Formalizing first-order logic

Joris Roos
University of Wisconsin-Madison
Sommerakademie Leysin 2018

August 15, 2018

Overview

(1) Introduction
(2) Syntax
(3) Semantics
(4) A simple theorem prover

Introduction

Last time we considered propositional formulas:

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

Introduction

Last time we considered propositional formulas:

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

They consist of constants (\top, \perp), literals (A, B, \ldots), logical connectives and punctuation.

Introduction

Last time we considered propositional formulas:

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

They consist of constants (\top, \perp), literals (A, B, \ldots), logical connectives and punctuation.
First-order logic (FOL) extends this in two different ways:

- quantifiers: \forall, \exists

Introduction

Last time we considered propositional formulas:

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

They consist of constants (\top, \perp), literals (A, B, \ldots), logical connectives and punctuation.
First-order logic (FOL) extends this in two different ways:

- quantifiers: \forall, \exists
- more complicated atomic formulas, consisting of:

Introduction

Last time we considered propositional formulas:

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

They consist of constants (\top, \perp), literals (A, B, \ldots), logical connectives and punctuation.
First-order logic (FOL) extends this in two different ways:

- quantifiers: \forall, \exists
- more complicated atomic formulas, consisting of:
- variables: x, y, z, \cdots

Introduction

Last time we considered propositional formulas:

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

They consist of constants (\top, \perp), literals (A, B, \ldots), logical connectives and punctuation.
First-order logic (FOL) extends this in two different ways:

- quantifiers: \forall, \exists
- more complicated atomic formulas, consisting of:
- variables: x, y, z, \cdots
- functions: $f(x), g(x, y), .$.

Introduction

Last time we considered propositional formulas:

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

They consist of constants (\top, \perp), literals (A, B, \ldots), logical connectives and punctuation.
First-order logic (FOL) extends this in two different ways:

- quantifiers: \forall, \exists
- more complicated atomic formulas, consisting of:
- variables: x, y, z, \cdots
- functions: $f(x), g(x, y), .$.
- predicates: $P(x), x=y, \cdots$,

Introduction

Last time we considered propositional formulas:

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

They consist of constants (\top, \perp), literals (A, B, \ldots), logical connectives and punctuation.
First-order logic (FOL) extends this in two different ways:

- quantifiers: \forall, \exists
- more complicated atomic formulas, consisting of:
- variables: x, y, z, \cdots
- functions: $f(x), g(x, y), .$.
- predicates: $P(x), x=y, \cdots$,

First-order logic is powerful enough to formalize "all of mathematics".

Introduction

Last time we considered propositional formulas:

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

They consist of constants (\top, \perp), literals (A, B, \ldots), logical connectives and punctuation.
First-order logic (FOL) extends this in two different ways:

- quantifiers: \forall, \exists
- more complicated atomic formulas, consisting of:
- variables: x, y, z, \cdots
- functions: $f(x), g(x, y), .$.
- predicates: $P(x), x=y, \cdots$,

First-order logic is powerful enough to formalize "all of mathematics". Example. Continuity

$$
\forall x . \forall \varepsilon . \varepsilon>0 \rightarrow(\exists \delta . \delta>0 \rightarrow(\forall y .|x-y|<\delta \rightarrow|f(x)-f(y)|<\varepsilon))
$$

(1) Introduction

(2) Syntax

(3) Semantics

4 A simple theorem prover

Admissible symbols

A FOL formula is a string of symbols from a certain alphabet.

Admissible symbols

A FOL formula is a string of symbols from a certain alphabet. The alphabet consists of

- Propositional constants: \top (true), \perp (false)

Admissible symbols

A FOL formula is a string of symbols from a certain alphabet. The alphabet consists of

- Propositional constants: \top (true), \perp (false)
- Logical operators: \neg, \wedge, \vee

Admissible symbols

A FOL formula is a string of symbols from a certain alphabet. The alphabet consists of

- Propositional constants: \top (true), \perp (false)
- Logical operators: \neg, \wedge, \vee
- Punctuation: brackets () and,

Admissible symbols

A FOL formula is a string of symbols from a certain alphabet. The alphabet consists of

- Propositional constants: \top (true), \perp (false)
- Logical operators: \neg, \wedge, \vee
- Punctuation: brackets () and,
- Quantifiers: \forall, \exists

Admissible symbols

A FOL formula is a string of symbols from a certain alphabet. The alphabet consists of

- Propositional constants: \top (true), \perp (false)
- Logical operators: \neg, \wedge, \vee
- Punctuation: brackets () and,
- Quantifiers: \forall, \exists
- Function symbols: f, g, \ldots

Admissible symbols

A FOL formula is a string of symbols from a certain alphabet.
The alphabet consists of

- Propositional constants: \top (true), \perp (false)
- Logical operators: \neg, \wedge, \vee
- Punctuation: brackets () and,
- Quantifiers: \forall, \exists
- Function symbols: f, g, \ldots
- Predicate symbols: P, Q, R, \ldots

Admissible symbols

A FOL formula is a string of symbols from a certain alphabet.
The alphabet consists of

- Propositional constants: \top (true), \perp (false)
- Logical operators: \neg, \wedge, \vee
- Punctuation: brackets () and,
- Quantifiers: \forall, \exists
- Function symbols: f, g, \ldots
- Predicate symbols: P, Q, R, \ldots
- Variable symbols: x, y, z, \ldots

Admissible symbols

A FOL formula is a string of symbols from a certain alphabet.
The alphabet consists of

- Propositional constants: \top (true), \perp (false)
- Logical operators: \neg, \wedge, \vee
- Punctuation: brackets () and ,
- Quantifiers: \forall, \exists
- Function symbols: f, g, \ldots
- Predicate symbols: P, Q, R, \ldots
- Variable symbols: x, y, z, \ldots

We will define FOL formulas in three steps: terms \longrightarrow atomic formulas \longrightarrow formulas

Admissible symbols

A FOL formula is a string of symbols from a certain alphabet.
The alphabet consists of

- Propositional constants: \top (true), \perp (false)
- Logical operators: \neg, \wedge, \vee
- Punctuation: brackets () and,
- Quantifiers: \forall, \exists
- Function symbols: f, g, \ldots
- Predicate symbols: P, Q, R, \ldots
- Variable symbols: x, y, z, \ldots

We will define FOL formulas in three steps:

$$
\text { terms } \longrightarrow \text { atomic formulas } \longrightarrow \text { formulas }
$$

We often also want to fix the allowed function and predicate symbols (this is called a "language").

FOL language

Definition (Language)

A first-order language (or signature) L is a pair (F, P) where

FOL language

Definition (Language)

A first-order language (or signature) L is a pair (F, P) where

- F is a set of pairs (f, n) with f a function symbol and n a natural number.

FOL language

Definition (Language)

A first-order language (or signature) L is a pair (F, P) where

- F is a set of pairs (f, n) with f a function symbol and n a natural number.
- P is a set of pairs (P, n) with P a predicate symbol and n a natural number.

