Tarski's Exponential Function Problem

Lothar Sebastian Krapp

Universität Konstanz, Fachbereich Mathematik und Statistik

06 July 2017

Logic Colloquium

3 Decidability of the Real Exponential Field

2 Tarski's Decision Algorithm

3 Decidability of the Real Exponential Field

Statement of the Problem

Decidability of the Real Exponential Field

Statement of the Problem

Question

Is $(\mathbb{R}, +, -, \cdot, 0, 1, <, exp)$ decidable? (Tarski 1948)

Statement of the Problem

Question

ls ($\mathbb{R}, +, -, \cdot, 0, 1, <, exp$) decidable? (Tarski 1948)

— or equivalently —

Question

Is the theory of $(\mathbb{R}, +, -, \cdot, 0, 1, <, exp)$ recursively axiomatizable?

Decidability of the Real Exponential Field

Setting: Model Theory

• fixed logical framework (logical connectives, quantifiers, notion of provability, etc.)

- fixed logical framework (logical connectives, quantifiers, notion of provability, etc.)
- specific model theoretical language consisting of constants, unary functions, and relations

(e.g. $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\}$)

- fixed logical framework (logical connectives, quantifiers, notion of provability, etc.)
- specific model theoretical language consisting of constants, unary functions, and relations
 - (e.g. $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\}$)
- formulas in the language (e.g. $\forall x \ (x < 0 \rightarrow \exists y \ y \cdot y = x))$)

- fixed logical framework (logical connectives, quantifiers, notion of provability, etc.)
- specific model theoretical language consisting of constants, unary functions, and relations
 - (e.g. $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\}$)
- formulas in the language (e.g. $\forall x \ (x < 0 \rightarrow \exists y \ y \cdot y = x)$)
- structures interpreting the language

(e.g. $(\mathbb{R}, +, -, \cdot, 0, 1, <))$

Fix a language \mathcal{L} and let ϕ be an \mathcal{L} -sentence and \mathcal{M} an \mathcal{L} -structure.

 \mathcal{T} — an \mathcal{L} -theory, i.e. a set of \mathcal{L} -sentences (\mathcal{L} -formulas without free variables)

Fix a language ${\cal L}$ and let ϕ be an ${\cal L}\mbox{-sentence}$ and ${\cal M}$ an ${\cal L}\mbox{-structure}.$

Definition

An \mathcal{L} -structure \mathcal{M} is called *decidable* if there exists an algorithm that determines whether for a given \mathcal{L} -sentence ϕ we have $\mathcal{M} \models \phi$ or $\mathcal{M} \models \neg \phi$.

Definition

An \mathcal{L} -structure \mathcal{M} is called *decidable* if there exists an algorithm that determines whether for a given \mathcal{L} -sentence ϕ we have $\mathcal{M} \models \phi$ or $\mathcal{M} \models \neg \phi$.

Definition

A complete \mathcal{L} -theory \mathcal{T} is called *recursive* if there exists an algorithm that determines whether for a given \mathcal{L} -sentence ϕ we have $\mathcal{T} \models \phi$ or $\mathcal{T} \models \neg \phi$.

Definition

An \mathcal{L} -structure \mathcal{M} is called *decidable* if there exists an algorithm that determines whether for a given \mathcal{L} -sentence ϕ we have $\mathcal{M} \models \phi$ or $\mathcal{M} \models \neg \phi$.

Definition

A complete \mathcal{L} -theory \mathcal{T} is called *recursive* if there exists an algorithm that determines whether for a given \mathcal{L} -sentence ϕ we have $\mathcal{T} \models \phi$ or $\mathcal{T} \models \neg \phi$.

Definition

An \mathcal{L} -theory \mathcal{T} is axiomatized by an \mathcal{L} -theory Σ if for all \mathcal{L} -sentences ϕ it holds $\mathcal{T} \models \phi$ if and only if $\Sigma \models \phi$.

