o-Minimality and Neural Networks

Konrad Bals, Lukas Bonfert
Summer Academy Leysin
German Academic Scholarship Foundation

August 2018

1 Basic definitions

Throughout the whole paper, L denotes a first-order language (with equality). L-structures are denoted $\mathfrak{A}, \mathfrak{B}, \ldots$, with domains A, B, \ldots

Definition. Let \mathfrak{A} be an L-structure. A set $X \subseteq A$ is definable if there is an L-formula $\varphi(x)$, such that

$$
X=\{a \in A \mid \mathfrak{A} \models \varphi(x)\} .
$$

Definition (o-minimality). Let $\mathfrak{A}=(A, \leq)$ be a totally ordered set. \mathfrak{A} is ominimal if every definable subset is a finite union of intervals.

Definition (VC dimension). Let X be a set. A collection of subsets $\mathcal{S}=\left\{S_{i} \subseteq\right.$ $X \mid i \in I\}$ shatters a set $B \subseteq X$, if for every subset $A \subseteq B$ there is $i \in I$, such that $A=B \cap S_{i}$.
The Vapnik-Chervonenkis dimension (VC dimension) of \mathcal{S} is the smallest integer d such that \mathcal{S} does not shatter any subset of size d of X, or ∞ if no such d exists.

Definition (NIP). Let Φ be a complete L-theory. A formula $\varphi\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ has the independence property (IP) in Φ if there is a model \mathfrak{A} of Φ with an infinite subset $N \subseteq A^{\vec{y}}$ shattered by

$$
\mathcal{S}_{\varphi}=\left\{\left\{b \in A^{\vec{y}} \mid \mathfrak{A} \models \varphi(a, b)\right\} \mid a \in A^{\vec{x}}\right\}
$$

where $a=\left(a_{1}, \ldots, a_{m}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$. If no such set X exists, φ has not the independence property (NIP). The theory Φ has IP if there is a formula φ having IP in Φ, and has NIP otherwise. A structure \mathfrak{A} has (N)IP if its theory $\operatorname{Th}(\mathfrak{A})=\{\varphi \mid \mathfrak{A} \models \varphi\}$ has (N)IP.

Definition. An embedding $i: \mathfrak{A} \hookrightarrow \mathfrak{B}$ is an injective map $i: A \rightarrow B$ such that

- $i\left(f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathfrak{B}}\left(i\left(a_{1}\right), \ldots, i\left(a_{n}\right)\right)$ for all n-ary function symbols f and $a_{1}, \ldots, a_{n} \in A$,
- $\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathfrak{A}} \Longleftrightarrow\left(i\left(a_{1}\right), \ldots, i\left(a_{n}\right)\right) \in R^{\mathfrak{B}}$ for all n-ary relation symbols R and $a_{1}, \ldots, a_{n} \in A$.

If there is an embedding $i: \mathfrak{A} \hookrightarrow \mathfrak{B}$, then \mathfrak{A} can be identified with a substructure of \mathfrak{B}. We also write $\mathfrak{A} \subseteq \mathfrak{B}$.
An embedding i is elementary if moreover for any L-formula φ with free variables x_{1}, \ldots, x_{n} and any $a_{1}, \ldots, a_{n} \in A$, we have

$$
\mathfrak{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \mathfrak{B} \models \varphi\left(a_{1}, \ldots, a_{n}\right)
$$

In this case, we write $\mathfrak{A} \preceq \mathfrak{B}$.
Definition. Let Φ be an L-theory. A model \mathfrak{M} of Φ is a monster model if for every model \mathfrak{A} of Φ, there is an elementary embedding $\mathfrak{A} \preceq \mathfrak{M}$.

To prove the existence of a monster model, ZFC is insufficient, however, we will not worry about this.