FOL language

Definition (Language)

A first-order language (or signature) L is a pair (F, P) where

- F is a set of pairs (f, n) with f a function symbol and n a natural number.
- P is a set of pairs (P, n) with P a predicate symbol and n a natural number.

The number n is called arity of the predicate or function symbol. A 0 -ary function symbol is also called a constant symbol.

FOL language

Definition (Language)

A first-order language (or signature) L is a pair (F, P) where

- F is a set of pairs (f, n) with f a function symbol and n a natural number.
- P is a set of pairs (P, n) with P a predicate symbol and n a natural number.
The number n is called arity of the predicate or function symbol. A 0 -ary function symbol is also called a constant symbol.

Example. The language of arithmetic is

$$
L_{\text {arith }}=(\{(0,0),(1,0),(+, 2),(*, 2)\},\{(=, 2)\})
$$

FOL language

Definition (Language)

A first-order language (or signature) L is a pair (F, P) where

- F is a set of pairs (f, n) with f a function symbol and n a natural number.
- P is a set of pairs (P, n) with P a predicate symbol and n a natural number.
The number n is called arity of the predicate or function symbol. A 0 -ary function symbol is also called a constant symbol.

Example. The language of arithmetic is

$$
L_{\text {arith }}=(\{(0,0),(1,0),(+, 2),(*, 2)\},\{(=, 2)\})
$$

The language of set theory is

$$
L_{\text {set }}=(\{ \},\{(=, 2),(\in, 2)\})
$$

Terms

Definition (Term)

The set of terms of a FOL language $L=(F, \mathrm{P})$ is the smallest set (of admissible strings) such that

Terms

Definition (Term)

The set of terms of a FOL language $L=(F, \mathrm{P})$ is the smallest set (of admissible strings) such that
(1) Every variable symbol is a term.

Terms

Definition (Term)

The set of terms of a FOL language $L=(F, \mathrm{P})$ is the smallest set (of admissible strings) such that
(1) Every variable symbol is a term.
(2) If T_{1}, \ldots, T_{n} are terms and $(f, n) \in F$, then $f\left(T_{1}, \ldots, T_{n}\right)$ is a term.

Terms

Definition (Term)

The set of terms of a FOL language $L=(F, \mathrm{P})$ is the smallest set (of admissible strings) such that
(1) Every variable symbol is a term.
(2) If T_{1}, \ldots, T_{n} are terms and $(f, n) \in F$, then $f\left(T_{1}, \ldots, T_{n}\right)$ is a term.
(If $n=0$ in (2), then the assumption is vacuous, so all constant symbols are terms.)

Terms

Definition (Term)

The set of terms of a FOL language $L=(F, \mathrm{P})$ is the smallest set (of admissible strings) such that
(1) Every variable symbol is a term.
(2) If T_{1}, \ldots, T_{n} are terms and $(f, n) \in F$, then $f\left(T_{1}, \ldots, T_{n}\right)$ is a term.
(If $n=0$ in (2), then the assumption is vacuous, so all constant symbols are terms.)
This is powerful enough to express all algebraic terms commonly used in mathematics.

Terms

Definition (Term)

The set of terms of a FOL language $L=(F, \mathrm{P})$ is the smallest set (of admissible strings) such that
(1) Every variable symbol is a term.
(2) If T_{1}, \ldots, T_{n} are terms and $(f, n) \in F$, then $f\left(T_{1}, \ldots, T_{n}\right)$ is a term.
(If $n=0$ in (2), then the assumption is vacuous, so all constant symbols are terms.)
This is powerful enough to express all algebraic terms commonly used in mathematics.

Example.

$$
(x+y)(x-y)+y * y
$$

is a term of $L_{\text {arith }}$ (up to syntax sugar).

Atomic formulas

Definition (Atomic formula)

An atomic formula of a FOL language $L=(F, \mathrm{P})$ is a string of the form

$$
P\left(T_{1}, \ldots, T_{n}\right)
$$

where T_{1}, \ldots, T_{n} are terms of L and $(P, n) \in \mathrm{P}$.

Atomic formulas

Definition (Atomic formula)

An atomic formula of a FOL language $L=(F, \mathrm{P})$ is a string of the form

$$
P\left(T_{1}, \ldots, T_{n}\right)
$$

where T_{1}, \ldots, T_{n} are terms of L and $(P, n) \in P$.
The propositional constants \top, \perp are also atomic formulas.
(If $n=0$ then $P\left(T_{1}, \ldots, T_{n}\right)$ is meant to be just the predicate symbol P.)

Atomic formulas

Definition (Atomic formula)

An atomic formula of a FOL language $L=(F, \mathrm{P})$ is a string of the form

$$
P\left(T_{1}, \ldots, T_{n}\right)
$$

where T_{1}, \ldots, T_{n} are terms of L and $(P, n) \in P$.
The propositional constants \top, \perp are also atomic formulas.
(If $n=0$ then $P\left(T_{1}, \ldots, T_{n}\right)$ is meant to be just the predicate symbol P.)

Example.

$$
(x+y)(x-y)+y * y=0
$$

is an atomic formula of $L_{\text {arith }}$ (up to syntax sugar).

Atomic formulas

Definition (Atomic formula)

An atomic formula of a FOL language $L=(F, \mathrm{P})$ is a string of the form

$$
P\left(T_{1}, \ldots, T_{n}\right)
$$

where T_{1}, \ldots, T_{n} are terms of L and $(P, n) \in P$.
The propositional constants \top, \perp are also atomic formulas.
(If $n=0$ then $P\left(T_{1}, \ldots, T_{n}\right)$ is meant to be just the predicate symbol P.)

Example.

$$
(x+y)(x-y)+y * y=0
$$

is an atomic formula of $L_{\text {arith }}$ (up to syntax sugar). Example.

$$
x \in y
$$

is an atomic formula of $L_{\text {set }}$.

Formulas

Definition (Formula)

The set of formulas of a FOL language L is the smallest set (of strings of admissible symbols) such that

Formulas

Definition (Formula)

The set of formulas of a FOL language L is the smallest set (of strings of admissible symbols) such that
(1) Atomic formulas of L are formulas.

Formulas

Definition (Formula)

The set of formulas of a FOL language L is the smallest set (of strings of admissible symbols) such that
(1) Atomic formulas of L are formulas.
(2) If F is a formula, then $\neg F$ is a formula.

Formulas

Definition (Formula)

The set of formulas of a FOL language L is the smallest set (of strings of admissible symbols) such that
(1) Atomic formulas of L are formulas.
(2) If F is a formula, then $\neg F$ is a formula.
(3) If F, F^{\prime} are formulas, then $\vee\left(F, F^{\prime}\right)$ and $\wedge\left(F, F^{\prime}\right)$ are formulas.

Formulas

Definition (Formula)

The set of formulas of a FOL language L is the smallest set (of strings of admissible symbols) such that
(1) Atomic formulas of L are formulas.
(2) If F is a formula, then $\neg F$ is a formula.
(3) If F, F^{\prime} are formulas, then $\vee\left(F, F^{\prime}\right)$ and $\wedge\left(F, F^{\prime}\right)$ are formulas.
(9) If x is a variable symbol and F is a formula, then $\forall(x, F)$ and $\exists(x, F)$ are formulas.

