Formalizing propositional logic

Joris Roos
University of Wisconsin-Madison
Sommerakademie Leysin 2018

August 14, 2018

Overview

(1) Introduction

(2) Syntax and semantics
(3) Normal forms

Introduction

Consider a propositional formula

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

Introduction

Consider a propositional formula

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

- Is it satisfiable? ("SAT")
- Is it a tautology?

Introduction

Consider a propositional formula

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

- Is it satisfiable? ("SAT")
- Is it a tautology?

In principle, "trivially" decidable by truth tables.

Introduction

Consider a propositional formula

$$
((A \vee D) \rightarrow(D \vee \neg B)) \wedge \neg(A \leftarrow(B \vee C \wedge D)
$$

- Is it satisfiable? ("SAT")
- Is it a tautology?

In principle, "trivially" decidable by truth tables.
Goal: Formalize the problem and program a computer to solve it (provably correctly and "efficiently", if possible).

Why?

- Logic puzzles: knights and knaves and co.

Why?

- Logic puzzles: knights and knaves and co.
- Circuit design: circuits are propositional formulas!

Why?

- Logic puzzles: knights and knaves and co.
- Circuit design: circuits are propositional formulas!
- Surprisingly many problems can be rephrased as SAT: e.g. primality

Why?

- Logic puzzles: knights and knaves and co.
- Circuit design: circuits are propositional formulas!
- Surprisingly many problems can be rephrased as SAT: e.g. primality
- SAT is a computationally hard problem (NP-complete).

Why?

- Logic puzzles: knights and knaves and co.
- Circuit design: circuits are propositional formulas!
- Surprisingly many problems can be rephrased as SAT: e.g. primality
- SAT is a computationally hard problem (NP-complete).
- Classical first-order theorem provers rely on SAT algorithms

(1) Introduction

(2) Syntax and semantics

(3) Normal forms

Syntax

A propositional formula is a string (i.e. a list of symbols from a certain alphabet).

Syntax

A propositional formula is a string (i.e. a list of symbols from a certain alphabet).
Admissible symbols are:

- Constants: \top (true), \perp (false)

Syntax

A propositional formula is a string (i.e. a list of symbols from a certain alphabet).
Admissible symbols are:

- Constants: \top (true), \perp (false)
- Atomic propositions/literals: P, Q, R, \cdots

Syntax

A propositional formula is a string (i.e. a list of symbols from a certain alphabet).
Admissible symbols are:

- Constants: \top (true), \perp (false)
- Atomic propositions/literals: P, Q, R, \cdots
- Logical operators: \neg, \wedge, \vee

Syntax

A propositional formula is a string (i.e. a list of symbols from a certain alphabet).
Admissible symbols are:

- Constants: \top (true), \perp (false)
- Atomic propositions/literals: P, Q, R, \cdots
- Logical operators: \neg, \wedge, \vee
- Punctuation: brackets () and,

Syntax

A propositional formula is a string (i.e. a list of symbols from a certain alphabet).
Admissible symbols are:

- Constants: \top (true), \perp (false)
- Atomic propositions/literals: P, Q, R, \cdots
- Logical operators: \neg, \wedge, \vee
- Punctuation: brackets () and,

Definition

The set of propositional formulas is the smallest set \mathbf{P} of strings such that
(1) $T, \perp, P, Q, R, \cdots \in \mathbf{P}$.
(2) If $X \in \mathbf{P}$, then $\neg X \in \mathbf{P}$.
(3) If $X, Y \in \mathbf{P}$, then $\vee(X, Y) \in \mathbf{P}$ and $\wedge(X, Y) \in \mathbf{P}$.