Lemma 1.1. Let Φ be an L-theory and $\varphi=\varphi(\vec{x}, \vec{y})$ an L-formula. Then the following are equivalent:

1) φ has IP in Φ.
2) Let \mathfrak{M} be a monster model of Φ. For all $n \in \mathbb{N}$, there are elements b_{i} of $M^{\vec{x}}$ indexed by natural numbers $0 \leq i \leq n-1$ and elements a_{J} of $M^{\vec{y}}$ indexed by subsets $J \subset\{0, \ldots, n-1\}$ such that

$$
\mathfrak{M} \models \varphi\left(a_{J}, b_{i}\right) \Longleftrightarrow i \in J .
$$

Proof. 1) $\Longrightarrow 2$): Choose a model $\mathfrak{A} \models \Phi$ and an infinite subset $X \subseteq A^{\vec{x}}$ as in the definition. Since \mathfrak{M} is a monster model of Φ, there is an elementary embedding $\mathfrak{A} \preceq \mathfrak{M}$. Choose some arbitrary $b_{1}, \ldots, b_{n} \in X$. Since X is shattered by \mathcal{S}_{φ}, so is the subset $\left\{b_{1}, \ldots, b_{n}\right\}$, hence for any $J \subset\{0, \ldots, n-1\}$ there is $a_{J} \in M^{\vec{x}}$ such that

$$
\begin{aligned}
\left\{b_{i} \mid i \in J\right\} & =\left\{b \in\left\{b_{0}, \ldots, b_{n-1}\right\} \mid \mathfrak{A} \models \varphi\left(a_{J}, b\right)\right\} \\
& =\left\{b \in\left\{b_{0}, \ldots, b_{n-1}\right\} \mid \mathfrak{M} \models \varphi\left(a_{J}, b\right)\right\}
\end{aligned}
$$

because $\mathfrak{A} \preceq \mathfrak{M}$ is elementary. In other words, $\mathfrak{M} \models \varphi\left(a_{J}, b_{i}\right) \Longleftrightarrow i \in J$.
$2) \Longrightarrow 1$): It is sufficient to construct a countably infinite set $X \subseteq M^{\vec{y}}$ shattered by \mathcal{S}_{φ}. Expand the language L to a new language

$$
L^{\prime}=L \cup\left\{\dot{a}_{J} \mid J \subseteq \mathbb{N}\right\} \cup\left\{\dot{b}_{i} \mid i \in \mathbb{N}\right\}
$$

where the \dot{a}_{J} and \dot{b}_{i} are used as shorthands for tuples of constant symbols. Let

$$
\Psi=T \cup\left\{\varphi\left(\dot{a}_{J}, \dot{b}_{i}\right) \mid J \subseteq \mathbb{N}, i \in J\right\} \cup\left\{\neg \varphi\left(\dot{a}_{J}, \dot{b}_{i}\right) \mid J \subseteq \mathbb{N}, i \notin J\right\}
$$

We claim that Ψ is satisfiable. To prove this, let $\Psi_{0} \subseteq \Psi$ be finite, hence there are only finitely many formulas $\varphi\left(\dot{a}_{J}, \dot{b}_{i}\right), \neg \varphi\left(\dot{a}_{J}, \dot{b}_{i}\right)$ contained in Ψ_{0}. By assumption, \mathfrak{M} with \dot{a}_{J} and \dot{b}_{i} interpreted by the a_{J} and b_{i} provided by 1) satisfies Ψ_{0}, because there are only finitely many \dot{b}_{i} occuring in Ψ_{0}. By the compactness theorem, Ψ is satisfiable, so there is a model $\mathfrak{A} \models \Psi$, and by construction, $X=\left\{\mathfrak{A}\left(\dot{b}_{i}\right) \mid i \in \mathbb{N}\right\}$ is shattered by \mathcal{S}_{φ}.
Corollary 1.2. A formula φ has IP in Φ if and only if the $V C$ dimension of \mathcal{S}_{φ} is infinite.

