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Statement of the Problem

Question
Is (R,+,−, ·, 0, 1, <, exp) decidable? (Tarski 1948)

— or equivalently —

Question
Is the theory of (R,+,−, ·, 0, 1, <, exp) recursively axiomatizable?

Lothar Sebastian Krapp Tarski’s Exponential Function Problem



Introduction Tarski’s Decision Algorithm Decidability of the Real Exponential Field

Statement of the Problem

Question
Is (R,+,−, ·, 0, 1, <, exp) decidable? (Tarski 1948)

— or equivalently —

Question
Is the theory of (R,+,−, ·, 0, 1, <, exp) recursively axiomatizable?

Lothar Sebastian Krapp Tarski’s Exponential Function Problem



Introduction Tarski’s Decision Algorithm Decidability of the Real Exponential Field

Statement of the Problem

Question
Is (R,+,−, ·, 0, 1, <, exp) decidable? (Tarski 1948)

— or equivalently —

Question
Is the theory of (R,+,−, ·, 0, 1, <, exp) recursively axiomatizable?

Lothar Sebastian Krapp Tarski’s Exponential Function Problem



Introduction Tarski’s Decision Algorithm Decidability of the Real Exponential Field

Setting: Model Theory

• fixed logical framework (logical connectives, quantifiers, notion of provability, etc.)
• specific model theoretical language consisting of constants, unary functions, and
relations
(e.g. Lor = {+,−, ·, 0, 1, <})

• formulas in the language
(e.g. ∀x (x < 0→ ∃y y · y = x))

• structures interpreting the language
(e.g. (R,+,−, ·, 0, 1, <))
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Notation

Fix a language L and let φ be an L-sentence andM an L-structure.

T — an L-theory, i.e. a set of L-sentences (L-formulas without free variables)
T |− φ — φ is provable from T

(e.g. {∀x ¬x · x < 0} |− ¬1 · 1 < 0)

M |= φ — φ is valid inM
(e.g. (R,+,−, ·, 0, 1, <) |= ∃x x · x = 1 + 1,
but (Q,+,−, ·, 0, 1, <) 6|= ∃x x · x = 1 + 1)

T |= φ — for allM |= T we haveM |= φ

Th(M) = {ψ| ψ is an L-sentence andM |= ψ} — the complete theory ofM
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Decidability

Definition
An L-structureM is called decidable if there exists an algorithm that determines
whether for a given L-sentence φ we haveM |= φ orM |= ¬φ.

Definition
A complete L-theory T is called recursive if there exists an algorithm that determines
whether for a given L-sentence φ we have T |= φ or T |= ¬φ.

Definition
An L-theory T is axiomatized by an L-theory Σ if for all L-sentences φ it holds T |= φ
if and only if Σ |= φ.
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Decidability

Theorem
An L-structureM is decidable if and only if Th(M) is recursively axiomatizable.

Sketch of proof.
⇒ IfM is decidable, then Th(M) is recursive.
⇐ Let Σ be a recursive axiomatization of Th(M) and let {φ0, φ1, . . .} be a recursive

enumeration of all sentences provable from Σ.
Given a sentence ψ, check in turn whether ψ or ¬ψ is the nth entry of the list and
terminate when the entry is found. If ψ = φn, then Σ |− ψ, and hence (by Gödel’s
Completeness Theorem) Σ |= ψ. Thus, Th(M) |= ψ, i.e.M |= ψ.
Similarly, if ψ = ¬φn, thenM |= ¬φn.
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The Theorem

Fix language of ordered rings Lor = {+,−, ·, 0, 1, <} and let R = (R,+,−, ·, 0, 1, <).

Theorem (Tarski 1948)
The Lor-structure R is decidable.

Tarski provides an “inner-mathematical” decision algorithm.
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Outline of Tarski’s Decision Algorithm
First step: Construction of a quantifier elimination algorithm

• For each formula φ(x1, . . . , xn) (with free variables from x1, . . . , xn) we find a
quantifier-free formula ψ(x1, . . . , xn) such that

R |= ∀x1 . . . ∀xn (φ(x1, . . . , xn)↔ ψ(x1, . . . , xn)).