Theorem

An \mathcal{L} -structure \mathcal{M} is decidable if and only if $\mathsf{Th}(\mathcal{M})$ is recursively axiomatizable.

Theorem

An \mathcal{L} -structure \mathcal{M} is decidable if and only if $\mathsf{Th}(\mathcal{M})$ is recursively axiomatizable.

Sketch of proof.

 \Rightarrow If \mathcal{M} is decidable, then Th(\mathcal{M}) is recursive.

Theorem

An \mathcal{L} -structure \mathcal{M} is decidable if and only if $\mathsf{Th}(\mathcal{M})$ is recursively axiomatizable.

Sketch of proof.

- \Rightarrow If \mathcal{M} is decidable, then Th(\mathcal{M}) is recursive.
- \leftarrow Let Σ be a recursive axiomatization of Th(\mathcal{M}) and let { ϕ_0, ϕ_1, \ldots } be a recursive enumeration of all sentences provable from Σ.

Theorem

An \mathcal{L} -structure \mathcal{M} is decidable if and only if $\mathsf{Th}(\mathcal{M})$ is recursively axiomatizable.

Sketch of proof.

- \Rightarrow If \mathcal{M} is decidable, then Th(\mathcal{M}) is recursive.
- \Leftarrow Let Σ be a recursive axiomatization of Th(\mathcal{M}) and let { ϕ_0, ϕ_1, \ldots } be a recursive enumeration of all sentences provable from Σ. Given a sentence ψ , check in turn whether ψ or $\neg \psi$ is the *n*th entry of the list and terminate when the entry is found. If $\psi = \phi_n$, then Σ $\vdash \psi$, and hence (by Gödel's Completeness Theorem) Σ $\models \psi$. Thus, Th(\mathcal{M}) $\models \psi$, i.e. $\mathcal{M} \models \psi$.

Theorem

An \mathcal{L} -structure \mathcal{M} is decidable if and only if $\mathsf{Th}(\mathcal{M})$ is recursively axiomatizable.

Sketch of proof.

- \Rightarrow If \mathcal{M} is decidable, then Th(\mathcal{M}) is recursive.
- \Leftarrow Let Σ be a recursive axiomatization of Th(\mathcal{M}) and let { ϕ_0, ϕ_1, \ldots } be a recursive enumeration of all sentences provable from Σ. Given a sentence ψ , check in turn whether ψ or $\neg \psi$ is the *n*th entry of the list and terminate when the entry is found. If $\psi = \phi_n$, then $\Sigma \models \psi$, and hence (by Gödel's Completeness Theorem) $\Sigma \models \psi$. Thus, Th(\mathcal{M}) $\models \psi$, i.e. $\mathcal{M} \models \psi$. Similarly, if $\psi = \neg \phi_n$, then $\mathcal{M} \models \neg \phi_n$.

The Theorem

Fix language of ordered rings $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\}$ and let $\mathcal{R} = (\mathbb{R}, +, -, \cdot, 0, 1, <)$.

The Theorem

Fix language of ordered rings $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\}$ and let $\mathcal{R} = (\mathbb{R}, +, -, \cdot, 0, 1, <)$.

Theorem (Tarski 1948)

The \mathcal{L}_{or} -structure \mathcal{R} is decidable.

The Theorem

Fix language of ordered rings $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\}$ and let $\mathcal{R} = (\mathbb{R}, +, -, \cdot, 0, 1, <)$.

Theorem (Tarski 1948)

The \mathcal{L}_{or} -structure \mathcal{R} is decidable.

Tarski provides an "inner-mathematical" decision algorithm.

