. The language of arithmetic is

Larith = ({(0, 0), (1, 0), (+, 2), (∗, 2)}, {(=, 2)})

The language of set theory is

Lset = ({}, {(=, 2), (∈, 2)})
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Terms

Definition (Term)

The set of terms of a FOL language L = (F ,P) is the smallest set (of
admissible strings) such that

1 Every variable symbol is a term.

2 If T1, . . . ,Tn are terms and (f , n) ∈ F , then f (T1, . . . ,Tn) is a term.

(If n = 0 in (2), then the assumption is vacuous, so all constant symbols are terms.)

This is powerful enough to express all algebraic terms commonly used in
mathematics.
Example.

(x + y)(x − y) + y ∗ y

is a term of Larith (up to syntax sugar).
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Atomic formulas

Definition (Atomic formula)

An atomic formula of a FOL language L = (F ,P) is a string of the form

P(T1, . . . ,Tn)

where T1, . . . ,Tn are terms of L and (P, n) ∈ P.

The propositional constants >,⊥ are also atomic formulas.

(If n = 0 then P(T1, . . . ,Tn) is meant to be just the predicate symbol P.)

Example.
(x + y)(x − y) + y ∗ y = 0

is an atomic formula of Larith (up to syntax sugar).
Example.

x ∈ y

is an atomic formula of Lset.
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Formulas

Definition (Formula)

The set of formulas of a FOL language L is the smallest set (of strings of
admissible symbols) such that

1 Atomic formulas of L are formulas.

2 If F is a formula, then ¬F is a formula.

3 If F , F ′ are formulas, then ∨(F ,F ′) and ∧(F ,F ′) are formulas.

4 If x is a variable symbol and F is a formula, then ∀(x ,F ) and ∃(x ,F )
are formulas.
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Syntactic sugar

Example. This is a formula (of a suitable FOL language):

∃(x ,∀(y ,∧(Q(x),¬P(x , y))))

For readability we prefer to write the formula as follows:

∃x .∀y .Q(x) ∧ ¬P(x , y)

This is just syntax sugar! We always keep in mind that the formula
“actually” looks as above.
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Interpretation

To give meaning to a first-order formula we first need to give meaning to
its atomic formulas. This requires the following data:

Definition (Interpretation)

An interpretation M of a FOL language L = (F ,P) consists of:

1 a nonempty set D called the domain,

2 for each n-ary function (f , n) ∈ F with n ≥ 1, a function
fM : Dn → D,

3 for each n-ary predicate (P, n) ∈ P, a function
PM : Dn → {true, false}.

(In the case n = 0, fM is simply a constant in D; similarly, PM is a constant truth value.)
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Examples

An interpretation of Larith is given by arithmetic of natural numbers:

1 D := N
2 0M := 0, 1M := 1, +M(x , y) := x + y , ∗M(x , y) := x ∗ y
3 =M (x , y) := true iff x = y

We call this one MN.

Another interpretation of Larith is given by boolean arithmetic:
1 D := {0, 1}
2 0M := 0, 1M := 1, +M(x , y) := x + y (mod 2),
∗M(x , y) := x · y (mod 2))

3 =M (x , y) := true iff x = y

We call this one Mbool.

The following is also an interpretation:
1 D := Z,
2 0M := 7, 1M := 0, +M(x , y) := x − 3y2, ∗M(x , y) := x + y ,
3 =M (x , y) := true iff x 6= y

Let us call this one Mnonsense.
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Term evaluation

Definition

A valuation v for an interpretation M is a map from the set of variable
symbols to the domain D: v(x) ∈ D for every variable symbol x .

Let M be an interpretation and v a valuation. Then to each term t we
assign a value evM,v (t) ∈ D such that

1 evM,v (x) = v(x) if x is a variable symbol,

2

evM,v (f (t1, . . . , tn)) = fM(evM,v (t1), . . . , evM,v (tn))

for every n-ary function symbol f .

By structural induction this defines a unique map from the set of terms to
the domain D.
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Evaluation of formulas

For each formula F , interpretation M and valuation v we want to define a
meaning evM,v (F ) ∈ {true, false}.

The idea is again structural induction, but there is a catch!
The semantics of the quantifiers require us to modify the assignment v for
the variables bound by a quantifier.
For every variable symbol x and every a ∈ D we define

v [x 7→ a]

to be the assignment that maps x to a and every y 6= x to v(y).
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Evaluation of formulas

Now we can run the structural induction:

1 evM,v (P(t1, . . . , tn)) := PM(evM,v (t1), . . . , evM,v (tn))
for every n-ary predicate symbol P.

2 evM,v (¬F ) is true iff evM,v (F ) is false.

3 evM,v (F ∨ F ′) is true iff at least one of evM,v (F ), evM,v (F ′) is true.

4 evM,v (F ∧ F ′) is true iff both, evM,v (F ) and evM,v (F ′) are true.

5 evM,v (∃x .F ) is true iff there exists a ∈ D such that evM,v [x 7→a](F ) is
true.

6 evM,v (∀x .F ) is true iff for all a ∈ D, evM,v [x 7→a](F ) is true.