Syntactic sugar

Example. This is a formula (of a suitable FOL language):

$$
\exists(x, \forall(y, \wedge(Q(x), \neg P(x, y))))
$$

Syntactic sugar

Example. This is a formula (of a suitable FOL language):

$$
\exists(x, \forall(y, \wedge(Q(x), \neg P(x, y))))
$$

For readability we prefer to write the formula as follows:

$$
\exists x \cdot \forall y \cdot Q(x) \wedge \neg P(x, y)
$$

Syntactic sugar

Example. This is a formula (of a suitable FOL language):

$$
\exists(x, \forall(y, \wedge(Q(x), \neg P(x, y))))
$$

For readability we prefer to write the formula as follows:

$$
\exists x . \forall y \cdot Q(x) \wedge \neg P(x, y)
$$

This is just syntax sugar! We always keep in mind that the formula "actually" looks as above.

(1) Introduction

(3) Semantics

4 A simple theorem prover

Interpretation

To give meaning to a first-order formula we first need to give meaning to its atomic formulas. This requires the following data:

Interpretation

To give meaning to a first-order formula we first need to give meaning to its atomic formulas. This requires the following data:

Definition (Interpretation)

An interpretation M of a FOL language $L=(F, P)$ consists of:

Interpretation

To give meaning to a first-order formula we first need to give meaning to its atomic formulas. This requires the following data:

Definition (Interpretation)

An interpretation M of a FOL language $L=(F, \mathrm{P})$ consists of:
(1) a nonempty set D called the domain,

Interpretation

To give meaning to a first-order formula we first need to give meaning to its atomic formulas. This requires the following data:

Definition (Interpretation)

An interpretation M of a FOL language $L=(F, P)$ consists of:
(1) a nonempty set D called the domain,
(2) for each n-ary function $(f, n) \in F$ with $n \geq 1$, a function $f_{M}: D^{n} \rightarrow D$,

Interpretation

To give meaning to a first-order formula we first need to give meaning to its atomic formulas. This requires the following data:

Definition (Interpretation)

An interpretation M of a FOL language $L=(F, P)$ consists of:
(1) a nonempty set D called the domain,
(2) for each n-ary function $(f, n) \in F$ with $n \geq 1$, a function $f_{M}: D^{n} \rightarrow D$,
(3) for each n-ary predicate $(P, n) \in \mathrm{P}$, a function $P_{M}: D^{n} \rightarrow\{$ true, false $\}$.

Interpretation

To give meaning to a first-order formula we first need to give meaning to its atomic formulas. This requires the following data:

Definition (Interpretation)

An interpretation M of a FOL language $L=(F, P)$ consists of:
(1) a nonempty set D called the domain,
(2) for each n-ary function $(f, n) \in F$ with $n \geq 1$, a function $f_{M}: D^{n} \rightarrow D$,
(3) for each n-ary predicate $(P, n) \in \mathrm{P}$, a function $P_{M}: D^{n} \rightarrow\{$ true, false $\}$.
(In the case $n=0, f_{M}$ is simply a constant in D; similarly, P_{M} is a constant truth value.)

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:
(1) $D:=\mathbb{N}$

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:
(1) $D:=\mathbb{N}$
(2) $0_{M}:=0,1_{M}:=1,{ }_{M}(x, y):=x+y,{ }^{*}(x, y):=x * y$

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:
(1) $D:=\mathbb{N}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y, *_{M}(x, y):=x * y$
(3) $=M(x, y):=$ true iff $x=y$

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:
(1) $D:=\mathbb{N}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y, *_{M}(x, y):=x * y$
(3) $=M_{M}(x, y):=$ true iff $x=y$

We call this one $M_{\mathbb{N}}$.

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:
(1) $D:=\mathbb{N}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y, *_{M}(x, y):=x * y$
(3) $=M_{M}(x, y):=$ true iff $x=y$

We call this one $M_{\mathbb{N}}$.
Another interpretation of $L_{\text {arith }}$ is given by boolean arithmetic:

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:
(1) $D:=\mathbb{N}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y, *_{M}(x, y):=x * y$
(3) $=M_{M}(x, y):=$ true iff $x=y$

We call this one $M_{\mathbb{N}}$.
Another interpretation of $L_{\text {arith }}$ is given by boolean arithmetic:
(1) $D:=\{0,1\}$

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:
(1) $D:=\mathbb{N}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y, *_{M}(x, y):=x * y$
(3) $=M(x, y):=$ true iff $x=y$

We call this one $M_{\mathbb{N}}$.
Another interpretation of $L_{\text {arith }}$ is given by boolean arithmetic:
(1) $D:=\{0,1\}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y(\bmod 2)$, $\left.{ }^{*} M(x, y):=x \cdot y(\bmod 2)\right)$

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:
(1) $D:=\mathbb{N}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y, *_{M}(x, y):=x * y$
(3) $=M_{M}(x, y):=$ true iff $x=y$

We call this one $M_{\mathbb{N}}$.
Another interpretation of $L_{\text {arith }}$ is given by boolean arithmetic:
(1) $D:=\{0,1\}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y(\bmod 2)$, $\left.{ }^{*} M(x, y):=x \cdot y(\bmod 2)\right)$
(3) $=_{M}(x, y):=$ true iff $x=y$

We call this one $M_{\text {bool }}$.

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:
(1) $D:=\mathbb{N}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y, *_{M}(x, y):=x * y$
(3) $=M(x, y):=$ true iff $x=y$

We call this one $M_{\mathbb{N}}$.
Another interpretation of $L_{\text {arith }}$ is given by boolean arithmetic:
(1) $D:=\{0,1\}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y(\bmod 2)$, $\left.{ }^{*} M(x, y):=x \cdot y(\bmod 2)\right)$
(3) $=_{M}(x, y):=$ true iff $x=y$

We call this one $M_{\text {bool }}$.
The following is also an interpretation:

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:
(1) $D:=\mathbb{N}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y, *_{M}(x, y):=x * y$
(3) $=M(x, y):=$ true iff $x=y$

We call this one $M_{\mathbb{N}}$.
Another interpretation of $L_{\text {arith }}$ is given by boolean arithmetic:
(1) $D:=\{0,1\}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y(\bmod 2)$, $\left.{ }^{*} M(x, y):=x \cdot y(\bmod 2)\right)$
(3) $=_{M}(x, y):=$ true iff $x=y$

We call this one $M_{\text {bool }}$.
The following is also an interpretation:
(1) $D:=\mathbb{Z}$,

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:
(1) $D:=\mathbb{N}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y, *_{M}(x, y):=x * y$
(3) $=M(x, y):=$ true iff $x=y$

We call this one $M_{\mathbb{N}}$.
Another interpretation of $L_{\text {arith }}$ is given by boolean arithmetic:
(1) $D:=\{0,1\}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y(\bmod 2)$, $\left.{ }^{*} M(x, y):=x \cdot y(\bmod 2)\right)$
(3) $=_{M}(x, y):=$ true iff $x=y$