Proof. If φ has IP, then \mathcal{S}_{φ} shatters an infinite set, and clearly also all of its subsets. Hence the VC dimension of \mathcal{S}_{φ} is inifinite.
On the other hand, \mathcal{S}_{φ} shattering arbitrarily large sets is equivalent to condition 2) in Lemma 1.1

Definition (Model completeness). An L-theory Φ is model complete if for any two models $\mathfrak{A} \subseteq \mathfrak{B}$ of Φ, the embedding is elementary.

Lemma 1.3. Φ is model complete if and only if for any L-formula φ there is a quantifier-free L-formula ψ such that

$$
\Phi \vdash\left(\varphi \leftrightarrow \exists x_{1} \ldots \exists x_{n} \psi\right) .
$$

We say that φ is equivalent to an existential formula.
Theorem 1.4 (Tarski-Vaught test). Let L be a language and $\mathfrak{A} \subseteq \mathfrak{B}$ two L structures. Then the following are equivalent:

1) \mathfrak{A} is an elementary substructure of \mathfrak{B}.
2) Let $\varphi\left(x, y_{1}, \ldots, y_{n}\right)$ be an L-formula and $a_{1}, \ldots, a_{n} \in A$. Then if $\mathfrak{B} \models$ $\exists x \varphi\left(x, a_{1}, \ldots, a_{n}\right)$, there is $a \in A$ such that $\mathfrak{A} \vDash \varphi\left(a, a_{1}, \ldots, a_{n}\right)$.

Proof. 1) $\Longrightarrow 2)$: Let $\mathfrak{A} \preceq \mathfrak{B}$. If $\mathfrak{B} \models \exists x \varphi\left(x, a_{1}, \ldots, a_{n}\right)$ with $a_{1}, \ldots, a_{n} \in$ A, then by definition $\mathfrak{A} \models \exists x \varphi\left(x, a_{1}, \ldots, a_{n}\right)$, so there is $a \in A$ with $\mathfrak{A} \models$ $\varphi\left(a, a_{1}, \ldots, a_{n}\right)$ and by definition, $\mathfrak{B} \models \varphi\left(a, a_{1}, \ldots, a_{n}\right)$.
$2) \Longrightarrow 1)$: By induction on formulas.

- φ is atomic: For any term t, since $\mathfrak{A} \subseteq \mathfrak{B}$ we have $\mathfrak{B}(t)=\mathfrak{A}(t)$. Thus, for $\varphi=t_{1}=t_{2}$ and arbitrary $a_{1}, \ldots, a_{n} \in A$ we have

$$
\mathfrak{B} \models \varphi\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \mathfrak{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right) .
$$

Similarly, for $\varphi=R t_{1} \ldots t_{n}$ with R a relation symbol,

$$
\mathfrak{B} \models \varphi\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \mathfrak{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right)
$$

because $R^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow R^{\mathfrak{B}}\left(a_{1}, \ldots, a_{n}\right)$ for $a_{1}, \ldots, a_{n} \in A$.