(E.g. ∃y x · x = y is equivalent to (−32x < 0 ∨ −32x = 0))
• Quantifier elimination algorithm by structural induction: If φ and φ′ are equivalent
to quantifier-free formulas ψ and ψ′, respectively, then

- ¬φ is equivalent to ¬ψ.
- φ ∨ φ′ is equivalent to ψ ∨ ψ′.
- φ ∧ φ′ is equivalent to ψ ∧ ψ′.
- ∃x φ is equivalent to ψ if x does not appear free in ψ.
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Outline of Tarski’s Decision Algorithm
First step (continued)

• Special attention to the case ∃x φ, where x appears free in ψ. Now, ∃x φ is
equivalent to ∃x ψ, where ψ is quantifier-free.

• Quantifier-free formulas in the variables x , y1, . . . , ym are equivalent to a formula
of the form

n∧
i=1

ki∨
j=1

ψij(x , y1, . . . , ym),

where each ψij(x , y1, . . . , ym) is of the form

pij(x , y1, . . . , ym) = 0 or pij(x , y1, . . . , ym) > 0

for some polynomials pij ∈ Z[x , y1, . . . , ym]. (E.g. x − y1 = y1 + y2 ∧ ¬y1 < y2 is
equivalent to x − 2y1 − y2 = 0 ∧ (y1 − y2 > 0 ∨ y1 − y2 = 0).)
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Outline of Tarski’s Decision Algorithm
First step (continued)

• Main technical step: For each formula of the form

∃x pij(x , y1, . . . , ym) = 0 or ∃x pij(x , y1, . . . , ym) > 0

we can use geometrical arguments to obtain an equivalent quantifier-free formula
ψ′

ij(x , y1, . . . , ym).
(E.g. ∃x y1x2 + y2x + y3 = 0 if and only if the discriminant y 2

2 − 4y1y3 is non-negative or the
polynomial is linear or the zero polynomial, i. e.
¬y 2

2 − 4y1y3 < 0 ∨ (y1 = 0 ∧ ¬ y2 = 0) ∨ (y1 = y2 = y3 = 0).)
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Outline of Tarski’s Decision Algorithm
Second step: Applying the Quantifier Elimination Algorithm

• By Step 1, each sentence ψ is equivalent to a quantifier-free sentence. A
quantifier-free sentence is equivalent to one of the form

n∧
i=1

ki∨
j=1

ψij ,

where each ψij is of the form zij = 0 or zij > 0 for some zij ∈ Z.
(E.g. ∃y (1 + 1) · (1 + 1) = y is equivalent to (−64 < 0 ∨ −64 = 0).)

• Performing a numerical check gives us whether this sentence is valid in R or not.
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• Tarksi’s Decision Algorithm only used the following properties of the real numbers:

1 R is a field
2 it is linearly ordered
3 all positive elements are squares
4 polynomials of odd degree have zeros

Formalizing these statements yields the so called
theory of real closed fields,
which is usually denoted by RCF.
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• Tarksi’s Decision Algorithm only used the following properties of the real numbers:
• the field axioms (commutativity of + and ·, distributivity, existence of inverses etc.)
• the order axioms:

• ∀x ¬x < x
• ∀x∀y∀z ((x < y ∧ y < z)→ x < z)
• ∀x∀y (x < y ∨ x = y ∨ y < x)
• ∀x∀y∀z (x < y → x + z < y + z)
• ∀x∀y ((0 < x ∧ 0 < y)→ 0 < x · y)

• positive elements are squares:
• ∀x (0 < x → ∃y x = y 2)

• polynomials of odd degree have zeros: For each n ∈ N we have:
• ∀x0∀x1 . . .∀x2n ∃y y 2n+1 + x2ny 2n + x2n−1y 2n−1 + . . .+ x1y + x0 = 0.
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The Theory of Real Closed Fields
Important Consequences