We call this one $M_{\text {bool }}$.
The following is also an interpretation:
(1) $D:=\mathbb{Z}$,
(2) $0_{M}:=7,1_{M}:=0,+_{M}(x, y):=x-3 y^{2}, *_{M}(x, y):=x+y$,

Examples

An interpretation of $L_{\text {arith }}$ is given by arithmetic of natural numbers:
(1) $D:=\mathbb{N}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y, *_{M}(x, y):=x * y$
(3) $=M_{M}(x, y):=$ true iff $x=y$

We call this one $M_{\mathbb{N}}$.
Another interpretation of $L_{\text {arith }}$ is given by boolean arithmetic:
(1) $D:=\{0,1\}$
(2) $0_{M}:=0,1_{M}:=1,+_{M}(x, y):=x+y(\bmod 2)$, $\left.{ }^{*} M(x, y):=x \cdot y(\bmod 2)\right)$
(3) $=_{M}(x, y):=$ true iff $x=y$

We call this one $M_{\text {bool }}$.
The following is also an interpretation:
(1) $D:=\mathbb{Z}$,
(2) $0_{M}:=7,1_{M}:=0,+_{M}(x, y):=x-3 y^{2}, *_{M}(x, y):=x+y$,
(3) $=M(x, y):=$ true iff $x \neq y$

Term evaluation

Definition

A valuation v for an interpretation M is a map from the set of variable symbols to the domain $D: v(x) \in D$ for every variable symbol x.

Term evaluation

Definition

A valuation v for an interpretation M is a map from the set of variable symbols to the domain $D: v(x) \in D$ for every variable symbol x.

Let M be an interpretation and v a valuation. Then to each term t we assign a value $\operatorname{ev}_{M, v}(t) \in D$ such that

Term evaluation

Definition

A valuation v for an interpretation M is a map from the set of variable symbols to the domain $D: v(x) \in D$ for every variable symbol x.

Let M be an interpretation and v a valuation. Then to each term t we assign a value $\operatorname{ev}_{M, v}(t) \in D$ such that
(1) $\operatorname{ev}_{M, v}(x)=v(x)$ if x is a variable symbol,

Term evaluation

Definition

A valuation v for an interpretation M is a map from the set of variable symbols to the domain $D: v(x) \in D$ for every variable symbol x.

Let M be an interpretation and v a valuation. Then to each term t we assign a value $\operatorname{ev}_{M, v}(t) \in D$ such that
(1) $\operatorname{ev}_{M, v}(x)=v(x)$ if x is a variable symbol,
(2)

$$
\operatorname{ev}_{M, v}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f_{M}\left(\operatorname{ev}_{M, v}\left(t_{1}\right), \ldots, \operatorname{ev}_{M, v}\left(t_{n}\right)\right)
$$

for every n-ary function symbol f.

Term evaluation

Definition

A valuation v for an interpretation M is a map from the set of variable symbols to the domain $D: v(x) \in D$ for every variable symbol x.

Let M be an interpretation and v a valuation. Then to each term t we assign a value $\operatorname{ev}_{M, v}(t) \in D$ such that
(1) $\operatorname{ev}_{M, v}(x)=v(x)$ if x is a variable symbol,
(2)

$$
\operatorname{ev}_{M, v}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f_{M}\left(\operatorname{ev}_{M, v}\left(t_{1}\right), \ldots, \operatorname{ev}_{M, v}\left(t_{n}\right)\right)
$$

for every n-ary function symbol f.
By structural induction this defines a unique map from the set of terms to the domain D.

Evaluation of formulas

For each formula F, interpretation M and valuation v we want to define a meaning $\operatorname{ev}_{M, v}(F) \in\{$ true, false $\}$.

Evaluation of formulas

For each formula F, interpretation M and valuation v we want to define a meaning $\operatorname{ev}_{M, v}(F) \in\{$ true, false $\}$.
The idea is again structural induction, but there is a catch!

Evaluation of formulas

For each formula F, interpretation M and valuation v we want to define a meaning $\operatorname{ev}_{M, v}(F) \in\{$ true, false $\}$.
The idea is again structural induction, but there is a catch!
The semantics of the quantifiers require us to modify the assignment v for the variables bound by a quantifier.

Evaluation of formulas

For each formula F, interpretation M and valuation v we want to define a meaning $\operatorname{ev}_{M, v}(F) \in\{$ true, false $\}$.
The idea is again structural induction, but there is a catch!
The semantics of the quantifiers require us to modify the assignment v for the variables bound by a quantifier.
For every variable symbol x and every $a \in D$ we define

$$
v[x \mapsto a]
$$

to be the assignment that maps x to a and every $y \neq x$ to $v(y)$.

Evaluation of formulas

For each formula F, interpretation M and valuation v we want to define a meaning $\operatorname{ev}_{M, v}(F) \in\{$ true, false $\}$.
The idea is again structural induction, but there is a catch!
The semantics of the quantifiers require us to modify the assignment v for the variables bound by a quantifier.
For every variable symbol x and every $a \in D$ we define

$$
v[x \mapsto a]
$$

to be the assignment that maps x to a and every $y \neq x$ to $v(y)$.

Evaluation of formulas

Now we can run the structural induction:
(1) $\operatorname{ev}_{M, v}\left(P\left(t_{1}, \ldots, t_{n}\right)\right):=P_{M}\left(\operatorname{ev}_{M, v}\left(t_{1}\right), \ldots, \operatorname{ev}_{M, v}\left(t_{n}\right)\right)$ for every n-ary predicate symbol P.

Evaluation of formulas

Now we can run the structural induction:
(1) $\operatorname{ev}_{M, v}\left(P\left(t_{1}, \ldots, t_{n}\right)\right):=P_{M}\left(\operatorname{ev}_{M, v}\left(t_{1}\right), \ldots, \operatorname{ev}_{M, v}\left(t_{n}\right)\right)$ for every n-ary predicate symbol P.
(2) $\operatorname{ev}_{M, v}(\neg F)$ is true iff $\operatorname{ev}_{M, v}(F)$ is false.

Evaluation of formulas

Now we can run the structural induction:
(1) $\operatorname{ev}_{M, v}\left(P\left(t_{1}, \ldots, t_{n}\right)\right):=P_{M}\left(\operatorname{ev}_{M, v}\left(t_{1}\right), \ldots, \operatorname{ev}_{M, v}\left(t_{n}\right)\right)$ for every n-ary predicate symbol P.
(2) $\operatorname{ev}_{M, v}(\neg F)$ is true iff $\operatorname{ev}_{M, v}(F)$ is false.
(3) $\operatorname{ev}_{M, v}\left(F \vee F^{\prime}\right)$ is true iff at least one of $\operatorname{ev}_{M, v}(F), \operatorname{ev}_{M, v}\left(F^{\prime}\right)$ is true.