FIRST STEP: CONSTRUCTION OF A QUANTIFIER ELIMINATION ALGORITHM

FIRST STEP: CONSTRUCTION OF A QUANTIFIER ELIMINATION ALGORITHM

• For each formula $\phi(x_1, \ldots, x_n)$ (with free variables from x_1, \ldots, x_n) we find a quantifier-free formula $\psi(x_1, \ldots, x_n)$ such that

$$\mathcal{R} \models \forall x_1 \ldots \forall x_n \ (\phi(x_1, \ldots, x_n) \leftrightarrow \psi(x_1, \ldots, x_n)).$$

(E.g.
$$\exists y \ x \cdot x = y$$
 is equivalent to $(-32x < 0 \lor -32x = 0))$

FIRST STEP: CONSTRUCTION OF A QUANTIFIER ELIMINATION ALGORITHM

• For each formula $\phi(x_1, \ldots, x_n)$ (with free variables from x_1, \ldots, x_n) we find a quantifier-free formula $\psi(x_1, \ldots, x_n)$ such that

$$\mathcal{R} \models \forall x_1 \ldots \forall x_n \ (\phi(x_1, \ldots, x_n) \leftrightarrow \psi(x_1, \ldots, x_n)).$$

(E.g.
$$\exists y \ x \cdot x = y$$
 is equivalent to $(-32x < 0 \ \lor \ -32x = 0))$

- Quantifier elimination algorithm by structural induction: If ϕ and ϕ' are equivalent to quantifier-free formulas ψ and ψ' , respectively, then
 - $\neg \phi$ is equivalent to $\neg \psi$.
 - $\phi \lor \phi'$ is equivalent to $\psi \lor \psi'$.
 - $\phi \wedge \phi'$ is equivalent to $\psi \wedge \psi'$.
 - $\exists x \phi$ is equivalent to ψ if x does not appear free in ψ .

FIRST STEP (CONTINUED)

FIRST STEP (CONTINUED)

• Special attention to the case $\exists x \ \phi$, where x appears free in ψ . Now, $\exists x \ \phi$ is equivalent to $\exists x \ \psi$, where ψ is quantifier-free.

FIRST STEP (CONTINUED)

- Special attention to the case $\exists x \ \phi$, where x appears free in ψ . Now, $\exists x \ \phi$ is equivalent to $\exists x \ \psi$, where ψ is quantifier-free.
- Quantifier-free formulas in the variables x, y_1, \ldots, y_m are equivalent to a formula of the form

$$\bigwedge_{i=1}^{n}\bigvee_{j=1}^{k_{i}}\psi_{ij}(x,y_{1},\ldots,y_{m}),$$

where each $\psi_{ij}(x, y_1, \ldots, y_m)$ is of the form

$$p_{ij}(x, y_1, \dots, y_m) = 0$$
 or $p_{ij}(x, y_1, \dots, y_m) > 0$

for some polynomials $p_{ij} \in \mathbb{Z}[x, y_1, \dots, y_m]$. (E.g. $x - y_1 = y_1 + y_2 \land \neg y_1 < y_2$ is equivalent to $x - 2y_1 - y_2 = 0 \land (y_1 - y_2 > 0 \lor y_1 - y_2 = 0)$.)

FIRST STEP (CONTINUED)

FIRST STEP (CONTINUED)

• Main technical step: For each formula of the form

$$\exists x \ p_{ij}(x, y_1, \dots, y_m) = 0$$
 or $\exists x \ p_{ij}(x, y_1, \dots, y_m) > 0$

we can use geometrical arguments to obtain an equivalent quantifier-free formula $\psi'_{ij}(x, y_1, \dots, y_m)$. (E.g. $\exists x \ y_1 x^2 + y_2 x + y_3 = 0$ if and only if the discriminant $y_2^2 - 4y_1y_3$ is non-negative or the polynomial is linear or the zero polynomial, i. e.

$$\neg y_2^2 - 4y_1y_3 < 0 \lor (y_1 = 0 \land \neg y_2 = 0) \lor (y_1 = y_2 = y_3 = 0).)$$

Lothar Sebastian Krapp

Second step: Applying the Quantifier Elimination Algorithm

Second step: Applying the Quantifier Elimination Algorithm

- By Step 1, each sentence ψ is equivalent to a quantifier-free sentence. A quantifier-free sentence is equivalent to one of the form

$$\bigwedge_{i=1}^n\bigvee_{j=1}^{k_i}\psi_{ij},$$

where each ψ_{ij} is of the form $z_{ij} = 0$ or $z_{ij} > 0$ for some $z_{ij} \in \mathbb{Z}$. (E.g. $\exists y \ (1+1) \cdot (1+1) = y$ is equivalent to $(-64 < 0 \lor -64 = 0)$.)

