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Introduction

Consider a propositional formula

((A ∨ D)→ (D ∨ ¬B)) ∧ ¬(A← (B ∨ C ∧ D)

Is it satisfiable? (“SAT”)

Is it a tautology?

In principle, “trivially” decidable by truth tables.

Goal: Formalize the problem and program a computer to solve it (provably
correctly and “efficiently”, if possible).
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Why?

Logic puzzles: knights and knaves and co.

Circuit design: circuits are propositional formulas!

Surprisingly many problems can be rephrased as SAT: e.g. primality

SAT is a computationally hard problem (NP-complete).

Classical first-order theorem provers rely on SAT algorithms
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Syntax

A propositional formula is a string (i.e. a list of symbols from a certain
alphabet).

Admissible symbols are:

Constants: > (true), ⊥ (false)

Atomic propositions/literals: P,Q,R, · · ·
Logical operators: ¬,∧,∨
Punctuation: brackets ( ) and ,

Definition

The set of propositional formulas is the smallest set P of strings such that

1 >,⊥,P,Q,R, · · · ∈ P.

2 If X ∈ P, then ¬X ∈ P.

3 If X ,Y ∈ P, then ∨(X ,Y ) ∈ P and ∧(X ,Y ) ∈ P.
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Syntactic sugar

Not part of the basic formal syntax. Just convenience.

Write (X ∨ Y ) for ∨(X ,Y ) and (X ∧ Y ) for ∧(X ,Y ).

Brackets are ignored whenever possible according to usual operator
precedence conventions (¬ � ∧ � ∨ ).

(X → Y ) is short for (¬X ∨ Y ).

may include other common logical operators, ←,↔, 6↔, · · ·
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Example:

∨(P,¬ ∧ (Q,P))

is in P (written sugarfree).

Same formula with sugar:

P ∨ ¬(Q ∧ P)

We will always use sugar.
Non-example:

∧ ∨ (P,¬Q())

is not in P.

So far, formulas do not have any meaning!
A propositional formula is just a string with a certain structure.
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Structural induction

Say we want to prove that every formula F ∈ P has a certain property Q.

Then it suffices to show:

1 >,⊥, p, q, r , . . . have property Q.

2 If F has property Q, then ¬F has property Q.

3 If F and F ′ have property Q, then F ∨F ′ and F ∧F ′ have property Q.

This is a theorem! [Exercise: Prove it.]
Example.
Exercise: Prove that no propositional formula consists entirely of the
symbol ¬.
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Semantics: Introducing meaning

Definition

A valuation v is a map that assigns each atomic proposition P,Q, · · · one
of the truth values true or false:

v(P) ∈ {true, false}

(Given n atomic propositions we have 2n possible valuations.)

Joris Roos Propositional logic August 14, 2018 10 / 22



Semantics: Introducing meaning

Definition

A valuation v is a map that assigns each atomic proposition P,Q, · · · one
of the truth values true or false:

v(P) ∈ {true, false}

(Given n atomic propositions we have 2n possible valuations.)

Joris Roos Propositional logic August 14, 2018 10 / 22



Semantics: Introducing meaning

Definition

A valuation v is a map that assigns each atomic proposition P,Q, · · · one
of the truth values true or false:

v(P) ∈ {true, false}

(Given n atomic propositions we have 2n possible valuations.)

Joris Roos Propositional logic August 14, 2018 10 / 22



Semantics: Introducing meaning

Let v be a valuation. We extend v to all propositional formulas:

v(>) := true, v(⊥) := false,

v(¬F ) is true iff v(F ) is false.

v(F ∨ F ′) is true iff at least one of v(F ), v(F ′) is true.

v(F ∧ F ′) is true iff both, v(F ) and v(F ′) are true.

By a structural induction this uniquely defines v(F ) for every F ∈ P.
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Semantics: Example

Consider the formula
F := ¬P ∨ Q

Define a valuation by v(P) := false and v(Q) := false.Then

v(F ) = true.
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Satisfiability and tautology

Definition

A formula F ∈ P is called satisfiable if there exists a valuation v such that
v(F ) = true.

Definition

A formula F ∈ P is called a tautology or valid if for every valuation v we
have v(F ) = true.

Exercise: Show that F is satisfiable if and only if ¬F is not valid.
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Examples

For each of the following formulas decide satisfiability and validity:

1 ¬(P ∧ Q) ∨ Q ∨ R

2 ¬P ∧ (Q ∨ R ∨ P)

3 ((P → Q)→ P) ∧ ¬P

Joris Roos Propositional logic August 14, 2018 14 / 22



Substitution theorem

Definition

Two formulas F ,F ′ ∈ P are called logically equivalent if v(F ) = v(F ′) for
all valuations v . (Equivalently, if F ↔ F ′ is a tautology.) We write F ≡ F ′.

For formulas F ,X and an atomic proposition P we define F [P 7→ X ] to be
the formula where every occurrence of P in F is replaced by X .

Theorem

Let X ,Y ∈ P be logically equivalent, F ∈ P and P an atomic proposition.
Then,

v(F [P 7→ X ]) = v(F [P 7→ Y ])

for every valuation v.

Together with a list of basic tautologies this enables simplification and
transformation to normal forms.
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NNF

Definition

A formula is in negation normal form (NNF) if the symbol ¬ only appears
directly in front of literals.

Every propositional formula can be transformed into a logically equivalent
formula in NNF.
Example.

¬(P ∧ ¬Q) ∧ (P ∨ R)

≡ ¬P ∨ Q ∧ (P ∨ R)
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DNF and CNF

Definition

A formula is in disjunctive normal form (DNF) if it is of the form

D1 ∨ D2 ∨ · · · ∨ Dn

where each Di is of the form

Pi1 ∧ · · · ∧ Pimi

with Pij being literals or negated literals.

A DNF is “a disjunction of conjunctions”, or an “OR of ANDs”.
Dually, conjunctive normal form (CNF) is “a conjunction of disjunctions”.
Every formula can be transformed into DNF and CNF.
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DNF and SAT

It is very efficient to check a DNF formula for satisfiability:

A formula in DNF is satisfiable if and only if in at least one of the
disjuncts there is no literal that appears negated and unnegated.

Example. The DNF

P ∧ Q ∧ R ∨ P ∧ ¬Q ∨ ¬R ∧ Q ∧ R

is satisfiable.
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Clausal form

Clausal form is the same as CNF.

A clause is a disjunction: P1 ∨ · · · ∨ Pm with Pi literals or negated literals.
It is often convenient to represent CNF as a list of lists, for example,

(P ∨ Q ∨ ¬R) ∧ P ∧ ¬Q ∧ (R ∨ Q)

becomes

[[P,Q,¬R], [P], [¬Q], [R,Q]]
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To be continued..

Next step: first-order logic!

FOL satisfiability is only semi-decidable.

Syntax and semantics will much more involved.

We will also need more sophisticated (propositional) SAT methods.
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