Properties of O-minimal Exponential Fields

Lothar Sebastian Krapp¹

Universität Konstanz, Fachbereich Mathematik und Statistik

11 September 2017

19th ÖMG Congress and Annual DMV Meeting

¹Supported by DVMLG-Nachwuchsstipendium

Preliminary Notions

2 Decidability of \mathbb{R}_{exp}

3 Residue Exponential Fields

1 Preliminary Notions

 $\fbox{2}$ Decidability of $\mathbb{R}_{\mathsf{exp}}$

3 Residue Exponential Fields

Residue Exponential Fields

Model Theoretic Setting

• fixed language of ordered exponential fields $\mathcal{L}_{exp} = (+, \cdot, 0, 1, <, exp)$

- fixed language of ordered exponential fields $\mathcal{L}_{exp} = (+, \cdot, 0, 1, <, exp)$
- \mathcal{L}_{exp} -structures
 - e.g. ($\mathbb{R}, +, \cdot, 0, 1, <, exp$)

- fixed language of ordered exponential fields $\mathcal{L}_{exp} = (+, \cdot, 0, 1, <, exp)$
- \mathcal{L}_{exp} -structures e.g. $(\mathbb{R}, +, \cdot, 0, 1, <, exp)$
- *L*_{exp}-formulas and *L*_{exp}-sentences
 e.g. ∃y x > exp(y) or ∀x∃y x > exp(y)

- fixed language of ordered exponential fields $\mathcal{L}_{exp} = (+, \cdot, 0, 1, <, exp)$
- \mathcal{L}_{exp} -structures e.g. $(\mathbb{R}, +, \cdot, 0, 1, <, exp)$
- *L*_{exp}-formulas and *L*_{exp}-sentences
 e.g. ∃y x > exp(y) or ∀x∃y x > exp(y)
- notion of satisfiability

e.g. $(\mathbb{R}, +, \cdot, 0, 1, <, \exp) \models \neg \forall x \exists y \ x > \exp(y)$

Residue Exponential Fields

Ordered Exponential Fields

Ordered Exponential Fields

Definition

Let $(K, +, \cdot, 0, 1, <)$ be an ordered field. A unary function exp which is an order-preserving isomorphism from (K, +, 0, <) to $(K^{>0}, \cdot, 1, <)$ is called an *exponential* on $(K, +, \cdot, 0, 1, <)$. The \mathcal{L}_{exp} -structure $(K, +, \cdot, 0, 1, <, exp)$ is called an *ordered exponential field*.

Ordered Exponential Fields

Definition

Let $(K, +, \cdot, 0, 1, <)$ be an ordered field. A unary function exp which is an order-preserving isomorphism from (K, +, 0, <) to $(K^{>0}, \cdot, 1, <)$ is called an *exponential* on $(K, +, \cdot, 0, 1, <)$. The \mathcal{L}_{exp} -structure $(K, +, \cdot, 0, 1, <, exp)$ is called an *ordered exponential field*.

Most prominent example: $\mathbb{R}_{exp} = (\mathbb{R}, +, \cdot, 0, 1, <, exp)$ — the real exponential field.

Definition

An ordered structure (M, <, ...) is called *o-minimal* if every parametrically definable subset of M is a finite union of points and open intervals in M.

Definition

An ordered structure (M, <, ...) is called *o-minimal* if every parametrically definable subset of M is a finite union of points and open intervals in M.

Theorem (Wilkie 1996)

The real exponential field \mathbb{R}_{exp} is o-minimal.

Definition

An ordered structure (M, <, ...) is called *o-minimal* if every parametrically definable subset of M is a finite union of points and open intervals in M.

Theorem (Wilkie 1996)

The real exponential field \mathbb{R}_{exp} is o-minimal.

Example: The formula $\exists y \ x^2 > \exp(y) + \pi$ parametrically defines the set $\{x \in \mathbb{R} \mid \exists y \ x^2 > \exp(y) + \pi\} = (-\infty, -\sqrt{\pi}) \cup (\sqrt{\pi}, \infty) \text{ over } \mathbb{R}_{exp}.$

1 Preliminary Notions

2 Decidability of \mathbb{R}_{exp}

3 Residue Exponential Fields

Definition

An \mathcal{L} -structure \mathcal{M} is called *decidable* if there exists an algorithm that determines whether for a given \mathcal{L} -sentence φ we have $\mathcal{M} \models \varphi$ or $\mathcal{M} \models \neg \varphi$.

