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Abstract

An ordered exponential field is an ordered field (K,+, ·, 0, 1, <) equipped with a
unary function exp which is an order-preserving isomorphism from (K,+, 0, <) to
(K>0, ·, 1, <). Berarducci and Servi proved in [1] that the real exponential field, i. e.
the ordered field of real numbers equipped with its standard exponential function, is
decidable under the following assumption: Any o-minimal exponential field whose ex-
ponential satisfies exp′ = exp is elementarily equivalent to the real exponential field.

In my talk I will firstly give an introduction to o-minimal exponential fields and
secondly state some results on the relation between non-archimedean o-minimal ex-
ponential fields and their exponential residue fields under the natural valuation. An
investigation of this relation is influenced by the work of Macintyre and Wilkie [2] and
has strong connections to Schanuel’s Conjecture.
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