Evaluation of formulas

Now we can run the structural induction:
(1) $\operatorname{ev}_{M, v}\left(P\left(t_{1}, \ldots, t_{n}\right)\right):=P_{M}\left(\operatorname{ev}_{M, v}\left(t_{1}\right), \ldots, \operatorname{ev}_{M, v}\left(t_{n}\right)\right)$ for every n-ary predicate symbol P.
(2) $\operatorname{ev}_{M, v}(\neg F)$ is true iff $\operatorname{ev}_{M, v}(F)$ is false.
(3) $\operatorname{ev}_{M, v}\left(F \vee F^{\prime}\right)$ is true iff at least one of $\operatorname{ev}_{M, v}(F), \operatorname{ev}_{M, v}\left(F^{\prime}\right)$ is true.
(9) $\operatorname{ev}_{M, v}\left(F \wedge F^{\prime}\right)$ is true iff both, $\operatorname{ev}_{M, v}(F)$ and $\operatorname{ev}_{M, v}\left(F^{\prime}\right)$ are true.

Evaluation of formulas

Now we can run the structural induction:
(1) $\operatorname{ev}_{M, v}\left(P\left(t_{1}, \ldots, t_{n}\right)\right):=P_{M}\left(\operatorname{ev}_{M, v}\left(t_{1}\right), \ldots, \operatorname{ev}_{M, v}\left(t_{n}\right)\right)$ for every n-ary predicate symbol P.
(2) $\operatorname{ev}_{M, v}(\neg F)$ is true iff $\operatorname{ev}_{M, v}(F)$ is false.
(3) $\operatorname{ev}_{M, v}\left(F \vee F^{\prime}\right)$ is true iff at least one of $\operatorname{ev}_{M, v}(F), \operatorname{ev}_{M, v}\left(F^{\prime}\right)$ is true.
(9) $\operatorname{ev}_{M, v}\left(F \wedge F^{\prime}\right)$ is true iff both, $\operatorname{ev}_{M, v}(F)$ and $\operatorname{ev}_{M, v}\left(F^{\prime}\right)$ are true.
(5) $\operatorname{ev}_{M, v}(\exists x . F)$ is true iff there exists $a \in D$ such that $\operatorname{ev}_{M, v[x \mapsto a]}(F)$ is true.

Evaluation of formulas

Now we can run the structural induction:
(1) $\operatorname{ev}_{M, v}\left(P\left(t_{1}, \ldots, t_{n}\right)\right):=P_{M}\left(\operatorname{ev}_{M, v}\left(t_{1}\right), \ldots, \operatorname{ev}_{M, v}\left(t_{n}\right)\right)$ for every n-ary predicate symbol P.
(2) $\operatorname{ev}_{M, v}(\neg F)$ is true iff $\operatorname{ev}_{M, v}(F)$ is false.
(3) $\operatorname{ev}_{M, v}\left(F \vee F^{\prime}\right)$ is true iff at least one of $\operatorname{ev}_{M, v}(F), \operatorname{ev}_{M, v}\left(F^{\prime}\right)$ is true.
(9) $\operatorname{ev}_{M, v}\left(F \wedge F^{\prime}\right)$ is true iff both, $\operatorname{ev}_{M, v}(F)$ and $\operatorname{ev}_{M, v}\left(F^{\prime}\right)$ are true.
(5) $\operatorname{ev}_{M, v}(\exists x . F)$ is true iff there exists $a \in D$ such that $\operatorname{ev}_{M, v[x \mapsto a]}(F)$ is true.
(0) $\operatorname{ev}_{M, v}(\forall x . F)$ is true iff for all $a \in D, \operatorname{ev}_{M, v[x \mapsto a]}(F)$ is true.

Evaluation of formulas

Now we can run the structural induction:
(1) $\operatorname{ev}_{M, v}\left(P\left(t_{1}, \ldots, t_{n}\right)\right):=P_{M}\left(\operatorname{ev}_{M, v}\left(t_{1}\right), \ldots, \operatorname{ev}_{M, v}\left(t_{n}\right)\right)$ for every n-ary predicate symbol P.
(2) $\operatorname{ev}_{M, v}(\neg F)$ is true iff $\operatorname{ev}_{M, v}(F)$ is false.
(3) $\operatorname{ev}_{M, v}\left(F \vee F^{\prime}\right)$ is true iff at least one of $\operatorname{ev}_{M, v}(F), \operatorname{ev}_{M, v}\left(F^{\prime}\right)$ is true.
(9) $\operatorname{ev}_{M, v}\left(F \wedge F^{\prime}\right)$ is true iff both, $\operatorname{ev}_{M, v}(F)$ and $\operatorname{ev}_{M, v}\left(F^{\prime}\right)$ are true.
(5) $\operatorname{ev}_{M, v}(\exists x . F)$ is true iff there exists $a \in D$ such that $\operatorname{ev}_{M, v[x \mapsto a]}(F)$ is true.
(0) $\operatorname{ev}_{M, v}(\forall x . F)$ is true iff for all $a \in D, \operatorname{ev}_{M, v[x \mapsto a]}(F)$ is true.

Beware: the domain D is nonempty, but otherwise arbitrary (e.g. could be uncountably infinite) and the functions f_{M}, P_{M} need not be computable.

Evaluation of formulas

Now we can run the structural induction:
(1) $\operatorname{ev}_{M, v}\left(P\left(t_{1}, \ldots, t_{n}\right)\right):=P_{M}\left(\operatorname{ev}_{M, v}\left(t_{1}\right), \ldots, \operatorname{ev}_{M, v}\left(t_{n}\right)\right)$ for every n-ary predicate symbol P.
(2) $\operatorname{ev}_{M, v}(\neg F)$ is true iff $\operatorname{ev}_{M, v}(F)$ is false.
(3) $\operatorname{ev}_{M, v}\left(F \vee F^{\prime}\right)$ is true iff at least one of $\operatorname{ev}_{M, v}(F), \operatorname{ev}_{M, v}\left(F^{\prime}\right)$ is true.
(9) $\operatorname{ev}_{M, v}\left(F \wedge F^{\prime}\right)$ is true iff both, $\operatorname{ev}_{M, v}(F)$ and $\operatorname{ev}_{M, v}\left(F^{\prime}\right)$ are true.
(9) $\operatorname{ev}_{M, v}(\exists x . F)$ is true iff there exists $a \in D$ such that $\operatorname{ev}_{M, v[x \mapsto a]}(F)$ is true.
(0) $\operatorname{ev}_{M, v}(\forall x . F)$ is true iff for all $a \in D, \operatorname{ev}_{M, v[x \mapsto a]}(F)$ is true.

Beware: the domain D is nonempty, but otherwise arbitrary (e.g. could be uncountably infinite) and the functions f_{M}, P_{M} need not be computable.
To enable a straightforward computer implementation of the semantics we need to restrict to finite D.

