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1 Basic definitions
Throughout the whole paper, L denotes a first-order language (with equality).
L-structures are denoted A,B, . . . , with domains A,B, . . . .

Definition. Let A be an L-structure. A set X ⊆ A is definable if there is an
L-formula ϕ(x), such that

X = {a ∈ A | A |= ϕ(x)}.

Definition (o-minimality). Let A = (A,≤) be a totally ordered set. A is o-
minimal if every definable subset is a finite union of intervals.

Definition (VC dimension). Let X be a set. A collection of subsets S = {Si ⊆
X | i ∈ I} shatters a set B ⊆ X, if for every subset A ⊆ B there is i ∈ I, such
that A = B ∩ Si.
The Vapnik-Chervonenkis dimension (VC dimension) of S is the smallest integer
d such that S does not shatter any subset of size d of X, or∞ if no such d exists.

Definition (NIP). Let Φ be a complete L-theory. A formula ϕ(x1, . . . , xm, y1, . . . , yn)
has the independence property (IP) in Φ if there is a model A of Φ with an infinite
subset N ⊆ A~y shattered by

Sϕ =
{
{b ∈ A~y | A |= ϕ(a, b)}

∣∣∣ a ∈ A~x
}
,

where a = (a1, . . . , am) and b = (b1, . . . , bn). If no such set X exists, ϕ has not
the independence property (NIP). The theory Φ has IP if there is a formula ϕ
having IP in Φ, and has NIP otherwise. A structure A has (N)IP if its theory
Th(A) = {ϕ | A |= ϕ} has (N)IP.

Definition. An embedding i : A ↪→ B is an injective map i : A→ B such that

• i(fA(a1, . . . , an)) = fB(i(a1), . . . , i(an)) for all n-ary function symbols f
and a1, . . . , an ∈ A,

• (a1, . . . , an) ∈ RA ⇐⇒ (i(a1), . . . , i(an)) ∈ RB for all n-ary relation
symbols R and a1, . . . , an ∈ A.
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If there is an embedding i : A ↪→ B, then A can be identified with a substructure
of B. We also write A ⊆ B.
An embedding i is elementary if moreover for any L-formula ϕ with free variables
x1, . . . , xn and any a1, . . . , an ∈ A, we have

A |= ϕ(a1, . . . , an) ⇐⇒ B |= ϕ(a1, . . . , an).

In this case, we write A � B.

Definition. Let Φ be an L-theory. A model M of Φ is a monster model if for
every model A of Φ, there is an elementary embedding A �M.

To prove the existence of a monster model, ZFC is insufficient, however, we
will not worry about this.

Lemma 1.1. Let Φ be an L-theory and ϕ = ϕ(~x, ~y) an L-formula. Then the
following are equivalent:

1) ϕ has IP in Φ.
2) Let M be a monster model of Φ. For all n ∈ N, there are elements bi of

M~x indexed by natural numbers 0 ≤ i ≤ n − 1 and elements aJ of M~y

indexed by subsets J ⊂ {0, . . . , n− 1} such that

M |= ϕ(aJ , bi) ⇐⇒ i ∈ J.

Proof. 1) =⇒ 2): Choose a model A |= Φ and an infinite subset X ⊆ A~x

as in the definition. Since M is a monster model of Φ, there is an elementary
embedding A �M. Choose some arbitrary b1, . . . , bn ∈ X. Since X is shattered
by Sϕ, so is the subset {b1, . . . , bn}, hence for any J ⊂ {0, . . . , n − 1} there is
aJ ∈M~x such that

{bi | i ∈ J} = {b ∈ {b0, . . . , bn−1} | A |= ϕ(aJ , b)}
= {b ∈ {b0, . . . , bn−1} |M |= ϕ(aJ , b)},

because A �M is elementary. In other words, M |= ϕ(aJ , bi) ⇐⇒ i ∈ J .
2) =⇒ 1): It is sufficient to construct a countably infinite set X ⊆M~y shattered
by Sϕ. Expand the language L to a new language

L′ = L ∪ {ȧJ | J ⊆ N} ∪ {ḃi | i ∈ N},

where the ȧJ and ḃi are used as shorthands for tuples of constant symbols. Let

Ψ = T ∪ {ϕ(ȧJ , ḃi) | J ⊆ N, i ∈ J} ∪ {¬ϕ(ȧJ , ḃi) | J ⊆ N, i 6∈ J}.