- φ is not atomic:
$-\varphi=\psi_{1} \rightarrow \psi_{2}: \mathfrak{B} \models \varphi\left(a_{1}, \ldots, a_{n}\right)$ if and only if $\mathfrak{B} \models \psi_{1}\left(a_{1}, \ldots, a_{n}\right)$ implies $\mathfrak{B} \models \psi_{2}\left(a_{1}, \ldots, a_{n}\right)$. By induction for ψ_{1} and ψ_{2} this is equivalent to $\mathfrak{A} \models \psi_{1}\left(a_{1}, \ldots, a_{n}\right)$ implying $\mathfrak{A} \models \psi_{2}\left(a_{1}, \ldots, a_{n}\right)$, or equivalently $\mathfrak{A} \models \varphi\left(a_{1}, \ldots, a_{n}\right)$.
$-\varphi=\neg \psi$: By induction, $\mathfrak{B} \models \varphi\left(a_{1}, \ldots, a_{n}\right)$ if and only if $\mathfrak{B} \not \vDash$ $\psi\left(a_{1}, \ldots, a_{n}\right)$ if and only if $\mathfrak{A} \not \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$ if and only if $\mathfrak{A} \models$ $\varphi\left(a_{1}, \ldots, a_{n}\right)$.
$-\varphi=\exists x \psi$: If $\mathfrak{B} \models \exists x \psi\left(x, a_{1}, \ldots, a_{n}\right)$ for $a_{1}, \ldots, a_{n} \in A$, then by assumption there is $a \in A$ with $\mathfrak{B} \models \psi\left(a, a_{1}, \ldots, a_{n}\right)$, hence by definition $\mathfrak{A} \models \psi\left(a, a_{1}, \ldots, a_{n}\right)$ and thus $\mathfrak{A} \models \exists x \psi\left(x, a_{1}, \ldots, a_{n}\right)$. Conversely, if $\mathfrak{A} \vDash \exists x \psi\left(x, a_{1}, \ldots, a_{n}\right)$, then there is $a \in A$ with $\mathfrak{A} \models \psi\left(a, a_{1}, \ldots, a_{n}\right)$. By definition, $\mathfrak{B} \models \psi\left(a, a_{1}, \ldots, a_{n}\right)$, hence $\mathfrak{B} \models \exists x \psi\left(x, a_{1}, \ldots, a_{n}\right)$.

Definition (Existentially closed). A model \mathfrak{A} of a theory Φ is existentially closed if for every model \mathfrak{B} with $\mathfrak{A} \subseteq \mathfrak{B}$ and $\mathfrak{B} \models \Phi$ and for any quantifier-free formula φ and $a_{1}, \ldots, a_{m} \in \mathfrak{A}$ with $\mathfrak{B} \models \exists \vec{v} \varphi(\vec{v}, \vec{a})$, then also $\mathfrak{A} \models \exists \vec{v} \varphi(\vec{v}, \vec{a})$.

Theorem 1.5 (Robinson's test). A theory Φ is model-complete if and only if every model of Φ is existentially closed.

2 o-minimality of $\mathbb{R}_{\exp }$

Let $L=\{0,1,+,-, \cdot,<, \exp \}$ be the language of ordered rings with the exponential function and $\mathbb{R}_{\exp }=(\mathbb{R}, 0,1,+,-, \cdot,<, \exp)$ the L-structure, where the constants functions and predicates have the natural interpretation. We show that $\mathbb{R}_{\exp }$ is o-minimal, assuming the model completeness of $\mathbb{R}_{\exp }$.
Theorem 2.1 (Wilkie). $\mathbb{R}_{\exp }$ is model complete.
Sketch of proof. This is a difficult application of Robinson's test. In this context, we have to prove that for any two models $\mathfrak{A} \subseteq \mathfrak{B}$ of $\mathbb{R}_{\exp }$, any exponential polynomial with coefficients in \mathfrak{A} that has a zero in \mathfrak{B} also has a zero in \mathfrak{A}.

Lemma 2.2. Let t be an L-term with a single variable x and $R \in\{=,<\}$. Then there exists a quantifier-free L-formula φ with

$$
\mathbb{R}_{\exp } \models\left(t R 0 \leftrightarrow \exists y_{1} \ldots \exists y_{n} \varphi\right)
$$

such that all terms in φ are exponential polynomials, i.e. polynomials in the variables $x, y_{1}, \ldots, y_{n}, \exp x, \exp y_{1}, \ldots, \exp y_{n}$.