Lothar Sebastian Krapp

Second step: Applying the Quantifier Elimination Algorithm

- By Step 1, each sentence ψ is equivalent to a quantifier-free sentence. A quantifier-free sentence is equivalent to one of the form

$$\bigwedge_{i=1}^n\bigvee_{j=1}^{k_i}\psi_{ij},$$

where each ψ_{ij} is of the form $z_{ij} = 0$ or $z_{ij} > 0$ for some $z_{ij} \in \mathbb{Z}$. (E.g. $\exists y \ (1+1) \cdot (1+1) = y$ is equivalent to $(-64 < 0 \lor -64 = 0)$.)

• Performing a numerical check gives us whether this sentence is valid in ${\cal R}$ or not.

• Tarksi's Decision Algorithm only used the following properties of the real numbers:

• Tarksi's Decision Algorithm only used the following properties of the real numbers:

 $\textcircled{0} \ \mathbb{R} \text{ is a field}$

- Tarksi's Decision Algorithm only used the following properties of the real numbers:
 - R is a field
 it is linearly ordered

- Tarksi's Decision Algorithm only used the following properties of the real numbers:
 - \bigcirc \mathbb{R} is a field
 - it is linearly ordered
 - 3 all positive elements are squares

- Tarksi's Decision Algorithm only used the following properties of the real numbers:
 - \bigcirc \mathbb{R} is a field
 - it is linearly ordered
 - 3 all positive elements are squares
 - oplynomials of odd degree have zeros

- Tarksi's Decision Algorithm only used the following properties of the real numbers:
 - \bigcirc \mathbb{R} is a field
 - it is linearly ordered
 - all positive elements are squares
 - oplynomials of odd degree have zeros

Formalizing these statements yields the so called THEORY OF REAL CLOSED FIELDS, which is usually denoted by RCF.

- Tarksi's Decision Algorithm only used the following properties of the real numbers:
 - the field axioms (commutativity of + and \cdot , distributivity, existence of inverses etc.)
 - the order axioms:
 - $\forall x \neg x < x$
 - $\forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z)$
 - $\forall x \forall y \ (x < y \lor x = y \lor y < x)$
 - $\forall x \forall y \forall z \ (x < y \rightarrow x + z < y + z)$
 - $\forall x \forall y ((0 < x \land 0 < y) \rightarrow 0 < x \cdot y)$
 - positive elements are squares:
 - $\forall x \ (0 < x \rightarrow \exists y \ x = y^2)$
 - polynomials of odd degree have zeros: For each $n \in \mathbb{N}$ we have:
 - $\forall x_0 \forall x_1 \dots \forall x_{2n} \exists y \ y^{2n+1} + x_{2n} y^{2n} + x_{2n-1} y^{2n-1} + \dots + x_1 y + x_0 = 0.$

Important Consequences

othar Sebastian Krapp

Important Consequences

• Each model of RCF has effective quantifier elimination and is decidable.

Important Consequences

- Each model of RCF has effective quantifier elimination and is decidable.
- RCF is complete, i.e. for each \mathcal{L}_{or} -sentence ϕ we have RCF $\models \phi$ or RCF $\models \neg \phi$.

Important Consequences

- Each model of RCF has effective quantifier elimination and is decidable.
- RCF is complete, i.e. for each \mathcal{L}_{or} -sentence ϕ we have RCF $\models \phi$ or RCF $\models \neg \phi$.
- As RCF is a complete recursive theory, we obtain a second, recursion theoretic decision algorithm for \mathcal{R} .