Syntax

A propositional formula is a string (i.e. a list of symbols from a certain alphabet).
Admissible symbols are:

- Constants: \top (true), \perp (false)
- Atomic propositions/literals: P, Q, R, \cdots
- Logical operators: \neg, \wedge, \vee
- Punctuation: brackets () and,

Definition

The set of propositional formulas is the smallest set \mathbf{P} of strings such that
(1) $T, \perp, P, Q, R, \cdots \in \mathbf{P}$.
(2) If $X \in \mathbf{P}$, then $\neg X \in \mathbf{P}$.
(3) If $X, Y \in \mathbf{P}$, then $\vee(X, Y) \in \mathbf{P}$ and $\wedge(X, Y) \in \mathbf{P}$.

Syntactic sugar

Not part of the basic formal syntax. Just convenience.

Syntactic sugar

Not part of the basic formal syntax. Just convenience.

- Write $(X \vee Y)$ for $\vee(X, Y)$ and $(X \wedge Y)$ for $\wedge(X, Y)$.

Syntactic sugar

Not part of the basic formal syntax. Just convenience.

- Write $(X \vee Y)$ for $\vee(X, Y)$ and $(X \wedge Y)$ for $\wedge(X, Y)$.
- Brackets are ignored whenever possible according to usual operator precedence conventions $(\neg \gg \wedge \vee)$.

Syntactic sugar

Not part of the basic formal syntax. Just convenience.

- Write $(X \vee Y)$ for $\vee(X, Y)$ and $(X \wedge Y)$ for $\wedge(X, Y)$.
- Brackets are ignored whenever possible according to usual operator precedence conventions $(\neg \gg \wedge \vee)$.
- $(X \rightarrow Y)$ is short for $(\neg X \vee Y)$.

Syntactic sugar

Not part of the basic formal syntax. Just convenience.

- Write $(X \vee Y)$ for $\vee(X, Y)$ and $(X \wedge Y)$ for $\wedge(X, Y)$.
- Brackets are ignored whenever possible according to usual operator precedence conventions $(\neg \gg \wedge \vee)$.
- $(X \rightarrow Y)$ is short for $(\neg X \vee Y)$.
- may include other common logical operators, $\leftarrow, \leftrightarrow, \nleftarrow, \cdots$

Example:

$$
\vee(P, \neg \wedge(Q, P))
$$

is in \mathbf{P} (written sugarfree).

Example:

$$
\vee(P, \neg \wedge(Q, P))
$$

is in \mathbf{P} (written sugarfree).
Same formula with sugar:

$$
P \vee \neg(Q \wedge P)
$$

We will always use sugar.

Example:

$$
\vee(P, \neg \wedge(Q, P))
$$

is in \mathbf{P} (written sugarfree).
Same formula with sugar:

$$
P \vee \neg(Q \wedge P)
$$

We will always use sugar.
Non-example:

$$
\wedge \vee(P, \neg Q())
$$

is not in \mathbf{P}.

Example:

$$
\vee(P, \neg \wedge(Q, P))
$$

is in \mathbf{P} (written sugarfree).
Same formula with sugar:

$$
P \vee \neg(Q \wedge P)
$$

We will always use sugar.
Non-example:

$$
\wedge \vee(P, \neg Q())
$$

is not in \mathbf{P}.
So far, formulas do not have any meaning!
A propositional formula is just a string with a certain structure.

Structural induction

Say we want to prove that every formula $F \in \mathbf{P}$ has a certain property Q.

Structural induction

Say we want to prove that every formula $F \in \mathbf{P}$ has a certain property Q. Then it suffices to show:
(1) $\top, \perp, p, q, r, \ldots$ have property Q.
(2) If F has property Q, then $\neg F$ has property Q.
(3) If F and F^{\prime} have property Q, then $F \vee F^{\prime}$ and $F \wedge F^{\prime}$ have property Q.

Structural induction

Say we want to prove that every formula $F \in \mathbf{P}$ has a certain property Q. Then it suffices to show:
(1) $T, \perp, p, q, r, \ldots$ have property Q.
(2) If F has property Q, then $\neg F$ has property Q.
(3) If F and F^{\prime} have property Q, then $F \vee F^{\prime}$ and $F \wedge F^{\prime}$ have property Q.