Proof. For every appearance of $\exp t^{\prime}$ in t with the term t^{\prime} neither a constant nor a variable we have

$$
\mathbb{R}_{\exp } \models t R 0 \leftrightarrow \begin{cases}t\left[\frac{\exp t_{1} \cdot \exp t_{2}}{\exp t^{\prime}}\right] R 0 & \text { if } t^{\prime}=t_{1}+t_{2}, \\ \exists y t\left[\frac{y}{\exp t^{\prime}}\right] R 0 \wedge y-\exp t^{\prime}=0 & \text { otherwise }\end{cases}
$$

We can repeat this finitely many times to get the desired formula φ.
Theorem 2.3 (Wilkie). $\mathbb{R}_{\exp }$ is o-minimal.
Proof. Let $D \subset \mathbb{R}$ be a definable set in $\mathbb{R}_{\exp }$. Because $\mathbb{R}_{\exp }$ is model complete we have an existential L-formula $\varphi(x)$ which defines D. With $\neg t_{1}=t_{2} \Leftrightarrow\left(t_{1}<\right.$ $\left.t_{2}\right) \vee\left(t_{2}<t_{1}\right)$ and $\neg t_{1}<t_{2} \Leftrightarrow\left(t_{1}=t_{2}\right) \vee\left(t_{2}<t_{1}\right)$ we now write

$$
\begin{array}{ll}
\exists z t_{2}-t_{1}-z^{2}=0 & \text { for } t_{1}<t_{2} \\
t_{1}-t_{2}=0 & \text { for } t_{1}=t_{2}
\end{array}
$$

for every atomic formula in φ. Applying Lemma 2.2 and moving the existential quantifiers to the front yields an existential formula ψ with atomic formulas in the form $t=0$ with t an exponential polynomial. For $t_{1}=0$ and $t_{2}=0$ we write

$$
\begin{array}{ll}
t_{1}^{2}+t_{2}^{2}=0 & \text { if } t_{1} \wedge t_{2} \text { is in } \psi \\
t_{1} \cdot t_{2}=0 & \text { if } t_{1} \vee t_{2} \text { is in } \psi
\end{array}
$$

and get an existential formula with free variable x and quantified variables satisfying the only atomic formula $t=0$ if and only if they are in the zero set of the exponential polynomial. Due to a theorem by Khovanskii every exponential variety has only finitely many connected components. Projection to the x component yields, that the set D consists of finitely many intervals.

3 o-minimality and NIP

In this section, we will show that o-minimal structures have NIP. Unless explicitly mentioned, all structures are totally ordered sets.

Definition. An n-type is a consistent set p of formulas with free variables x_{1}, \ldots, x_{n} such that for any formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$, either $\varphi \in p$ or $\neg \varphi \in p$. For a 1-type p and a structure \mathfrak{A}, let $p^{<}=\{a \in A \mid x<a \in p\}, p^{=}=\{a \in$ $A \mid x=a \in p\}, p^{>}=\{a \in A \mid a<x \in p\}$. $p^{=}$contains at most one element. Hence, a 1 -type induces a cut of \mathfrak{A}.

Lemma 3.1. If \mathfrak{A} is o-minimal, then any 1-type is uniquely determined by the formulas $x<a, b<x$ and $x=c$ contained in p.

Proof. Let $\varphi(x)$ be a formula. Since \mathfrak{A} is o-minimal, there are $a_{i}, b_{i}, c_{j} \in A$ with

$$
\mathfrak{A} \models \varphi \leftrightarrow\left(\bigvee_{j=1}^{m} x=c_{j} \vee \bigvee_{i=1}^{n}\left(a_{i}<x \wedge x<b_{i}\right)\right)
$$

If there is j such that $x=c_{j} \in p$ or i such that $a_{i}<x \in p$ and $x<b_{i} \in p$, then since p is complete, also $\varphi \in p$. Otherwise, for all j we have $\neg x=c_{j} \in p$ and for all $i, \neg\left(a_{i}<x \wedge x<b_{i}\right) \in p$. Hence $p \cup\{\varphi\}$ is inconsistent, so $\varphi \notin p$.

Lemma 3.2. Let $\mathfrak{A}, \mathfrak{B}$ be two L-structures. If $\operatorname{Th}(\mathfrak{A})=\operatorname{Th}(\mathfrak{B})$, then \mathfrak{A} is o-minimal if and only if \mathfrak{B} is o-minimal. This property is called strong ominimality.