• Each model of RCF has effective quantifier elimination and is decidable.
• RCF is complete, i.e. for each Lor-sentence φ we have RCF |= φ or RCF |= ¬φ.
• As RCF is a complete recursive theory, we obtain a second, recursion theoretic
decision algorithm for R. (This would not be the case if properties of R had been
used which cannot be formalised as axioms.)
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Decidability of the Real Exponential Field

Denote by Lexp = {+,−, ·, 0, 1, <, exp} the language of exponential rings and let
Rexp = (R,+,−, ·, 0, 1, <, exp) be the real exponential field.

Question
Tarski (1948): Is Rexp decidable?
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Progress

• 1980s (Dahn and Wolter): Several candidates for recursive axiomatizations of Rexp

• 1996 (Wilkie): Rexp is model complete: That means that for every Lexp-formula
φ(x1, . . . , xn) there exists an equivalent Lexp-formula of the form
∃y1 . . . ∃ym ψ(x1, . . . , xn, y1, . . . , ym), where ψ is quantifier-free.

• 1996 (Macintyre and Wilkie): Assuming Real Schanuel’s Conjecture, Rexp is
decidable.

• 1998 (van den Dries): Rexp does not admit quantifier elimination.
• 2006 (Berarducci, Servi): Assuming Transfer Conjecture, Rexp is decidable.
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Schanuel’s Conjecture

Schanuel’s Conjecture (SC)
Let α1, . . . , αn ∈ C be linearly independent over Q. Then

tdQ(Q(α1, . . . , αn, eα1 , . . . , eαn )) ≥ n.

→ (SC) relates the algebraic complexity of complex numbers with the algebraic
complexity of their exponentials.

Example: (SC) implies that e and π are algebraically independent over Q. This means that expressions
like 1

26 e3 + eπ − π4

2 + e2π2

2 + e (≈ −0, 2104...) are never equal to 0.
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Macintyre and Wilkie’s conditional proof

1 There exists a recursive Lexp-theory T0 ⊆ Th(Rexp) such that T0 ∪ T∃(Rexp)
axiomatizes Th(Rexp).
→ Problem reduces to finding a recursive axiomatization of Th∃(Rexp).

2 Each existential sentence in Th(Rexp) is equivalent to one of the form

∃z1 . . . ∃zn p(z1, . . . , zn, exp(z1), . . . , exp(zn)) = 0

for some p(x1, . . . , xn, y1, . . . , yn) ∈ Z[x1, . . . , xn, y1, . . . , yn].
Example: ∃x∃y exp(exp(x)) > y + x is equivalent to
∃x∃y∃z1∃z2 (z1 − exp(x) = 0 ∧ exp(z1)− y + x − z2

2 = 0).This, however, is equivalent to
∃x∃y∃z1∃z2 ((z1 − exp(x))2 + (exp(z1)− y + x − z2

2 )2 = 0).
→ Problem reduces to finding an algorithm which determines whether a
polynomial p(x1, . . . , xn, y1, . . . , yn) ∈ Z[x1, . . . , xn, y1, . . . , yn] has a zero of the
form (a1, . . . , an, exp(a1), . . . , exp(an)) or not.

3 Assuming (SC), there exists a recursive theory T1 axiomatizing Th∃(Rexp).
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2 )2 = 0).
→ Problem reduces to finding an algorithm which determines whether a
polynomial p(x1, . . . , xn, y1, . . . , yn) ∈ Z[x1, . . . , xn, y1, . . . , yn] has a zero of the
form (a1, . . . , an, exp(a1), . . . , exp(an)) or not.

3 Assuming (SC), there exists a recursive theory T1 axiomatizing Th∃(Rexp).
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Consequences

As (SC) is “probably true”, the proposed recursive theory T0 ∪ T1 “probably” gives us a
decision algorithm for Rexp.

BUT: Its computational complexity makes it useless for applications in the real world.
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