This is a theorem! [Exercise: Prove it.]

Structural induction

Say we want to prove that every formula $F \in \mathbf{P}$ has a certain property Q. Then it suffices to show:
(1) $T, \perp, p, q, r, \ldots$ have property Q.
(2) If F has property Q, then $\neg F$ has property Q.
(3) If F and F^{\prime} have property Q, then $F \vee F^{\prime}$ and $F \wedge F^{\prime}$ have property Q.

This is a theorem! [Exercise: Prove it.]
Example.
Exercise: Prove that no propositional formula consists entirely of the symbol \neg.

Semantics: Introducing meaning

Definition

A valuation v is a map that assigns each atomic proposition P, Q, \cdots one of the truth values true or false:

$$
v(P) \in\{\text { true }, \text { false }\}
$$

Semantics: Introducing meaning

Definition

A valuation v is a map that assigns each atomic proposition P, Q, \cdots one of the truth values true or false:

$$
v(P) \in\{\text { true }, \text { false }\}
$$

(Given n atomic propositions we have 2^{n} possible valuations.)

Semantics: Introducing meaning

Definition

A valuation v is a map that assigns each atomic proposition P, Q, \cdots one of the truth values true or false:

$$
v(P) \in\{\text { true }, \text { false }\}
$$

(Given n atomic propositions we have 2^{n} possible valuations.)

Semantics: Introducing meaning

Let v be a valuation. We extend v to all propositional formulas:

Semantics: Introducing meaning

Let v be a valuation. We extend v to all propositional formulas:

- $v(\top):=$ true $, v(\perp):=$ false,

Semantics: Introducing meaning

Let v be a valuation. We extend v to all propositional formulas:

- $v(\top):=$ true, $v(\perp):=$ false,
- $v(\neg F)$ is true iff $v(F)$ is false.

Semantics: Introducing meaning

Let v be a valuation. We extend v to all propositional formulas:

- $v(\top):=$ true, $v(\perp):=$ false,
- $v(\neg F)$ is true iff $v(F)$ is false.
- $v\left(F \vee F^{\prime}\right)$ is true iff at least one of $v(F), v\left(F^{\prime}\right)$ is true.

Semantics: Introducing meaning

Let v be a valuation. We extend v to all propositional formulas:

- $v(T):=$ true, $v(\perp):=$ false,
- $v(\neg F)$ is true iff $v(F)$ is false.
- $v\left(F \vee F^{\prime}\right)$ is true iff at least one of $v(F), v\left(F^{\prime}\right)$ is true.
- $v\left(F \wedge F^{\prime}\right)$ is true iff both, $v(F)$ and $v\left(F^{\prime}\right)$ are true.

Semantics: Introducing meaning

Let v be a valuation. We extend v to all propositional formulas:

- $v(T):=$ true $, v(\perp):=$ false,
- $v(\neg F)$ is true iff $v(F)$ is false.
- $v\left(F \vee F^{\prime}\right)$ is true iff at least one of $v(F), v\left(F^{\prime}\right)$ is true.
- $v\left(F \wedge F^{\prime}\right)$ is true iff both, $v(F)$ and $v\left(F^{\prime}\right)$ are true.

By a structural induction this uniquely defines $v(F)$ for every $F \in \mathbf{P}$.

Semantics: Example

Consider the formula

$$
F:=\neg P \vee Q
$$

Semantics: Example

Consider the formula

$$
F:=\neg P \vee Q
$$

Define a valuation by $v(P):=$ false and $v(Q):=$ false.

Semantics: Example

Consider the formula

$$
F:=\neg P \vee Q
$$

Define a valuation by $v(P):=$ false and $v(Q):=$ false. Then

$$
v(F)=\text { true }
$$

Satisfiability and tautology

Definition
 A formula $F \in \mathbf{P}$ is called satisfiable if there exists a valuation v such that $v(F)=$ true.