Sketch of proof. A formula $\varphi(x)$ defines a set of elements $a \in A$ satisfying φ. By o-minimality of \mathfrak{A}, this set is a finite union of intervals and thus can be expressed by a different formula ψ without free variables, which is satisfied by \mathfrak{A} and thus also by \mathfrak{B}. So the subset of B defined by φ can be written as a finite union of intervals, as described by ψ.

For an L-structure \mathfrak{A}, let $L_{\mathfrak{A}}=L \cup\{\dot{a} \mid a \in A\}$. The structure \mathfrak{A} naturally becomes an $L_{\mathfrak{A}}$-structure via $\mathfrak{A}(\dot{a})=a$.

Definition. Let \mathfrak{A} be an L-structure. An n-type over \mathfrak{A} is a deductively closed set p of $L_{\mathfrak{A}}$-formulas in n free variables such that any finite subset of p is satisfied in \mathfrak{A}. If there are elements $a_{1}, \ldots, a_{n} \in A$ such that $\mathfrak{A} \models p\left(a_{1}, \ldots, a_{n}\right)$, then p is realized in \mathfrak{A}.

Definition. Let $\mathfrak{A} \preceq \mathfrak{B}$ be an elementary extension. A 1-type q over \mathfrak{B} is a coheir over \mathfrak{A} if every finite subset of q is realizable in \mathfrak{A}.

Proposition 3.3 (Poizat). An L-theory Φ has IP if and only if there is a 1-type p over a model \mathfrak{A} of Φ with $|A| \geq|L|$ and an elementary extension $\mathfrak{B} \succeq \mathfrak{A}$ such that p has $2^{2^{|A|}}$ coheirs over \mathfrak{B}.

Lemma 3.4. Let \mathfrak{A} be o-minimal and p a 1-type over \mathfrak{A}. Then p has at most two coheirs over any $\mathfrak{B} \succeq \mathfrak{A}$.

Proof. Assume that p has three different coheirs q_{1}, q_{2}, q_{3}. By Lemma 3.2, \mathfrak{B} is o-minimal, so by Lemma 3.1 the q_{i} are determined by their induced cuts. Without loss of generality, we may assume $q_{1}<q_{2}<q_{3}$. Then $p^{<} \subseteq q_{1}^{<} \subseteq q_{3}^{<}$ and $p^{>} \subseteq q_{3}^{>} \subseteq q_{1}^{>}$. Hence for $q_{1} \leq b_{1}<b_{2} \leq q_{3}$ with $b_{1}, b_{2} \in B$, at most one of b_{1}, b_{2} can be contained in A (because otherwise $b_{1}, b_{2} \in p^{=}$and $b_{1} \neq b_{2}$, a contradiction). Hence, the open interval $\left(b_{1}, b_{2}\right)$ does not intersect A, so $b_{1}<x<b_{2}$ is not realizable in A. But $b_{1}<x<b_{2}$ is contained in q_{2}, contradicting the definition of coheir.

Theorem 3.5. If \mathfrak{A} is o-minimal, then \mathfrak{A} has NIP.
Proof. By Lemma 3.2 , it is sufficient to consider only the structure \mathfrak{A}. If \mathfrak{A} had IP, then by Prop. $3.3|A| \geq|L| \geq 1$ and there would be a 1 -type p over \mathfrak{A} having $2^{2^{|A|}}>2$ coheirs in some structure $\mathfrak{B} \succeq \mathfrak{A}$, contradicting Lemma 3.4

4 Application to neural networks

In this section we link the previous results of o-minimal structures to binary neural networks.

Definition. An artificial neuron is a set of functions $\mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
\left\{x \mapsto F(\langle w, x\rangle) \mid w \in \mathbb{R}^{d}\right\}
$$

where $F: \mathbb{R} \rightarrow \mathbb{R}$ is a fixed activation function and $\langle\cdot, \cdot\rangle$ is the canonical scalar product. w is the weight vector. A neural network consists of several artificial neurons (with different activation functions) connected to each other, and thus can be described as a set H of functions given by compositions of the functions of the neurons.