Definition

An \mathcal{L} -structure \mathcal{M} is called *decidable* if there exists an algorithm that determines whether for a given \mathcal{L} -sentence φ we have $\mathcal{M} \models \varphi$ or $\mathcal{M} \models \neg \varphi$.

 $\mathsf{Th}(\mathcal{M})$ — the theory of \mathcal{M} , i.e. the set of all \mathcal{L} -sentences which \mathcal{M} satisfies.

Definition

An \mathcal{L} -structure \mathcal{M} is called *decidable* if there exists an algorithm that determines whether for a given \mathcal{L} -sentence φ we have $\mathcal{M} \models \varphi$ or $\mathcal{M} \models \neg \varphi$.

 $\mathsf{Th}(\mathcal{M})$ — the theory of \mathcal{M} , i.e. the set of all \mathcal{L} -sentences which \mathcal{M} satisfies.

Theorem

An \mathcal{L} -structure \mathcal{M} is decidable if and only if $\mathsf{Th}(\mathcal{M})$ is recursively axiomatizable.

Residue Exponential Fields

Schanuel's Conjecture

Schanuel's Conjecture

Schanuel's Conjecture

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then

 $\mathsf{td}_{\mathbb{Q}}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n,\mathrm{e}^{\alpha_1},\ldots,\mathrm{e}^{\alpha_n}))\geq n.$

Schanuel's Conjecture

Schanuel's Conjecture

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then

 $\mathsf{td}_{\mathbb{Q}}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n,\mathrm{e}^{\alpha_1},\ldots,\mathrm{e}^{\alpha_n}))\geq n.$

 \rightarrow Schanuels Conjecture would, for instance, imply the algebraic independence of e and $\pi.$

Schanuel's Conjecture

Schanuel's Conjecture

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then

 $\mathsf{td}_{\mathbb{Q}}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n,\mathrm{e}^{\alpha_1},\ldots,\mathrm{e}^{\alpha_n}))\geq n.$

 \rightarrow Schanuels Conjecture would, for instance, imply the algebraic independence of e and $\pi.$

Real Schanuel's Conjecture (SC)

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ be linearly independent over \mathbb{Q} . Then

$$\mathsf{td}_{\mathbb{Q}}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n,\mathrm{e}^{\alpha_1},\ldots,\mathrm{e}^{\alpha_n})) \geq n.$$

Decidability of the Real Exponential Field

Decidability of the Real Exponential Field

Theorem (Macintyre, Wilkie 1996)

Assume (SC). Then \mathbb{R}_{exp} is decidable.

Decidability of the Real Exponential Field

Theorem (Macintyre, Wilkie 1996)

Assume (SC). Then \mathbb{R}_{exp} is decidable.

 \rightarrow Macintyre and Wilkie construct a recursive subtheory of Th(\mathbb{R}_{exp}) which, under the assumption of (SC), is complete.

Residue Exponential Fields

Transfer Conjecture

Elementary equivalence: Two \mathcal{L} -structures \mathcal{M} and \mathcal{N} are elementarily equivalent if they satisfy exactly the same \mathcal{L} -sentences. We write $\mathcal{M} \equiv \mathcal{N}$.

Elementary equivalence: Two \mathcal{L} -structures \mathcal{M} and \mathcal{N} are elementarily equivalent if they satisfy exactly the same \mathcal{L} -sentences. We write $\mathcal{M} \equiv \mathcal{N}$. EXP: \mathcal{L}_{exp} -sentence stating that the differential equation exp' = exp holds.

Elementary equivalence: Two \mathcal{L} -structures \mathcal{M} and \mathcal{N} are elementarily equivalent if they satisfy exactly the same \mathcal{L} -sentences. We write $\mathcal{M} \equiv \mathcal{N}$. EXP: \mathcal{L}_{exp} -sentence stating that the differential equation exp' = exp holds.