We claim that Ψ is satisfiable. To prove this, let Ψ0 ⊆ Ψ be finite, hence
there are only finitely many formulas ϕ(ȧJ , ḃi), ¬ϕ(ȧJ , ḃi) contained in Ψ0. By
assumption, M with ȧJ and ḃi interpreted by the aJ and bi provided by 1)
satisfies Ψ0, because there are only finitely many ḃi occuring in Ψ0. By the
compactness theorem, Ψ is satisfiable, so there is a model A |= Ψ, and by
construction, X = {A(ḃi) | i ∈ N} is shattered by Sϕ.

Corollary 1.2. A formula ϕ has IP in Φ if and only if the VC dimension of
Sϕ is infinite.
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Proof. If ϕ has IP, then Sϕ shatters an infinite set, and clearly also all of its
subsets. Hence the VC dimension of Sϕ is inifinite.
On the other hand, Sϕ shattering arbitrarily large sets is equivalent to condition
2) in Lemma 1.1.

Definition (Model completeness). An L-theory Φ is model complete if for any
two models A ⊆ B of Φ, the embedding is elementary.

Lemma 1.3. Φ is model complete if and only if for any L-formula ϕ there is
a quantifier-free L-formula ψ such that

Φ ` (ϕ↔ ∃x1 . . . ∃xnψ).

We say that ϕ is equivalent to an existential formula.

Theorem 1.4 (Tarski-Vaught test). Let L be a language and A ⊆ B two L-
structures. Then the following are equivalent:

1) A is an elementary substructure of B.
2) Let ϕ(x, y1, . . . , yn) be an L-formula and a1, . . . , an ∈ A. Then if B |=
∃xϕ(x, a1, . . . , an), there is a ∈ A such that A |= ϕ(a, a1, . . . , an).

Proof. 1) =⇒ 2): Let A � B. If B |= ∃xϕ(x, a1, . . . , an) with a1, . . . , an ∈
A, then by definition A |= ∃xϕ(x, a1, . . . , an), so there is a ∈ A with A |=
ϕ(a, a1, . . . , an) and by definition, B |= ϕ(a, a1, . . . , an).
2) =⇒ 1): By induction on formulas.

• ϕ is atomic: For any term t, since A ⊆ B we have B(t) = A(t). Thus, for
ϕ = t1 = t2 and arbitrary a1, . . . , an ∈ A we have

B |= ϕ(a1, . . . , an) ⇐⇒ A |= ϕ(a1, . . . , an).

Similarly, for ϕ = Rt1 . . . tn with R a relation symbol,

B |= ϕ(a1, . . . , an) ⇐⇒ A |= ϕ(a1, . . . , an)

because RA(a1, . . . , an) ⇐⇒ RB(a1, . . . , an) for a1, . . . , an ∈ A.
• ϕ is not atomic:

– ϕ = ψ1 → ψ2: B |= ϕ(a1, . . . , an) if and only if B |= ψ1(a1, . . . , an)
implies B |= ψ2(a1, . . . , an). By induction for ψ1 and ψ2 this is
equivalent to A |= ψ1(a1, . . . , an) implying A |= ψ2(a1, . . . , an), or
equivalently A |= ϕ(a1, . . . , an).

– ϕ = ¬ψ: By induction, B |= ϕ(a1, . . . , an) if and only if B 6|=
ψ(a1, . . . , an) if and only if A 6|= ϕ(a1, . . . , an) if and only if A |=
ϕ(a1, . . . , an).

– ϕ = ∃xψ: If B |= ∃xψ(x, a1, . . . , an) for a1, . . . , an ∈ A, then by
assumption there is a ∈ A with B |= ψ(a, a1, . . . , an), hence by defi-
nition A |= ψ(a, a1, . . . , an) and thus A |= ∃xψ(x, a1, . . . , an).
Conversely, if A |= ∃xψ(x, a1, . . . , an), then there is a ∈ A with
A |= ψ(a, a1, . . . , an). By definition, B |= ψ(a, a1, . . . , an), hence
B |= ∃xψ(x, a1, . . . , an).
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Definition (Existentially closed). A model A of a theory Φ is existentially
closed if for every model B with A ⊆ B and B |= Φ and for any quantifier-free
formula ϕ and a1, . . . , am ∈ A with B |= ∃~v ϕ(~v,~a), then also A |= ∃~v ϕ(~v,~a).

Theorem 1.5 (Robinson’s test). A theory Φ is model-complete if and only if
every model of Φ is existentially closed.