Evaluation of formulas

Now we can run the structural induction:
(1) $\operatorname{ev}_{M, v}\left(P\left(t_{1}, \ldots, t_{n}\right)\right):=P_{M}\left(\operatorname{ev}_{M, v}\left(t_{1}\right), \ldots, \operatorname{ev}_{M, v}\left(t_{n}\right)\right)$ for every n-ary predicate symbol P.
(2) $\operatorname{ev}_{M, v}(\neg F)$ is true iff $\operatorname{ev}_{M, v}(F)$ is false.
(3) $\operatorname{ev}_{M, v}\left(F \vee F^{\prime}\right)$ is true iff at least one of $\operatorname{ev}_{M, v}(F), \operatorname{ev}_{M, v}\left(F^{\prime}\right)$ is true.
(9) $\operatorname{ev}_{M, v}\left(F \wedge F^{\prime}\right)$ is true iff both, $\operatorname{ev}_{M, v}(F)$ and $\operatorname{ev}_{M, v}\left(F^{\prime}\right)$ are true.
(9) $\operatorname{ev}_{M, v}(\exists x . F)$ is true iff there exists $a \in D$ such that $\operatorname{ev}_{M, v[x \mapsto a]}(F)$ is true.
(0) $\operatorname{ev}_{M, v}(\forall x . F)$ is true iff for all $a \in D, \operatorname{ev}_{M, v[x \mapsto a]}(F)$ is true.

Beware: the domain D is nonempty, but otherwise arbitrary (e.g. could be uncountably infinite) and the functions f_{M}, P_{M} need not be computable.
To enable a straightforward computer implementation of the semantics we need to restrict to finite D.

Free variables

Definition

The set of free variables of a formula F is defined as the set of variable symbols that are not bound by quantifiers and denoted $F V(F)$.

Free variables

Definition

The set of free variables of a formula F is defined as the set of variable symbols that are not bound by quantifiers and denoted $F V(F)$. A formula without free variables is called a sentence.

Free variables

Definition

The set of free variables of a formula F is defined as the set of variable symbols that are not bound by quantifiers and denoted $F V(F)$.
A formula without free variables is called a sentence.
Our setup allows to prove properties of the semantics:

Free variables

Definition

The set of free variables of a formula F is defined as the set of variable symbols that are not bound by quantifiers and denoted $F V(F)$.
A formula without free variables is called a sentence.
Our setup allows to prove properties of the semantics:

Lemma

Let F be a formula and M an interpretation. If v, v^{\prime} are valuations such that $v(x)=v^{\prime}(x)$ for every $x \in F V(F)$, then

$$
\operatorname{ev}_{M, v}(F)=\operatorname{ev}_{M, v^{\prime}}(F)
$$

Free variables

Definition

The set of free variables of a formula F is defined as the set of variable symbols that are not bound by quantifiers and denoted $F V(F)$.
A formula without free variables is called a sentence.
Our setup allows to prove properties of the semantics:

Lemma

Let F be a formula and M an interpretation. If v, v^{\prime} are valuations such that $v(x)=v^{\prime}(x)$ for every $x \in F V(F)$, then

$$
\operatorname{ev}_{M, v}(F)=\operatorname{ev}_{M, v^{\prime}}(F)
$$

As a corollary, if F is a sentence, then $\operatorname{ev}_{M, v}(F)$ does not depend on the valuation v.

Models

Definition (Model)

Let F be a formula. An interpretation M is called a model of F if $\operatorname{ev}_{M, v}(F)=$ true for every valuation v (we also say that F holds).

Models

Definition (Model)

Let F be a formula. An interpretation M is called a model of F if $\operatorname{ev}_{M, v}(F)=$ true for every valuation v (we also say that F holds).

Definition

A formula F is called satisfiable if it has a model.

Models

Definition (Model)

Let F be a formula. An interpretation M is called a model of F if $\operatorname{ev}_{M, v}(F)=$ true for every valuation v (we also say that F holds).

Definition

A formula F is called satisfiable if it has a model.

Definition

A formula F is called logically valid or a tautology if every interpretation is a model.

Models

Definition (Model)

Let F be a formula. An interpretation M is called a model of F if $\operatorname{ev}_{M, v}(F)=$ true for every valuation v (we also say that F holds).

Definition

A formula F is called satisfiable if it has a model.

Definition

A formula F is called logically valid or a tautology if every interpretation is a model.

(1) Introduction

(2) Syntax

4 A simple theorem prover

- Fix a language L, fix a formula F.
- Fix a language L, fix a formula F.
- We would like to describe a procedure that decides if F is satisfiable, in finitely many steps.
- Fix a language L, fix a formula F.
- We would like to describe a procedure that decides if F is satisfiable, in finitely many steps.
- Unfortunately, this is generally not possible (first-order logic is "undecidable" if L is non-trivial enough).
- Fix a language L, fix a formula F.
- We would like to describe a procedure that decides if F is satisfiable, in finitely many steps.
- Unfortunately, this is generally not possible (first-order logic is "undecidable" if L is non-trivial enough).
- However, it is "semi-decidable": if F is not satisfiable, then we can verify that in finite time.
- Fix a language L, fix a formula F.
- We would like to describe a procedure that decides if F is satisfiable, in finitely many steps.
- Unfortunately, this is generally not possible (first-order logic is "undecidable" if L is non-trivial enough).
- However, it is "semi-decidable": if F is not satisfiable, then we can verify that in finite time.

Reduction to propositional logic

- The basic idea is to reduce the problem to solving propositional SAT.

Reduction to propositional logic

- The basic idea is to reduce the problem to solving propositional SAT.
- To do that we first "get rid" of quantifiers.

Reduction to propositional logic

- The basic idea is to reduce the problem to solving propositional SAT.
- To do that we first "get rid" of quantifiers.
- Each transformation will preserve satisfiability, but not necessarily logic equivalence.

Step 0: Remove free variables

Given any formula F with free variables $F V(F)=\left\{x_{1}, \ldots, x_{n}\right\}$ we can form the generalization gen (F) :

Step 0: Remove free variables

Given any formula F with free variables $F V(F)=\left\{x_{1}, \ldots, x_{n}\right\}$ we can form the generalization gen (F) :

$$
\forall x_{1} . \cdots \forall x_{n} . F
$$

Step 0: Remove free variables

Given any formula F with free variables $F V(F)=\left\{x_{1}, \ldots, x_{n}\right\}$ we can form the generalization gen (F) :

$$
\forall x_{1} . \cdots \forall x_{n} . F
$$

(This can be made precise by an inductive definition.)
F and $\operatorname{gen}(F)$ are not logically equivalent, but equisatisfiable:

Step 0: Remove free variables

Given any formula F with free variables $F V(F)=\left\{x_{1}, \ldots, x_{n}\right\}$ we can form the generalization gen (F) :

$$
\forall x_{1} . \cdots \forall x_{n} . F
$$

(This can be made precise by an inductive definition.)
F and gen (F) are not logically equivalent, but equisatisfiable:
F is satisfiable if and only if $\operatorname{gen}(F)$ is satisfiable.

Step 0: Remove free variables

Given any formula F with free variables $F V(F)=\left\{x_{1}, \ldots, x_{n}\right\}$ we can form the generalization gen (F) :

$$
\forall x_{1} . \cdots \forall x_{n} . F
$$

(This can be made precise by an inductive definition.)
F and gen (F) are not logically equivalent, but equisatisfiable:
F is satisfiable if and only if $\operatorname{gen}(F)$ is satisfiable.
Thus, from now on we assume that F is a sentence.

