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Model Theoretic Setting

o fixed language of ordered exponential fields Leyp = (+,-,0,1, <, exp)

o Lexp-structures
eg. (R,+,-,0,1,<,exp)

o Lep-formulas and L, p-sentences
e.g. dy x > exp(y) or VxIJy x > exp(y)

e notion of satisfiability
eg (R,+,-,0,1, < exp) | =VxIy x > exp(y)
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Ordered Exponential Fields

Definition

Let (K,+,-,0,1,<) be an ordered field. A unary function exp which is an
order-preserving isomorphism from (K, +,0, <) to (K>9,-,1, <) is called an
exponential on (K,+,-,0,1,<). The Leyp-structure (K, +,-,0,1, <,exp) is called an
ordered exponential field.
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Ordered Exponential Fields

Definition

Let (K,+,-,0,1,<) be an ordered field. A unary function exp which is an
order-preserving isomorphism from (K, +,0, <) to (K>9,-,1, <) is called an
exponential on (K,+,-,0,1,<). The Leyp-structure (K, +,-,0,1, <,exp) is called an
ordered exponential field.

Most prominent example: Reyp, = (R, +,,0,1, <,exp) — the real exponential field.
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O-minimality

Definition

An ordered structure (M, <,...) is called o-minimal if every parametrically definable
subset of M is a finite union of points and open intervals in M.

Theorem (Wilkie 1996)

The real exponential field Rey, is o-minimal.

Example: The formula 3y x2 > exp(y) + 7 parametrically defines the set
{xeR| Ty x2>exp(y) + 7} = (—00, —/7) U (y/7,0) over Reyp.
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Decidability

Definition

An L-structure M is called decidable if there exists an algorithm that determines
whether for a given L-sentence ¢ we have M = ¢ or M = —p.

Th(M) — the theory of M, i.e. the set of all L-sentences which M satisfies.

Theorem
An L-structure M is decidable if and only if Th(M) is recursively axiomatizable.
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Schanuel’s Conjecture

Schanuel's Conjecture
Let ag,...,a, € C be linearly independent over QQ. Then

tdg(Qa1, -, amy €™, .., 7)) > .

— Schanuels Conjecture would, for instance, imply the algebraic independence of e
and 7.

Real Schanuel's Conjecture (SC)
Let a1,...,a, € R be linearly independent over Q. Then

td@((@(ah v )an)eala oo 7e(1n)) > n.
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Decidability of the Real Exponential Field

Theorem (Macintyre, Wilkie 1996)
Assume (SC). Then Reyp is decidable.
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Decidability of the Real Exponential Field

Theorem (Macintyre, Wilkie 1996)
Assume (SC). Then Reyp is decidable.

— Macintyre and Wilkie construct a recursive subtheory of Th(Rexp) which, under the
assumption of (SC), is complete.
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Transfer Conjecture

Elementary equivalence: Two L-structures M and N are elementarily equivalent if
they satisfy exactly the same L-sentences. We write M = N.
EXP: Lexp-sentence stating that the differential equation exp’ = exp holds.

Transfer Conjecture (TC)

Let Kexp be an o-minimal EXP-field. Then Keyxp = Reyp.
Theorem (Berarducci, Servi 2004)

Assume (TC). Then Reyp, is decidable.

Open question: Does (SC) imply (TC)?
This question motivates the study of o-minimal EXP-fields.
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Let K be an ordered field. We define an equivalence relation on K by
a ~ b if and only if there exists n € Z such that |a| < n|b| and |b| < n|a|.
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Natural Valuation

Let K be an ordered field. We define an equivalence relation on K by
a ~ b if and only if there exists n € Z such that |a| < n|b| and |b| < n|a|.

The equivalence class of a given a € K is called the archimedean equivalence class of a.
Let G ={[a] | a€ K\ {0}} and define on G addition by [a] + [b] = [ab] and an order
by [a] < [b] if and only if |a| > |b| and a ¢ b. Then (G, +, <) is an ordered group with
neutral element 0 = [1]. It is called the valuation group of K under the natural
valuation.

Set v: K — GU{oo} by v(a) =[a] for ae K\ {0} and v(0) = co. v is called the
natural valuation on K.
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Residue Exponential Field

Let K be an ordered field. Let O = {x € K | v(x) > 0} and Z = {x € K | v(x) > 0}.
Then K = O/Z defines an archimedean field. This is called the residue field of K.
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Residue Exponential Field

Let K be an ordered field. Let O = {x € K | v(x) > 0} and Z = {x € K | v(x) > 0}.
Then K = O/Z defines an archimedean field. This is called the residue field of K.

Proposition

Let Kexp be an o-minimal EXP-field. Then exp : K — 7>0,5 — exp(a) defines an
exponential on K. Moreover, Kezs = (K, +, -, 0,1, <,8Xp) is an archimedean
EXP-field.

We call KW the residue exponential field of Kexp.
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Archimedean O-minimal Exponential Fields

Theorem (Laskowski, Steinhorn 1995)
Let Kexp be an archimedean o-minimal EXP-field. Then Kep =< Rexp.
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Archimedean O-minimal Exponential Fields

Theorem (Laskowski, Steinhorn 1995)
Let Kexp be an archimedean o-minimal EXP-field. Then Kep =< Rexp.

Approach towards (TC): Show that any o-minimal EXP-field has an archimedean
prime model.
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Approach through Residue Exponential Field

Let Kexp be an exponential field such that Kexp = Reyp. Then K% = Kexp-

Assertion

Let Kexp be an o-minimal EXP-field. Then (SC) implies K% =VCoo
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Embeddability of the Residue Field

Let Kexp be a sufficiently saturated o-minimal EXP-field. Then Kezg = Rexp.
Moreover, assuming (SC), we have Rexp € Kep.

Corollary

Assume (SC). Let Kexp be an o-minimal EXP-field. Then Keyp = Ths(Rexp).

Let Kexp be an o-minimal EXP-field. Then the following are equivalent:
@ Th3(Rexp) = Th3(Kexp) and Kexp is model complete.
(2] (TC) K:exp = IRexp-
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T-convexity

Let Cexp be an o-minimal EXP-field and T = Th(Kexp). Then the following are
equivalent:

@ O is T-convex. (i.e. for any continuous 0-definable function f on K we have
f(O) C0O).

@ Any continuous 0-definable function f : K — K is exponentially bounded (i.e. for
any continuous O-definable function f on K and sufficiently large x we have
|f(x)] < exp(exp(...exp(x)))) and bounded by an integer on [0, 1].

Q (TC): Kexp = Rexp-
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T-convexity

Let Cexp be an o-minimal EXP-field and T = Th(Kexp). Then the following are
equivalent:

@ O is T-convex. (i.e. for any continuous 0-definable function f on K we have
f(O) C0O).

@ Any continuous 0-definable function f : K — K is exponentially bounded (i.e. for
any continuous O-definable function f on K and sufficiently large x we have
|f(x)] < exp(exp(...exp(x)))) and bounded by an integer on [0, 1].

Q (TC): Kexp = Rexp-

This draws a connection between (SC) and the open question whether an o-minimal
structure which is not exponentially bounded exists.
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