Transfer Conjecture (TC)

Let \mathcal{K}_{exp} be an o-minimal EXP-field. Then $\mathcal{K}_{exp} \equiv \mathbb{R}_{exp}$.

Elementary equivalence: Two \mathcal{L} -structures \mathcal{M} and \mathcal{N} are elementarily equivalent if they satisfy exactly the same \mathcal{L} -sentences. We write $\mathcal{M} \equiv \mathcal{N}$. EXP: \mathcal{L}_{exp} -sentence stating that the differential equation exp' = exp holds.

Transfer Conjecture (TC)

Let \mathcal{K}_{exp} be an o-minimal EXP-field. Then $\mathcal{K}_{exp} \equiv \mathbb{R}_{exp}$.

Theorem (Berarducci, Servi 2004)

Assume (TC). Then \mathbb{R}_{exp} is decidable.

Elementary equivalence: Two \mathcal{L} -structures \mathcal{M} and \mathcal{N} are elementarily equivalent if they satisfy exactly the same \mathcal{L} -sentences. We write $\mathcal{M} \equiv \mathcal{N}$. EXP: \mathcal{L}_{exp} -sentence stating that the differential equation exp' = exp holds.

Transfer Conjecture (TC)

Let \mathcal{K}_{exp} be an o-minimal EXP-field. Then $\mathcal{K}_{exp} \equiv \mathbb{R}_{exp}$.

Theorem (Berarducci, Servi 2004)

Assume (TC). Then \mathbb{R}_{exp} is decidable.

Open question: Does (SC) imply (TC)?

Elementary equivalence: Two \mathcal{L} -structures \mathcal{M} and \mathcal{N} are elementarily equivalent if they satisfy exactly the same \mathcal{L} -sentences. We write $\mathcal{M} \equiv \mathcal{N}$. EXP: \mathcal{L}_{exp} -sentence stating that the differential equation exp' = exp holds.

Transfer Conjecture (TC)

Let \mathcal{K}_{exp} be an o-minimal EXP-field. Then $\mathcal{K}_{exp} \equiv \mathbb{R}_{exp}$.

Theorem (Berarducci, Servi 2004)

Assume (TC). Then \mathbb{R}_{exp} is decidable.

Open question: Does (SC) imply (TC)? This question motivates the study of o-minimal EXP-fields.

Preliminary Notions

 ${ extsf{2}}$ Decidability of ${\mathbb R}_{\mathsf{exp}}$

3 Residue Exponential Fields

Residue Exponential Fields

Natural Valuation

Natural Valuation

Let K be an ordered field. We define an equivalence relation on K by

 $a \sim b$ if and only if there exists $n \in \mathbb{Z}$ such that |a| < n|b| and |b| < n|a|.

The equivalence class of a given $a \in K$ is called the *archimedean equivalence class of a*.

Natural Valuation

Let K be an ordered field. We define an equivalence relation on K by

 $a \sim b$ if and only if there exists $n \in \mathbb{Z}$ such that |a| < n|b| and |b| < n|a|.

The equivalence class of a given $a \in K$ is called the *archimedean equivalence class of a*. Let $G = \{[a] \mid a \in K \setminus \{0\}\}$ and define on G addition by [a] + [b] = [ab] and an order by [a] < [b] if and only if |a| > |b| and $a \not\sim b$. Then (G, +, <) is an ordered group with neutral element 0 = [1]. It is called the *valuation group of K* under the natural valuation.

Natural Valuation

Let K be an ordered field. We define an equivalence relation on K by

 $a \sim b$ if and only if there exists $n \in \mathbb{Z}$ such that |a| < n|b| and |b| < n|a|.

The equivalence class of a given $a \in K$ is called the *archimedean equivalence class of a*. Let $G = \{[a] \mid a \in K \setminus \{0\}\}$ and define on G addition by [a] + [b] = [ab] and an order by [a] < [b] if and only if |a| > |b| and $a \not\sim b$. Then (G, +, <) is an ordered group with neutral element 0 = [1]. It is called the *valuation group of K* under the natural valuation.

Set $v : K \to G \cup \{\infty\}$ by v(a) = [a] for $a \in K \setminus \{0\}$ and $v(0) = \infty$. v is called the *natural valuation on* K.