Important Consequences

- Each model of RCF has effective quantifier elimination and is decidable.
- RCF is complete, i.e. for each \mathcal{L}_{or} -sentence ϕ we have RCF $\models \phi$ or RCF $\models \neg \phi$.
- As RCF is a complete recursive theory, we obtain a second, recursion theoretic decision algorithm for \mathcal{R} . (This would not be the case if properties of \mathbb{R} had been used which cannot be formalised as axioms.)

Occidability of the Real Exponential Field

Decidability of the Real Exponential Field

Denote by $\mathcal{L}_{exp} = \{+, -, \cdot, 0, 1, <, exp\}$ the language of exponential rings and let $\mathcal{R}_{exp} = (\mathbb{R}, +, -, \cdot, 0, 1, <, exp)$ be the real exponential field.

Decidability of the Real Exponential Field

Denote by $\mathcal{L}_{exp} = \{+, -, \cdot, 0, 1, <, exp\}$ the language of exponential rings and let $\mathcal{R}_{exp} = (\mathbb{R}, +, -, \cdot, 0, 1, <, exp)$ be the real exponential field.

Question

Tarski (1948): Is \mathcal{R}_{exp} decidable?

• 1980s (Dahn and Wolter): Several candidates for recursive axiomatizations of \mathcal{R}_{exp}

Lothar Sebastian Krapp

- 1980s (Dahn and Wolter): Several candidates for recursive axiomatizations of \mathcal{R}_{exp}
- 1996 (Wilkie): \mathcal{R}_{exp} is model complete

- 1980s (Dahn and Wolter): Several candidates for recursive axiomatizations of \mathcal{R}_{exp}
- 1996 (Wilkie): \mathcal{R}_{exp} is model complete: That means that for every \mathcal{L}_{exp} -formula $\phi(x_1, \ldots, x_n)$ there exists an equivalent \mathcal{L}_{exp} -formula of the form $\exists y_1 \ldots \exists y_m \ \psi(x_1, \ldots, x_n, y_1, \ldots, y_m)$, where ψ is quantifier-free.

- 1980s (Dahn and Wolter): Several candidates for recursive axiomatizations of \mathcal{R}_{exp}
- 1996 (Wilkie): \mathcal{R}_{exp} is model complete: That means that for every \mathcal{L}_{exp} -formula $\phi(x_1, \ldots, x_n)$ there exists an equivalent \mathcal{L}_{exp} -formula of the form $\exists y_1 \ldots \exists y_m \ \psi(x_1, \ldots, x_n, y_1, \ldots, y_m)$, where ψ is quantifier-free.
- 1996 (Macintyre and Wilkie): Assuming Real Schanuel's Conjecture, \mathcal{R}_{exp} is decidable.

- 1980s (Dahn and Wolter): Several candidates for recursive axiomatizations of \mathcal{R}_{exp}
- 1996 (Wilkie): \mathcal{R}_{exp} is model complete: That means that for every \mathcal{L}_{exp} -formula $\phi(x_1, \ldots, x_n)$ there exists an equivalent \mathcal{L}_{exp} -formula of the form $\exists y_1 \ldots \exists y_m \ \psi(x_1, \ldots, x_n, y_1, \ldots, y_m)$, where ψ is quantifier-free.
- 1996 (Macintyre and Wilkie): Assuming Real Schanuel's Conjecture, \mathcal{R}_{exp} is decidable.
- 1998 (van den Dries): \mathcal{R}_{exp} does not admit quantifier elimination.

- 1980s (Dahn and Wolter): Several candidates for recursive axiomatizations of \mathcal{R}_{exp}
- 1996 (Wilkie): \mathcal{R}_{exp} is model complete: That means that for every \mathcal{L}_{exp} -formula $\phi(x_1, \ldots, x_n)$ there exists an equivalent \mathcal{L}_{exp} -formula of the form $\exists y_1 \ldots \exists y_m \ \psi(x_1, \ldots, x_n, y_1, \ldots, y_m)$, where ψ is quantifier-free.
- 1996 (Macintyre and Wilkie): Assuming Real Schanuel's Conjecture, \mathcal{R}_{exp} is decidable.
- 1998 (van den Dries): \mathcal{R}_{exp} does not admit quantifier elimination.
- 2006 (Berarducci, Servi): Assuming Transfer Conjecture, \mathcal{R}_{exp} is decidable.

