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Review

Recall that we are studying the satisfiability of FOL formulas.

Last time we showed how to reduce a general FOL formula to an
equisatisfiable formula without quantifiers (removing quantifiers by
Skolemization).

Theorem

A quantifier-free formula F is satisfiable if and only if every finite set of
ground instances is satisfiable.

Ground instances are propositional formulas obtained from substituting
ground terms for free variables.
Ground terms are terms made up only of function symbols and constant
symbols of the language.
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Naive theorem prover

Goal: show that quantifier-free formula F is not satisfiable.

1 Initialize H = >.

2 Generate next ground instance G (a propositional formula).

3 Set H := H ∧ G .
4 Test if H is satisfiable (e.g. by converting to DNF).

If yes, go to (2).
If not, we are done.

If this terminates, then we proved that F is not satisfiable.
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Naive theorem prover

How can we improve this?

1 Use a better SAT procedure.
For example:

Use of DNF leads to combinatorial explosion because we keep joining
formulas by ∧.
CNF/clause form is more natural (each step just adds a clause).
Efficient algorithms to solve SAT for CNF formulas: Davis-Putnam,
DPLL, ...

2 Substitute “clever” ground terms instead of a brute-force exhaustive
search.
One approach is unification.
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We start with a formula in CNF represented as a list of clauses and want
to decide if it is satisfiable.

This is done by iteratively applying three rules that do not change
satisfiability.
We always assume that no clause contains both a literal and its negation,
since P ∨ ¬P is a tautology.

Joris Roos First-order logic II August 16, 2018 8 / 22



We start with a formula in CNF represented as a list of clauses and want
to decide if it is satisfiable.
This is done by iteratively applying three rules that do not change
satisfiability.

We always assume that no clause contains both a literal and its negation,
since P ∨ ¬P is a tautology.

Joris Roos First-order logic II August 16, 2018 8 / 22



We start with a formula in CNF represented as a list of clauses and want
to decide if it is satisfiable.
This is done by iteratively applying three rules that do not change
satisfiability.
We always assume that no clause contains both a literal and its negation,
since P ∨ ¬P is a tautology.

Joris Roos First-order logic II August 16, 2018 8 / 22



Rule 1

If there is a clause that contains only a single literal (possibly negated) P,
then

remove every clause containing P

remove every occurrence of ¬P in other clauses
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Rule 2

If some literal P occurs either only unnegated or only negated, then
remove every clause containing P.
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Propositional resolution

Rule 3 is based on the following deduction rule: suppose we have two
clauses of the form

P ∨ A,¬P ∨ B

where A,B are clauses and P a literal.
Then we can deduce the resolvent clause

A ∨ B
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Rule 3

Let P be a literal and suppose we have clauses

P ∨ A1, . . . ,P ∨ An

for Ai clauses (not containing P, ¬P)

and clauses
¬P ∨ B1, . . . ,¬P ∨ Bm

for Bi clauses (not containing P, ¬P),
then we replace these by the clauses

Ai ∨ Bj

for i = 1, . . . , n, j = 1, . . . ,m (and remove tautologies). This does not
change satisfiability.
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Each rule reduces the number of literals.

If there is a nonempty clause, then one of the rules applies.

Consequently, we can keep applying the rules (we prefer Rules 1 and 2
when possible) and the procedure will terminate.

Much faster than truth tables.

This drastically improves our naive FOL theorem prover by avoiding
combinatorial explosion owing to DNF.

Catch: Rule 3 may drastically increase the number of clauses.

Improvement: Davis-Putnam-Logeman-Loveland (DPLL)
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Example

[[P,Q,¬R,¬S ], [¬P,¬Q,S ], [P,¬Q,T ], [R]]

Apply Rule 1:
[[P,Q,¬S ], [¬P,¬Q, S ], [P,¬Q,T ]]

Apply Rule 2:
[[P,Q,¬S ], [¬P,¬Q,S ]]

Apply Rule 3:
[[Q,¬S ,¬Q,S ]]

Remove tautology:
[]

No clauses left, so formula is satisfiable.
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Idea

Consider the following quantifier-free FOL formula in clause form:

[[P(x , f (y))], [Q(x , y),¬P(g(z),w)]]

Substitute x 7→ g(z) and w 7→ f (y).

[[P(g(z), f (y))], [Q(g(z), y),¬P(g(z), f (y)]]

Then by resolution we may add the clause

Q(g(z), y)

(This is still a FOL formula with free variables!)
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Unifiers

Definition

An instantiation σ is a map assigning a term to each variable symbol.

(By structural induction we can uniquely extend σ to a map on the set of
terms which we also denote by σ.)

Definition

Let S be a set of pairs of terms. An instantiation σ is a unifier of S if

σ(s) = σ(t)

for all (s, t) ∈ S .
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MGU

Definition

If σ, σ′ are instantiations, we say that σ is more general than σ′ if there
exists an instantiation δ such that σ′ = δ ◦ σ.

Definition

A unifier is called a most general unifier (MGU) if it is more general than
every other unifier.

A MGU is a unifier that is “as simple as possible”.

If a unifier exists, then a MGU exists and there is an algorithm to
compute it.

MGUs are not necessarily unique.
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Examples

Example 1. Let S = {(x + 1, y)}

Then σ : y 7→ x + 1 is a MGU.
σ′ : x 7→ 1, y 7→ 1 + 1 is a unifier, but not a MGU.

Example 2. Let S = {(x , f (x))}.
Then S has no unifiers.
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FOL resolution

We can use this to build an improved FOL theorem prover by combining
unification with resolution.

We keep forming (unified) resolvents of clauses until we derive the empty
clause.
One can show that this always terminates if the original formula was not
satisfiable.
(Example on the board)
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Further directions

Tableaux

Subsumption and replacement

Linear resolution

Model elimination

· · ·
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