Residue Exponential Fields

Residue Exponential Field

Residue Exponential Field

Definition

Let K be an ordered field. Let $\mathcal{O} = \{x \in K \mid v(x) \ge 0\}$ and $\mathcal{I} = \{x \in K \mid v(x) > 0\}$. Then $\overline{K} = \mathcal{O}/\mathcal{I}$ defines an archimedean field. This is called the *residue field* of K.

Residue Exponential Field

Definition

Let K be an ordered field. Let $\mathcal{O} = \{x \in K \mid v(x) \ge 0\}$ and $\mathcal{I} = \{x \in K \mid v(x) > 0\}$. Then $\overline{K} = \mathcal{O}/\mathcal{I}$ defines an archimedean field. This is called the *residue field* of K.

Proposition

Let \mathcal{K}_{exp} be an o-minimal EXP-field. Then $\overline{exp} : \overline{K} \to \overline{K}^{>0}, \overline{a} \mapsto \overline{exp(a)}$ defines an exponential on \overline{K} . Moreover, $\overline{\mathcal{K}_{exp}} = (\overline{K}, +, \cdot, \overline{0}, \overline{1}, <, \overline{exp})$ is an archimedean EXP-field.

Residue Exponential Field

Definition

Let K be an ordered field. Let $\mathcal{O} = \{x \in K \mid v(x) \ge 0\}$ and $\mathcal{I} = \{x \in K \mid v(x) > 0\}$. Then $\overline{K} = \mathcal{O}/\mathcal{I}$ defines an archimedean field. This is called the *residue field* of K.

Proposition

Let \mathcal{K}_{exp} be an o-minimal EXP-field. Then $\overline{exp} : \overline{K} \to \overline{K}^{>0}, \overline{a} \mapsto \overline{exp(a)}$ defines an exponential on \overline{K} . Moreover, $\overline{\mathcal{K}_{exp}} = (\overline{K}, +, \cdot, \overline{0}, \overline{1}, <, \overline{exp})$ is an archimedean EXP-field.

We call $\overline{\mathcal{K}}_{exp}$ the residue exponential field of \mathcal{K}_{exp} .

Residue Exponential Fields

Archimedean O-minimal Exponential Fields

Archimedean O-minimal Exponential Fields

Theorem (Laskowski, Steinhorn 1995)

Let \mathcal{K}_{exp} be an archimedean o-minimal EXP-field. Then $\mathcal{K}_{exp} \preceq \mathbb{R}_{exp}$.

Archimedean O-minimal Exponential Fields

Theorem (Laskowski, Steinhorn 1995)

Let \mathcal{K}_{exp} be an archimedean o-minimal EXP-field. Then $\mathcal{K}_{exp} \preceq \mathbb{R}_{exp}$.

Approach towards (TC): Show that any o-minimal EXP -field has an archimedean prime model.

Approach through Residue Exponential Field

Approach through Residue Exponential Field

Theorem

Let \mathcal{K}_{exp} be an exponential field such that $\mathcal{K}_{exp} \equiv \mathbb{R}_{exp}$. Then $\overline{\mathcal{K}}_{\overline{exp}} \preceq \mathcal{K}_{exp}$.

Approach through Residue Exponential Field

Theorem

Let \mathcal{K}_{exp} be an exponential field such that $\mathcal{K}_{exp} \equiv \mathbb{R}_{exp}$. Then $\overline{\mathcal{K}}_{\overline{exp}} \preceq \mathcal{K}_{exp}$.

Assertion

Let \mathcal{K}_{exp} be an o-minimal EXP-field. Then (SC) implies $\overline{\mathcal{K}}_{exp} \preceq \mathcal{K}_{exp}$.

Theorem

Let \mathcal{K}_{exp} be a sufficiently saturated o-minimal EXP-field. Then $\overline{\mathcal{K}}_{exp} = \mathbb{R}_{exp}$. Moreover, assuming (SC), we have $\mathbb{R}_{exp} \subseteq \mathcal{K}_{exp}$.