Schanuel's Conjecture

Schanuel's Conjecture (SC)

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then

 $\operatorname{td}_{\mathbb{Q}}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n,e^{\alpha_1},\ldots,e^{\alpha_n}))\geq n.$

Schanuel's Conjecture

Schanuel's Conjecture (SC)

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then

 $\operatorname{td}_{\mathbb{Q}}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n,e^{\alpha_1},\ldots,e^{\alpha_n}))\geq n.$

 \rightarrow (SC) relates the algebraic complexity of complex numbers with the algebraic complexity of their exponentials.

Schanuel's Conjecture

Schanuel's Conjecture (SC)

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then

 $\operatorname{td}_{\mathbb{Q}}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n,e^{\alpha_1},\ldots,e^{\alpha_n}))\geq n.$

 \rightarrow (SC) relates the algebraic complexity of complex numbers with the algebraic complexity of their exponentials.

Example: (SC) implies that e and π are algebraically independent over \mathbb{Q} . This means that expressions like $\frac{1}{26}e^3 + e\pi - \frac{\pi^4}{2} + \frac{e^2\pi^2}{2} + e$ ($\approx -0, 2104...$) are never equal to 0.

Lothar Sebastian Krapp

• There exists a recursive \mathcal{L}_{exp} -theory $\mathcal{T}_0 \subseteq \mathsf{Th}(\mathcal{R}_{exp})$ such that $\mathcal{T}_0 \cup \mathcal{T}_{\exists}(\mathcal{R}_{exp})$ axiomatizes $\mathsf{Th}(\mathcal{R}_{exp})$.

- There exists a recursive \mathcal{L}_{exp} -theory $\mathcal{T}_0 \subseteq \mathsf{Th}(\mathcal{R}_{exp})$ such that $\mathcal{T}_0 \cup \mathcal{T}_{\exists}(\mathcal{R}_{exp})$ axiomatizes $\mathsf{Th}(\mathcal{R}_{exp})$.
 - \rightarrow Problem reduces to finding a recursive axiomatization of Th_∃(\mathcal{R}_{exp}).

• There exists a recursive \mathcal{L}_{exp} -theory $\mathcal{T}_0 \subseteq Th(\mathcal{R}_{exp})$ such that $\mathcal{T}_0 \cup \mathcal{T}_{\exists}(\mathcal{R}_{exp})$ axiomatizes $Th(\mathcal{R}_{exp})$.

 \rightarrow Problem reduces to finding a recursive axiomatization of Th_∃(\mathcal{R}_{exp}).

2 Each existential sentence in $Th(\mathcal{R}_{exp})$ is equivalent to one of the form

 $\exists z_1 \ldots \exists z_n \ p(z_1, \ldots, z_n, \exp(z_1), \ldots, \exp(z_n)) = 0$

for some $p(x_1, \ldots, x_n, y_1, \ldots, y_n) \in \mathbb{Z}[x_1, \ldots, x_n, y_1, \ldots, y_n].$

• There exists a recursive \mathcal{L}_{exp} -theory $\mathcal{T}_0 \subseteq \mathsf{Th}(\mathcal{R}_{exp})$ such that $\mathcal{T}_0 \cup \mathcal{T}_{\exists}(\mathcal{R}_{exp})$ axiomatizes $\mathsf{Th}(\mathcal{R}_{exp})$.

 \rightarrow Problem reduces to finding a recursive axiomatization of Th_∃(\mathcal{R}_{exp}).