2 o-minimality of Rexp

Let L = {0, 1,+,−, ·, <, exp} be the language of ordered rings with the expo-
nential function and Rexp = (R, 0, 1,+,−, ·, <, exp) the L-structure, where the
constants functions and predicates have the natural interpretation. We show
that Rexp is o-minimal, assuming the model completeness of Rexp.

Theorem 2.1 (Wilkie). Rexp is model complete.

Sketch of proof. This is a difficult application of Robinson’s test. In this context,
we have to prove that for any two models A ⊆ B of Rexp, any exponential
polynomial with coefficients in A that has a zero in B also has a zero in A.

Lemma 2.2. Let t be an L-term with a single variable x and R∈ {=, <}. Then
there exists a quantifier-free L-formula ϕ with

Rexp |= (t R 0↔ ∃y1 . . . ∃ynϕ),

such that all terms in ϕ are exponential polynomials, i.e. polynomials in the
variables x, y1, . . . , yn, expx, exp y1, . . . , exp yn.

Proof. For every appearance of exp t′ in t with the term t′ neither a constant
nor a variable we have

Rexp |= t R 0↔

t
[

exp t1·exp t2
exp t′

]
R 0 if t′ = t1 + t2,

∃y t
[

y
exp t′

]
R 0 ∧ y − exp t′ = 0 otherwise.

We can repeat this finitely many times to get the desired formula ϕ.

Theorem 2.3 (Wilkie). Rexp is o-minimal.

Proof. Let D ⊂ R be a definable set in Rexp. Because Rexp is model complete
we have an existential L-formula ϕ(x) which defines D. With ¬t1 = t2 ⇔ (t1 <
t2) ∨ (t2 < t1) and ¬t1 < t2 ⇔ (t1 = t2) ∨ (t2 < t1) we now write

∃z t2 − t1 − z2 = 0 for t1 < t2,
t1 − t2 = 0 for t1 = t2.

for every atomic formula in ϕ. Applying Lemma 2.2 and moving the existential
quantifiers to the front yields an existential formula ψ with atomic formulas in
the form t = 0 with t an exponential polynomial. For t1 = 0 and t2 = 0 we
write

t21 + t22 = 0 if t1 ∧ t2 is in ψ,
t1 · t2 = 0 if t1 ∨ t2 is in ψ.
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and get an existential formula with free variable x and quantified variables sat-
isfying the only atomic formula t = 0 if and only if they are in the zero set of
the exponential polynomial. Due to a theorem by Khovanskii every exponen-
tial variety has only finitely many connected components. Projection to the x
component yields, that the set D consists of finitely many intervals.

3 o-minimality and NIP
In this section, we will show that o-minimal structures have NIP. Unless explic-
itly mentioned, all structures are totally ordered sets.

Definition. An n-type is a consistent set p of formulas with free variables
x1, . . . , xn such that for any formula ϕ(x1, . . . , xn), either ϕ ∈ p or ¬ϕ ∈ p.
For a 1-type p and a structure A, let p< = {a ∈ A | x < a ∈ p}, p= = {a ∈
A | x = a ∈ p}, p> = {a ∈ A | a < x ∈ p}. p= contains at most one element.
Hence, a 1-type induces a cut of A.

Lemma 3.1. If A is o-minimal, then any 1-type is uniquely determined by the
formulas x < a, b < x and x = c contained in p.

Proof. Let ϕ(x) be a formula. Since A is o-minimal, there are ai, bi, cj ∈ A with

A |= ϕ↔

 m∨
j=1

x = cj ∨
n∨

i=1
(ai < x ∧ x < bi)

 .

If there is j such that x = cj ∈ p or i such that ai < x ∈ p and x < bi ∈ p, then
since p is complete, also ϕ ∈ p. Otherwise, for all j we have ¬x = cj ∈ p and
for all i, ¬(ai < x ∧ x < bi) ∈ p. Hence p ∪ {ϕ} is inconsistent, so ϕ 6∈ p.

Lemma 3.2. Let A,B be two L-structures. If Th(A) = Th(B), then A is
o-minimal if and only if B is o-minimal. This property is called strong o-
minimality.

Sketch of proof. A formula ϕ(x) defines a set of elements a ∈ A satisfying ϕ.
By o-minimality of A, this set is a finite union of intervals and thus can be
expressed by a different formula ψ without free variables, which is satisfied by
A and thus also by B. So the subset of B defined by ϕ can be written as a finite
union of intervals, as described by ψ.