Beware: the domain D is nonempty, but otherwise arbitrary (e.g. could be
uncountably infinite) and the functions fM ,PM need not be computable.
To enable a straightforward computer implementation of the semantics we
need to restrict to finite D.
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Free variables

Definition

The set of free variables of a formula F is defined as the set of variable
symbols that are not bound by quantifiers and denoted FV (F ).

A formula without free variables is called a sentence.

Our setup allows to prove properties of the semantics:

Lemma

Let F be a formula and M an interpretation. If v , v ′ are valuations such
that v(x) = v ′(x) for every x ∈ FV (F ), then

evM,v (F ) = evM,v ′(F ).

As a corollary, if F is a sentence, then evM,v (F ) does not depend on the
valuation v .
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Models

Definition (Model)

Let F be a formula. An interpretation M is called a model of F if
evM,v (F ) = true for every valuation v (we also say that F holds).

Definition

A formula F is called satisfiable if it has a model.

Definition

A formula F is called logically valid or a tautology if every interpretation is
a model.
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Fix a language L, fix a formula F .

We would like to describe a procedure that decides if F is satisfiable,
in finitely many steps.

Unfortunately, this is generally not possible (first-order logic is
“undecidable” if L is non-trivial enough).

However, it is “semi-decidable”: if F is not satisfiable, then we can
verify that in finite time.
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Reduction to propositional logic

The basic idea is to reduce the problem to solving propositional SAT.

To do that we first “get rid” of quantifiers.

Each transformation will preserve satisfiability, but not necessarily
logic equivalence.
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Step 0: Remove free variables

Given any formula F with free variables FV (F ) = {x1, . . . , xn} we can
form the generalization gen(F ):

∀x1. · · · ∀xn.F

(This can be made precise by an inductive definition.)
F and gen(F ) are not logically equivalent, but equisatisfiable:
F is satisfiable if and only if gen(F ) is satisfiable.
Thus, from now on we assume that F is a sentence.
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Step 1: Convert to prenex normal form

A formula is in prenex normal form (PNF) if all the quantifiers appear on
the outside.

Example.
∀x .∀y .∃z .(P(x) ∧ Q(y , z)

is in PNF.

(∃x .P(x))→ ∀y .P(y)

is not in PNF.
Every formula can be transformed into a logically equivalent formula in
PNF.
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Step 2: Skolemization

The main idea is that the following are equivalent:

∀x ∈ D∃y ∈ D s.t. P(x , y) holds

∃f : D → D s.t. ∀x ∈ D we have P(x , f (x))

(In general, this is essentially the axiom of choice, but it suffices to consider countable D here, which does not require choice.)

But we cannot transform formulas of the form

∀x .∃y .P(x , y)

into
∃f .∀x .P(x , f (x)),

because the latter is not a first-order formula (because f is not a variable
symbol).
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Step 2: Skolemization

Instead, we transform
∀x .∃y .P(x , y)

into
∀x .P(x , f (x))

and augment the language L by a new function symbol f (called a Skolem
function).
If F is in prenex normal form, we can iterate this to produce a new
equisatisfiable formula skolemize(F ) that has no existential quantifiers.
Example.

skolemize(∃x .∀y .∃z .∀u.∃v .P(x , y , z , u, v))

= ∀y .∀u.P(c , y , f (y), u, g(y , u))

(c, f , g are new function symbols)
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Step 3: Remove universal quantifiers

We are now left with a formula of the form

∀x1. · · · ∀xn.F ′

where F ′ contains no quantifiers.

By definition of satisfiability, we can simply remove the quantifiers: the
quantifier-free formula

F ′

is equisatisfiable to the previous, and thus equisatisfiable to the original
formula F .
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Step 4: Iterate through ground instances

We are now left with deciding whether a quantifier-free formula is
satisfiable.

Theorem (Herbrand compactness theorem)

A quantifier-free formula F is satisfiable if and only if every finite set of
ground instances is satisfiable.

A ground term is one that only consists of function symbols (including
constant symbols).
A ground instance is the propositional formula that arises from replacing
each of the free variables of F by a ground term and interpreting atomic
formulas as propositional literals.
This is in principle an automatic theorem prover!
It is guaranteed to terminate in the case that the original formula is not
satisfiable.
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Example

Say we want to prove that the drinker’s principle holds:

∃x .∀y .(P(x)→ P(y))

(the language contains only the unary predicate P)

Equivalently we can show that the negation is not satisfiable:

¬(∃x .∀y .(P(x)→ P(y)))

Step 1: convert to PNF

∀x .∃y .¬(P(x)→ P(y))

Step 2: Skolemize
∀x .¬(P(x)→ P(f (x))

(the language no contains the unary predicate P and the unary function f )

Step 3: Remove quantifiers

¬(P(x)→ P(f (x)))
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¬(P(x)→ P(f (x)))

Step 3’: For convenience, let us bring the formula into DNF

P(x) ∧ ¬P(f (x))

Step 4: Iterate through ground instances
(for the set of ground terms to be non-empty we need to add a constant symbol c to the language, but this does not change

satisfiability)

1. First ground term x = c:

P(c) ∧ ¬P(f (c))

This is a single propositional formula with literals P(c) and P(f (c))!
This is still satisfiable.

2. Add second ground term x = f (c):

P(c) ∧ ¬P(f (c)),P(f (c)) ∧ ¬P(f (f (c)))}

These are not simultanously satisfiable! QED
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