2 Each existential sentence in $Th(\mathcal{R}_{exp})$ is equivalent to one of the form

 $\exists z_1 \ldots \exists z_n \ p(z_1, \ldots, z_n, \exp(z_1), \ldots, \exp(z_n)) = 0$

for some $p(x_1, \ldots, x_n, y_1, \ldots, y_n) \in \mathbb{Z}[x_1, \ldots, x_n, y_1, \ldots, y_n]$. Example: $\exists x \exists y \exp(\exp(x)) > y + x$

• There exists a recursive \mathcal{L}_{exp} -theory $\mathcal{T}_0 \subseteq \mathsf{Th}(\mathcal{R}_{exp})$ such that $\mathcal{T}_0 \cup \mathcal{T}_{\exists}(\mathcal{R}_{exp})$ axiomatizes $\mathsf{Th}(\mathcal{R}_{exp})$.

 \rightarrow Problem reduces to finding a recursive axiomatization of Th_∃(\mathcal{R}_{exp}).

2 Each existential sentence in $Th(\mathcal{R}_{exp})$ is equivalent to one of the form

 $\exists z_1 \ldots \exists z_n \ p(z_1, \ldots, z_n, \exp(z_1), \ldots, \exp(z_n)) = 0$

for some $p(x_1, \ldots, x_n, y_1, \ldots, y_n) \in \mathbb{Z}[x_1, \ldots, x_n, y_1, \ldots, y_n]$. Example: $\exists x \exists y \exp(\exp(x)) > y + x$ is equivalent to $\exists x \exists y \exists z_1 \exists z_2 \ (z_1 - \exp(x) = 0 \land \exp(z_1) - y + x - z_2^2 = 0)$.

• There exists a recursive \mathcal{L}_{exp} -theory $\mathcal{T}_0 \subseteq \mathsf{Th}(\mathcal{R}_{exp})$ such that $\mathcal{T}_0 \cup \mathcal{T}_{\exists}(\mathcal{R}_{exp})$ axiomatizes $\mathsf{Th}(\mathcal{R}_{exp})$.

 \rightarrow Problem reduces to finding a recursive axiomatization of Th_∃(\mathcal{R}_{exp}).

2 Each existential sentence in $Th(\mathcal{R}_{exp})$ is equivalent to one of the form

 $\exists z_1 \ldots \exists z_n \ p(z_1, \ldots, z_n, \exp(z_1), \ldots, \exp(z_n)) = 0$

for some $p(x_1, \ldots, x_n, y_1, \ldots, y_n) \in \mathbb{Z}[x_1, \ldots, x_n, y_1, \ldots, y_n]$. Example: $\exists x \exists y \exp(\exp(x)) > y + x$ is equivalent to $\exists x \exists y \exists z_1 \exists z_2 \ (z_1 - \exp(x) = 0 \land \exp(z_1) - y + x - z_2^2 = 0)$. This, however, is equivalent to $\exists x \exists y \exists z_1 \exists z_2 \ ((z_1 - \exp(x))^2 + (\exp(z_1) - y + x - z_2^2)^2 = 0)$.

• There exists a recursive \mathcal{L}_{exp} -theory $\mathcal{T}_0 \subseteq \mathsf{Th}(\mathcal{R}_{exp})$ such that $\mathcal{T}_0 \cup \mathcal{T}_{\exists}(\mathcal{R}_{exp})$ axiomatizes $\mathsf{Th}(\mathcal{R}_{exp})$.

 \rightarrow Problem reduces to finding a recursive axiomatization of Th_∃(\mathcal{R}_{exp}).