In the following, X denotes the set of allowed inputs for the neural network and Y the possible outputs.

Definition. Let p be a probability measure on $X \times Y$. The error of $h \in H$ with respect to p is

$$
\operatorname{er}_{p}(h)=p(\{(x, y) \in X \times Y \mid h(x) \neq y\})
$$

The minimal error of H for fixed p is

$$
\operatorname{opt}_{p}(H)=\inf _{h \in H} \operatorname{er}_{p}(h) .
$$

For a neural network to be able to adapt to a certain task we have to define a learning cycle of the network. First we have to define a measure how well the network calculates a given sample $(x, y) \in X \times Y$.

Definition. A learning algorithm for a neural network H is a function

$$
L: \bigcup_{m=1}^{\infty}(X \times Y)^{m} \rightarrow H
$$

such that for all $0<\varepsilon, \delta<1$ there is $m_{0}(\varepsilon, \delta) \in \mathbb{N}$ such that for all $m \geq m_{0}$, any probability measure p on $X \times Y$ and all $z \in(X \times Y)^{m}$, we have

$$
p^{m}\left(\left\{\operatorname{er}_{p}(L(z))<\operatorname{opt}_{p}(H)+\varepsilon\right\}\right) \geq 1-\delta
$$

where p^{m} denotes the product measure. If there is a learning algorithm for H, then H is called learnable. The inherent sample complexity $m_{H}(\varepsilon, \delta)$ of H is the minimum number $m_{0}(\varepsilon, \delta)$ over all learning algorithms L.

Theorem 4.1. A neural network H is learnable if and only if $\mathcal{S}_{H}=\left\{h^{-1}(1) \mid\right.$ $h \in H\}$ has finite VC dimension. Moreover, the inherent sample complexity is

$$
m_{H}(\varepsilon, \delta)=\Theta\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\delta}\right)
$$

Corollary 4.2. Any neural network with activation functions defined in $\mathbb{R}_{\exp }$ is learnable. In particular, this includes the sigmoid function $\sigma(x)=\frac{1}{1+\exp (-x)}$.

Proof. The set of functions H can be parameterized by some \mathbb{R}^{l} (the weight vectors). So there is a $\mathbb{R}_{\exp }$-formula $\varphi\left(y_{1}, \ldots, y_{l}, x_{1}, \ldots, x_{d}\right)$ such that $\left\{h^{-1}(1) \mid\right.$ $h \in H\}$ are exactly the fibers \mathcal{S}_{φ} of φ. By Thm. 2.3φ has NIP in $\mathbb{R}_{\exp }$, and by Cor. $1.2 \mathcal{S}_{\varphi}$ has finite VC dimension. The claim follows from Thm. 4.1

References

[Güt17] Linnéa Gütlein. The ordered field of real numbers with exponentiation: Model completeness, decidability and Schanuel's conjecture. Master's thesis, Universität Konstanz, 2017.
[Mar02] David Marker. Model Theory: An Introduction, volume 217 of Graduate Texts in Mathematics. Springer, 2002.
[Poi85] Bruno Poizat. Course de théorie des modeles. Office International de Documentation et Librairie, 1985.
[Ram08] Janak Ramakrishnan. Types in o-minimal theories. PhD thesis, University of California, Berkeley, 2008.
[Tre10] Marcus Tressl. Introduction to o-minimal structures and an application to neural network learning. Course outline for LMS and EPSRC Short Instructional Course: Model Theory, University of Leeds, 2010.
[TZ12] Katrin Tent and Martin Ziegler. A Course in Model Theory. Cambridge University Press, 2012.
[Wi196] Alex Wilkie. Model completeness results for expansions of the real field by restricted pfaffian functions and the exponential function. J. Am. Math. Soc., 9, 1996.