Step 1: Convert to prenex normal form

A formula is in prenex normal form (PNF) if all the quantifiers appear on the outside.

Step 1: Convert to prenex normal form

A formula is in prenex normal form (PNF) if all the quantifiers appear on the outside.

Example.

$$
\forall x . \forall y . \exists z .(P(x) \wedge Q(y, z)
$$

is in PNF.

Step 1: Convert to prenex normal form

A formula is in prenex normal form (PNF) if all the quantifiers appear on the outside.

Example.

$$
\forall x . \forall y . \exists z .(P(x) \wedge Q(y, z)
$$

is in PNF.

$$
(\exists x \cdot P(x)) \rightarrow \forall y . P(y)
$$

is not in PNF.

Step 1: Convert to prenex normal form

A formula is in prenex normal form (PNF) if all the quantifiers appear on the outside.

Example.

$$
\forall x . \forall y . \exists z .(P(x) \wedge Q(y, z)
$$

is in PNF.

$$
(\exists x . P(x)) \rightarrow \forall y . P(y)
$$

is not in PNF.
Every formula can be transformed into a logically equivalent formula in PNF.

Step 2: Skolemization

The main idea is that the following are equivalent:

$$
\forall x \in D \exists y \in D \text { s.t. } P(x, y) \text { holds }
$$

Step 2: Skolemization

The main idea is that the following are equivalent:

$$
\forall x \in D \exists y \in D \text { s.t. } P(x, y) \text { holds }
$$

$\exists f: D \rightarrow D$ s.t. $\forall x \in D$ we have $P(x, f(x))$

Step 2: Skolemization

The main idea is that the following are equivalent:

$$
\forall x \in D \exists y \in D \text { s.t. } P(x, y) \text { holds }
$$

$$
\exists f: D \rightarrow D \text { s.t. } \forall x \in D \text { we have } P(x, f(x))
$$

(In general, this is essentially the axiom of choice, but it suffices to consider countable D here, which does not require choice.)

Step 2: Skolemization

The main idea is that the following are equivalent:

$$
\forall x \in D \exists y \in D \text { s.t. } P(x, y) \text { holds }
$$

$$
\exists f: D \rightarrow D \text { s.t. } \forall x \in D \text { we have } P(x, f(x))
$$

(In general, this is essentially the axiom of choice, but it suffices to consider countable D here, which does not require choice.) But we cannot transform formulas of the form

$$
\forall x . \exists y . P(x, y)
$$

Step 2: Skolemization

The main idea is that the following are equivalent:

$$
\forall x \in D \exists y \in D \text { s.t. } P(x, y) \text { holds }
$$

$$
\exists f: D \rightarrow D \text { s.t. } \forall x \in D \text { we have } P(x, f(x))
$$

(In general, this is essentially the axiom of choice, but it suffices to consider countable D here, which does not require choice.) But we cannot transform formulas of the form

$$
\forall x . \exists y . P(x, y)
$$

into

$$
\exists f . \forall x . P(x, f(x)),
$$

Step 2: Skolemization

The main idea is that the following are equivalent:

$$
\forall x \in D \exists y \in D \text { s.t. } P(x, y) \text { holds }
$$

$$
\exists f: D \rightarrow D \text { s.t. } \forall x \in D \text { we have } P(x, f(x))
$$

(In general, this is essentially the axiom of choice, but it suffices to consider countable D here, which does not require choice.) But we cannot transform formulas of the form

$$
\forall x . \exists y . P(x, y)
$$

into

$$
\exists f . \forall x . P(x, f(x)),
$$

because the latter is not a first-order formula (because f is not a variable symbol).

Step 2: Skolemization

The main idea is that the following are equivalent:

$$
\forall x \in D \exists y \in D \text { s.t. } P(x, y) \text { holds }
$$

$$
\exists f: D \rightarrow D \text { s.t. } \forall x \in D \text { we have } P(x, f(x))
$$

(In general, this is essentially the axiom of choice, but it suffices to consider countable D here, which does not require choice.) But we cannot transform formulas of the form

$$
\forall x . \exists y . P(x, y)
$$

into

$$
\exists f . \forall x . P(x, f(x)),
$$

because the latter is not a first-order formula (because f is not a variable symbol).

Step 2: Skolemization

Instead, we transform

$$
\forall x . \exists y . P(x, y)
$$

Step 2: Skolemization

Instead, we transform

$$
\forall x \cdot \exists y \cdot P(x, y)
$$

into

$$
\forall x . P(x, f(x))
$$

Step 2: Skolemization

Instead, we transform

$$
\forall x . \exists y . P(x, y)
$$

into

$$
\forall x \cdot P(x, f(x))
$$

and augment the language L by a new function symbol f (called a Skolem function).

Step 2: Skolemization

Instead, we transform

$$
\forall x . \exists y . P(x, y)
$$

into

$$
\forall x \cdot P(x, f(x))
$$

and augment the language L by a new function symbol f (called a Skolem function).
If F is in prenex normal form, we can iterate this to produce a new equisatisfiable formula skolemize (F) that has no existential quantifiers.

Step 2: Skolemization

Instead, we transform

$$
\forall x . \exists y . P(x, y)
$$

into

$$
\forall x \cdot P(x, f(x))
$$

and augment the language L by a new function symbol f (called a Skolem function).
If F is in prenex normal form, we can iterate this to produce a new equisatisfiable formula skolemize (F) that has no existential quantifiers. Example.

$$
\text { skolemize }(\exists x . \forall y . \exists z . \forall u . \exists v . P(x, y, z, u, v))
$$

Step 2: Skolemization

Instead, we transform

$$
\forall x . \exists y . P(x, y)
$$

into

$$
\forall x \cdot P(x, f(x))
$$

and augment the language L by a new function symbol f (called a Skolem function).
If F is in prenex normal form, we can iterate this to produce a new equisatisfiable formula skolemize (F) that has no existential quantifiers. Example.

$$
\begin{gathered}
\text { skolemize }(\exists x \cdot \forall y \cdot \exists z \cdot \forall u \cdot \exists v \cdot P(x, y, z, u, v)) \\
=\forall y \cdot \forall u \cdot P(c, y, f(y), u, g(y, u))
\end{gathered}
$$

(c, f, g are new function symbols)

Step 3: Remove universal quantifiers

We are now left with a formula of the form

$$
\forall x_{1} . \cdots \forall x_{n} . F^{\prime}
$$

where F^{\prime} contains no quantifiers.

Step 3: Remove universal quantifiers

We are now left with a formula of the form

$$
\forall x_{1} . \cdots \forall x_{n} . F^{\prime}
$$

where F^{\prime} contains no quantifiers.
By definition of satisfiability, we can simply remove the quantifiers: the quantifier-free formula

$$
F^{\prime}
$$

is equisatisfiable to the previous, and thus equisatisfiable to the original formula F.

Step 4: Iterate through ground instances

We are now left with deciding whether a quantifier-free formula is satisfiable.

Step 4: Iterate through ground instances

We are now left with deciding whether a quantifier-free formula is satisfiable.