Satisfiability and tautology

Definition

A formula $F \in \mathbf{P}$ is called satisfiable if there exists a valuation v such that $v(F)=$ true.

Definition

A formula $F \in \mathbf{P}$ is called a tautology or valid if for every valuation v we have $v(F)=$ true.

Satisfiability and tautology

Definition

A formula $F \in \mathbf{P}$ is called satisfiable if there exists a valuation v such that $v(F)=$ true.

Definition

A formula $F \in \mathbf{P}$ is called a tautology or valid if for every valuation v we have $v(F)=$ true.

Exercise: Show that F is satisfiable if and only if $\neg F$ is not valid.

Examples

For each of the following formulas decide satisfiability and validity:
(1) $\neg(P \wedge Q) \vee Q \vee R$
(2) $\neg P \wedge(Q \vee R \vee P)$
(3) $((P \rightarrow Q) \rightarrow P) \wedge \neg P$

Substitution theorem

Definition

Two formulas $F, F^{\prime} \in \mathbf{P}$ are called logically equivalent if $v(F)=v\left(F^{\prime}\right)$ for all valuations v. (Equivalently, if $F \leftrightarrow F^{\prime}$ is a tautology.) We write $F \equiv F^{\prime}$.

Substitution theorem

Definition

Two formulas $F, F^{\prime} \in \mathbf{P}$ are called logically equivalent if $v(F)=v\left(F^{\prime}\right)$ for all valuations v. (Equivalently, if $F \leftrightarrow F^{\prime}$ is a tautology.) We write $F \equiv F^{\prime}$.

For formulas F, X and an atomic proposition P we define $F[P \mapsto X]$ to be the formula where every occurrence of P in F is replaced by X.

Substitution theorem

Definition

Two formulas $F, F^{\prime} \in \mathbf{P}$ are called logically equivalent if $v(F)=v\left(F^{\prime}\right)$ for all valuations v. (Equivalently, if $F \leftrightarrow F^{\prime}$ is a tautology.) We write $F \equiv F^{\prime}$.

For formulas F, X and an atomic proposition P we define $F[P \mapsto X]$ to be the formula where every occurrence of P in F is replaced by X.

Theorem

Let $X, Y \in \mathbf{P}$ be logically equivalent, $F \in \mathbf{P}$ and P an atomic proposition. Then,

$$
v(F[P \mapsto X])=v(F[P \mapsto Y])
$$

for every valuation v.

Substitution theorem

Definition

Two formulas $F, F^{\prime} \in \mathbf{P}$ are called logically equivalent if $v(F)=v\left(F^{\prime}\right)$ for all valuations v. (Equivalently, if $F \leftrightarrow F^{\prime}$ is a tautology.) We write $F \equiv F^{\prime}$.

For formulas F, X and an atomic proposition P we define $F[P \mapsto X]$ to be the formula where every occurrence of P in F is replaced by X.

Theorem

Let $X, Y \in \mathbf{P}$ be logically equivalent, $F \in \mathbf{P}$ and P an atomic proposition. Then,

$$
v(F[P \mapsto X])=v(F[P \mapsto Y])
$$

for every valuation v.
Together with a list of basic tautologies this enables simplification and transformation to normal forms.

(1) Introduction

(2) Syntax and semantics

(3) Normal forms

NNF

Definition

A formula is in negation normal form (NNF) if the symbol \neg only appears directly in front of literals.

NNF

Definition

A formula is in negation normal form (NNF) if the symbol \neg only appears directly in front of literals.

Every propositional formula can be transformed into a logically equivalent formula in NNF.

NNF

Definition

A formula is in negation normal form (NNF) if the symbol \neg only appears directly in front of literals.