For an L-structure A, let LA = L ∪ {ȧ | a ∈ A}. The structure A naturally
becomes an LA-structure via A(ȧ) = a.

Definition. Let A be an L-structure. An n-type over A is a deductively closed
set p of LA-formulas in n free variables such that any finite subset of p is satisfied
in A. If there are elements a1, . . . , an ∈ A such that A |= p(a1, . . . , an), then p
is realized in A.

Definition. Let A � B be an elementary extension. A 1-type q over B is a
coheir over A if every finite subset of q is realizable in A.

Proposition 3.3 (Poizat). An L-theory Φ has IP if and only if there is a 1-type
p over a model A of Φ with |A| ≥ |L| and an elementary extension B � A such
that p has 22|A| coheirs over B.
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Lemma 3.4. Let A be o-minimal and p a 1-type over A. Then p has at most
two coheirs over any B � A.

Proof. Assume that p has three different coheirs q1, q2, q3. By Lemma 3.2, B
is o-minimal, so by Lemma 3.1 the qi are determined by their induced cuts.
Without loss of generality, we may assume q1 < q2 < q3. Then p< ⊆ q<

1 ⊆ q<
3

and p> ⊆ q>
3 ⊆ q>

1 . Hence for q1 ≤ b1 < b2 ≤ q3 with b1, b2 ∈ B, at most
one of b1, b2 can be contained in A (because otherwise b1, b2 ∈ p= and b1 6= b2,
a contradiction). Hence, the open interval (b1, b2) does not intersect A, so
b1 < x < b2 is not realizable in A. But b1 < x < b2 is contained in q2,
contradicting the definition of coheir.

Theorem 3.5. If A is o-minimal, then A has NIP.

Proof. By Lemma 3.2, it is sufficient to consider only the structure A. If A had
IP, then by Prop. 3.3, |A| ≥ |L| ≥ 1 and there would be a 1-type p over A having
22|A|

> 2 coheirs in some structure B � A, contradicting Lemma 3.4.

4 Application to neural networks
In this section we link the previous results of o-minimal structures to binary
neural networks.

Definition. An artificial neuron is a set of functions Rd → R

{x 7→ F (〈w, x〉) | w ∈ Rd},

where F : R→ R is a fixed activation function and 〈 · , · 〉 is the canonical scalar
product. w is the weight vector. A neural network consists of several artificial
neurons (with different activation functions) connected to each other, and thus
can be described as a set H of functions given by compositions of the functions
of the neurons.

In the following, X denotes the set of allowed inputs for the neural network
and Y the possible outputs.

Definition. Let p be a probability measure on X × Y . The error of h ∈ H
with respect to p is

erp(h) = p({(x, y) ∈ X × Y | h(x) 6= y}).

The minimal error of H for fixed p is

optp(H) = inf
h∈H

erp(h).

For a neural network to be able to adapt to a certain task we have to define
a learning cycle of the network. First we have to define a measure how well the
network calculates a given sample (x, y) ∈ X × Y .

Definition. A learning algorithm for a neural network H is a function

L :
∞⋃

m=1
(X × Y )m → H
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such that for all 0 < ε, δ < 1 there is m0(ε, δ) ∈ N such that for all m ≥ m0,
any probability measure p on X × Y and all z ∈ (X × Y )m, we have

pm
({

erp(L(z)) < optp(H) + ε
})
≥ 1− δ,

where pm denotes the product measure. If there is a learning algorithm for H,
then H is called learnable. The inherent sample complexity mH(ε, δ) of H is the
minimum number m0(ε, δ) over all learning algorithms L.

Theorem 4.1. A neural network H is learnable if and only if SH = {h−1(1) |
h ∈ H} has finite VC dimension. Moreover, the inherent sample complexity is

mH(ε, δ) = Θ
(

1
ε2 log 1

δ

)
.

Corollary 4.2. Any neural network with activation functions defined in Rexp
is learnable. In particular, this includes the sigmoid function σ(x) = 1

1+exp(−x) .

Proof. The set of functions H can be parameterized by some Rl (the weight
vectors). So there is a Rexp-formula ϕ(y1, . . . , yl, x1, . . . , xd) such that {h−1(1) |
h ∈ H} are exactly the fibers Sϕ of ϕ. By Thm. 2.3, ϕ has NIP in Rexp, and by
Cor. 1.2, Sϕ has finite VC dimension. The claim follows from Thm. 4.1.
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