2 Each existential sentence in $Th(\mathcal{R}_{exp})$ is equivalent to one of the form

 $\exists z_1 \ldots \exists z_n \ p(z_1, \ldots, z_n, \exp(z_1), \ldots, \exp(z_n)) = 0$

for some $p(x_1, \ldots, x_n, y_1, \ldots, y_n) \in \mathbb{Z}[x_1, \ldots, x_n, y_1, \ldots, y_n]$. Example: $\exists x \exists y \exp(\exp(x)) > y + x$ is equivalent to $\exists x \exists y \exists z_1 \exists z_2 \ (z_1 - \exp(x)) = 0 \land \exp(z_1) - y + x - z_2^2 = 0)$. This, however, is equivalent to $\exists x \exists y \exists z_1 \exists z_2 \ ((z_1 - \exp(x))^2 + (\exp(z_1) - y + x - z_2^2)^2 = 0)$. \rightarrow Problem reduces to finding an algorithm which determines whether a polynomial $p(x_1, \ldots, x_n, y_1, \ldots, y_n) \in \mathbb{Z}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ has a zero of the form $(a_1, \ldots, a_n, \exp(a_1), \ldots, \exp(a_n))$ or not.

• There exists a recursive \mathcal{L}_{exp} -theory $\mathcal{T}_0 \subseteq \mathsf{Th}(\mathcal{R}_{exp})$ such that $\mathcal{T}_0 \cup \mathcal{T}_{\exists}(\mathcal{R}_{exp})$ axiomatizes $\mathsf{Th}(\mathcal{R}_{exp})$.

 \rightarrow Problem reduces to finding a recursive axiomatization of Th_∃(\mathcal{R}_{exp}).

2 Each existential sentence in $Th(\mathcal{R}_{exp})$ is equivalent to one of the form

 $\exists z_1 \ldots \exists z_n \ p(z_1, \ldots, z_n, \exp(z_1), \ldots, \exp(z_n)) = 0$

for some $p(x_1, \ldots, x_n, y_1, \ldots, y_n) \in \mathbb{Z}[x_1, \ldots, x_n, y_1, \ldots, y_n]$. Example: $\exists x \exists y \exp(\exp(x)) > y + x$ is equivalent to $\exists x \exists y \exists z_1 \exists z_2 \ (z_1 - \exp(x) = 0 \land \exp(z_1) - y + x - z_2^2 = 0)$. This, however, is equivalent to $\exists x \exists y \exists z_1 \exists z_2 \ ((z_1 - \exp(x))^2 + (\exp(z_1) - y + x - z_2^2)^2 = 0)$. \rightarrow Problem reduces to finding an algorithm which determines whether a

polynomial $p(x_1, \ldots, x_n, y_1, \ldots, y_n) \in \mathbb{Z}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ has a zero of the form $(a_1, \ldots, a_n, \exp(a_1), \ldots, \exp(a_n))$ or not.

Solution Score Assuming (SC), there exists a recursive theory \mathcal{T}_1 axiomatizing $\mathsf{Th}_{\exists}(\mathcal{R}_{\mathsf{exp}})$.

Consequences

As (SC) is "probably true", the proposed recursive theory $\mathcal{T}_0 \cup \mathcal{T}_1$ "probably" gives us a decision algorithm for \mathcal{R}_{exp} .

Consequences

As (SC) is "probably true", the proposed recursive theory $\mathcal{T}_0 \cup \mathcal{T}_1$ "probably" gives us a decision algorithm for $\mathcal{R}_{e\times p}$.

BUT: Its computational complexity makes it useless for applications in the real world.

References

- [1] A. BERARDUCCI and T. SERVI, 'An effective version of Wilkie's theorem of the complement and some effective o-minimality results', *Ann. Pure Appl. Logic* 125 (2004) 43–74.
- [2] A. MACINTYRE and A. WILKIE, 'On the decidability of the real exponential field', *Kreiseliana: about and around Georg Kreisel* (ed. P. Odifreddi; A. K. Peters, Wellesley, MA, 1996) 441–467.
- [3] A. TARSKI, A decision method for elementary algebra and geometry (RAND Corporation, Santa Monica, CA, 1948).
- [4] A. WILKIE, 'Model completeness results for expansions of the ordered Field of real numbers by restricted Pfaffian functions and the exponential function', J. Amer. Math. Soc. 9 (1996) 1051–1094.