Every propositional formula can be transformed into a logically equivalent formula in NNF.
Example.

$$
\neg(P \wedge \neg Q) \wedge(P \vee R)
$$

NNF

Definition

A formula is in negation normal form (NNF) if the symbol \neg only appears directly in front of literals.

Every propositional formula can be transformed into a logically equivalent formula in NNF.
Example.

$$
\begin{aligned}
& \neg(P \wedge \neg Q) \wedge(P \vee R) \\
& \equiv \neg P \vee Q \wedge(P \vee R)
\end{aligned}
$$

NNF

Definition

A formula is in negation normal form (NNF) if the symbol \neg only appears directly in front of literals.

Every propositional formula can be transformed into a logically equivalent formula in NNF.
Example.

$$
\begin{aligned}
& \neg(P \wedge \neg Q) \wedge(P \vee R) \\
& \equiv \neg P \vee Q \wedge(P \vee R)
\end{aligned}
$$

DNF and CNF

Definition

A formula is in disjunctive normal form (DNF) if it is of the form

$$
D_{1} \vee D_{2} \vee \cdots \vee D_{n}
$$

where each D_{i} is of the form

$$
P_{i 1} \wedge \cdots \wedge P_{i m_{i}}
$$

with $P_{i j}$ being literals or negated literals.

DNF and CNF

Definition

A formula is in disjunctive normal form (DNF) if it is of the form

$$
D_{1} \vee D_{2} \vee \cdots \vee D_{n}
$$

where each D_{i} is of the form

$$
P_{i 1} \wedge \cdots \wedge P_{i m_{i}}
$$

with $P_{i j}$ being literals or negated literals.
A DNF is "a disjunction of conjunctions", or an "OR of ANDs".

DNF and CNF

Definition

A formula is in disjunctive normal form (DNF) if it is of the form

$$
D_{1} \vee D_{2} \vee \cdots \vee D_{n}
$$

where each D_{i} is of the form

$$
P_{i 1} \wedge \cdots \wedge P_{i m_{i}}
$$

with $P_{i j}$ being literals or negated literals.
A DNF is "a disjunction of conjunctions", or an "OR of ANDs".
Dually, conjunctive normal form (CNF) is "a conjunction of disjunctions". Every formula can be transformed into DNF and CNF.

DNF and CNF

Definition

A formula is in disjunctive normal form (DNF) if it is of the form

$$
D_{1} \vee D_{2} \vee \cdots \vee D_{n}
$$

where each D_{i} is of the form

$$
P_{i 1} \wedge \cdots \wedge P_{i m_{i}}
$$

with $P_{i j}$ being literals or negated literals.
A DNF is "a disjunction of conjunctions", or an "OR of ANDs".
Dually, conjunctive normal form (CNF) is "a conjunction of disjunctions". Every formula can be transformed into DNF and CNF.

DNF and SAT

It is very efficient to check a DNF formula for satisfiability:
A formula in DNF is satisfiable if and only if in at least one of the disjuncts there is no literal that appears negated and unnegated.

Example. The DNF

$$
P \wedge Q \wedge R \vee P \wedge \neg Q \vee \neg R \wedge Q \wedge R
$$

is satisfiable.

Clausal form

Clausal form is the same as CNF.

A clause is a disjunction: $P_{1} \vee \cdots \vee P_{m}$ with P_{i} literals or negated literals. It is often convenient to represent CNF as a list of lists, for example,

$$
(P \vee Q \vee \neg R) \wedge P \wedge \neg Q \wedge(R \vee Q)
$$

becomes

$$
[[P, Q, \neg R],[P],[\neg Q],[R, Q]]
$$

To be continued..

Next step: first-order logic!

- FOL satisfiability is only semi-decidable.
- Syntax and semantics will much more involved.
- We will also need more sophisticated (propositional) SAT methods.

References

RMelvin Fitting. First-order Logic and Automated Theorem Proving. (Springer, 1996)

John Harrison. Handbook of Practical Logic and Automated Reasoning. (Cambridge, 2009)