Theorem

Let \mathcal{K}_{exp} be a sufficiently saturated o-minimal EXP-field. Then $\overline{\mathcal{K}_{exp}} = \mathbb{R}_{exp}$. Moreover, assuming (SC), we have $\mathbb{R}_{exp} \subseteq \mathcal{K}_{exp}$.

Corollary

Assume (SC). Let \mathcal{K}_{exp} be an o-minimal EXP-field. Then $\mathcal{K}_{exp} \models \mathsf{Th}_{\exists}(\mathbb{R}_{exp})$.

Theorem

Let \mathcal{K}_{exp} be a sufficiently saturated o-minimal EXP-field. Then $\overline{\mathcal{K}_{exp}} = \mathbb{R}_{exp}$. Moreover, assuming (SC), we have $\mathbb{R}_{exp} \subseteq \mathcal{K}_{exp}$.

Corollary

Assume (SC). Let \mathcal{K}_{exp} be an o-minimal EXP-field. Then $\mathcal{K}_{exp} \models \mathsf{Th}_{\exists}(\mathbb{R}_{exp})$.

Theorem

Let \mathcal{K}_{exp} be an o-minimal $\mathrm{EXP}\textsc{-field}.$ Then the following are equivalent:

• Th_{$$\exists$$}(\mathbb{R}_{exp}) = Th _{\exists} (\mathcal{K}_{exp}) and \mathcal{K}_{exp} is model complete.

$$(\mathsf{TC}): \mathcal{K}_{\mathsf{exp}} \equiv \mathbb{R}_{\mathsf{exp}}.$$

T-convexity

T-convexity

Theorem

Let \mathcal{K}_{exp} be an o-minimal EXP-field and $\mathcal{T} = \mathsf{Th}(\mathcal{K}_{exp})$. Then the following are equivalent:

- \mathcal{O} is *T*-convex. (i.e. for any continuous 0-definable function *f* on *K* we have $f(\mathcal{O}) \subseteq \mathcal{O}$).
- Any continuous 0-definable function f : K → K is exponentially bounded (i.e. for any continuous 0-definable function f on K and sufficiently large x we have |f(x)| < exp(exp(...exp(x)))) and bounded by an integer on [0, 1].</p>
- **3** (TC): $\mathcal{K}_{exp} \equiv \mathbb{R}_{exp}$.

T-convexity

Theorem

Let \mathcal{K}_{exp} be an o-minimal EXP-field and $\mathcal{T} = \mathsf{Th}(\mathcal{K}_{exp})$. Then the following are equivalent:

- \mathcal{O} is *T*-convex. (i.e. for any continuous 0-definable function *f* on *K* we have $f(\mathcal{O}) \subseteq \mathcal{O}$).
- ② Any continuous 0-definable function f : K → K is exponentially bounded (i.e. for any continuous 0-definable function f on K and sufficiently large x we have |f(x)| < exp(exp(...exp(x)))) and bounded by an integer on [0, 1].</p>
- **3** (TC): $\mathcal{K}_{exp} \equiv \mathbb{R}_{exp}$.

This draws a connection between (SC) and the open question whether an o-minimal structure which is not exponentially bounded exists.

References

- [1] A. BERARDUCCI and T. SERVI, 'An effective version of Wilkie's theorem of the complement and some effective o-minimality results', *Ann. Pure Appl. Logic* 125 (2004) 43–74.
- [2] L. VAN DEN DRIES and A. H. LEWENBERG, 'T-convexity and Tame Extensions', J. Symb. Log. 60 (1995) 74–102.
- [3] S. KUHLMANN, *Ordered Exponential Fields*, Fields Inst. Monogr. 12 (Amer. Math. Soc., Providence, RI, 2000).
- [4] A. MACINTYRE and A. WILKIE, 'On the decidability of the real exponential field', *Kreiseliana: about and around Georg Kreisel* (ed. P. Odifreddi; A. K. Peters, Wellesley, MA, 1996) 441–467.
- [5] A. TARSKI, A decision method for elementary algebra and geometry (RAND Corporation, Santa Monica, CA, 1948).
- [6] A. WILKIE, 'Model completeness results for expansions of the ordered Field of real numbers by restricted Pfaffian functions and the exponential function', J. Amer. Math. Soc. 9 (1996) 1051–1094.