Theorem (Herbrand compactness theorem)
A quantifier-free formula F is satisfiable if and only if every finite set of ground instances is satisfiable.

Step 4: Iterate through ground instances

We are now left with deciding whether a quantifier-free formula is satisfiable.

Theorem (Herbrand compactness theorem)
A quantifier-free formula F is satisfiable if and only if every finite set of ground instances is satisfiable.

A ground term is one that only consists of function symbols (including constant symbols).

Step 4: Iterate through ground instances

We are now left with deciding whether a quantifier-free formula is satisfiable.

Theorem (Herbrand compactness theorem)

A quantifier-free formula F is satisfiable if and only if every finite set of ground instances is satisfiable.

A ground term is one that only consists of function symbols (including constant symbols).
A ground instance is the propositional formula that arises from replacing each of the free variables of F by a ground term and interpreting atomic formulas as propositional literals.

Step 4: Iterate through ground instances

We are now left with deciding whether a quantifier-free formula is satisfiable.

Theorem (Herbrand compactness theorem)

A quantifier-free formula F is satisfiable if and only if every finite set of ground instances is satisfiable.

A ground term is one that only consists of function symbols (including constant symbols).
A ground instance is the propositional formula that arises from replacing each of the free variables of F by a ground term and interpreting atomic formulas as propositional literals.
This is in principle an automatic theorem prover!

Step 4: Iterate through ground instances

We are now left with deciding whether a quantifier-free formula is satisfiable.

Theorem (Herbrand compactness theorem)

A quantifier-free formula F is satisfiable if and only if every finite set of ground instances is satisfiable.

A ground term is one that only consists of function symbols (including constant symbols).
A ground instance is the propositional formula that arises from replacing each of the free variables of F by a ground term and interpreting atomic formulas as propositional literals.
This is in principle an automatic theorem prover!
It is guaranteed to terminate in the case that the original formula is not satisfiable.

Example

Say we want to prove that the drinker's principle holds:

$$
\exists x . \forall y .(P(x) \rightarrow P(y))
$$

(the language contains only the unary predicate P)

Example

Say we want to prove that the drinker's principle holds:

$$
\exists x . \forall y .(P(x) \rightarrow P(y))
$$

(the language contains only the unary predicate P)
Equivalently we can show that the negation is not satisfiable:

$$
\neg(\exists x . \forall y .(P(x) \rightarrow P(y)))
$$

Example

Say we want to prove that the drinker's principle holds:

$$
\exists x . \forall y .(P(x) \rightarrow P(y))
$$

(the language contains only the unary predicate P)
Equivalently we can show that the negation is not satisfiable:

$$
\neg(\exists x . \forall y .(P(x) \rightarrow P(y)))
$$

Step 1: convert to PNF

$$
\forall x . \exists y . \neg(P(x) \rightarrow P(y))
$$

Example

Say we want to prove that the drinker's principle holds:

$$
\exists x . \forall y .(P(x) \rightarrow P(y))
$$

(the language contains only the unary predicate P)
Equivalently we can show that the negation is not satisfiable:

$$
\neg(\exists x . \forall y .(P(x) \rightarrow P(y)))
$$

Step 1: convert to PNF

$$
\forall x . \exists y . \neg(P(x) \rightarrow P(y))
$$

Step 2: Skolemize

$$
\forall x . \neg(P(x) \rightarrow P(f(x))
$$

(the language no contains the unary predicate P and the unary function f)

Example

Say we want to prove that the drinker's principle holds:

$$
\exists x . \forall y .(P(x) \rightarrow P(y))
$$

(the language contains only the unary predicate P)
Equivalently we can show that the negation is not satisfiable:

$$
\neg(\exists x . \forall y .(P(x) \rightarrow P(y)))
$$

Step 1: convert to PNF

$$
\forall x . \exists y . \neg(P(x) \rightarrow P(y))
$$

Step 2: Skolemize

$$
\forall x . \neg(P(x) \rightarrow P(f(x))
$$

(the language no contains the unary predicate P and the unary function f)
Step 3: Remove quantifiers

$$
\neg(P(x) \rightarrow P(f(x)))
$$

$\neg(P(x) \rightarrow P(f(x)))$

Step 3': For convenience, let us bring the formula into DNF

$$
P(x) \wedge \neg P(f(x))
$$

$\neg(P(x) \rightarrow P(f(x)))$

Step 3': For convenience, let us bring the formula into DNF

$$
P(x) \wedge \neg P(f(x))
$$

Step 4: Iterate through ground instances
$\neg(P(x) \rightarrow P(f(x)))$

Step 3': For convenience, let us bring the formula into DNF

$$
P(x) \wedge \neg P(f(x))
$$

Step 4: Iterate through ground instances

(for the set of ground terms to be non-empty we need to add a constant symbol c to the language, but this does not change satisfiability)
$\neg(P(x) \rightarrow P(f(x)))$
Step 3': For convenience, let us bring the formula into DNF

$$
P(x) \wedge \neg P(f(x))
$$

Step 4: Iterate through ground instances
(for the set of ground terms to be non-empty we need to add a constant symbol c to the language, but this does not change satisfiability)

1. First ground term $x=c$:

$$
P(c) \wedge \neg P(f(c))
$$

$\neg(P(x) \rightarrow P(f(x)))$
Step 3': For convenience, let us bring the formula into DNF

$$
P(x) \wedge \neg P(f(x))
$$

Step 4: Iterate through ground instances
(for the set of ground terms to be non-empty we need to add a constant symbol c to the language, but this does not change satisfiability)

1. First ground term $x=c$:

$$
P(c) \wedge \neg P(f(c))
$$

This is a single propositional formula with literals $P(c)$ and $P(f(c))$!
$\neg(P(x) \rightarrow P(f(x)))$
Step 3': For convenience, let us bring the formula into DNF

$$
P(x) \wedge \neg P(f(x))
$$

Step 4: Iterate through ground instances
(for the set of ground terms to be non-empty we need to add a constant symbol c to the language, but this does not change satisfiability)

1. First ground term $x=c$:

$$
P(c) \wedge \neg P(f(c))
$$

This is a single propositional formula with literals $P(c)$ and $P(f(c))$! This is still satisfiable.

$\neg(P(x) \rightarrow P(f(x)))$

Step 3': For convenience, let us bring the formula into DNF

$$
P(x) \wedge \neg P(f(x))
$$

Step 4: Iterate through ground instances
(for the set of ground terms to be non-empty we need to add a constant symbol c to the language, but this does not change satisfiability)

1. First ground term $x=c$:

$$
P(c) \wedge \neg P(f(c))
$$

This is a single propositional formula with literals $P(c)$ and $P(f(c))$! This is still satisfiable.
2. Add second ground term $x=f(c)$:

$$
P(c) \wedge \neg P(f(c)), P(f(c)) \wedge \neg P(f(f(c)))\}
$$

These are not simultanously satisfiable! QED

References

RMelvin Fitting. First-order Logic and Automated Theorem Proving. (Springer, 1996)

John Harrison. Handbook of Practical Logic and Automated Reasoning. (Cambridge, 2009)

