Results 0000 References

Overview of Conjectures o

Algebraic and Model Theoretic Properties of O-minimal Exponential Fields

Lothar Sebastian Krapp

Universität Konstanz, Fachbereich Mathematik und Statistik

21 November 2019

Report on the significant foundation, contents and results of the thesis

Results

References

Overview of Conjectures

Results

References

Overview of Conjectures

Results

References

Overview of Conjectures

Model Theoretic Setting

Results

References

Overview of Conjectures o

Model Theoretic Setting

• first-order languages $\mathcal{L}_{\rm or}=\{+,-,\cdot,0,1,<\}$ and $\mathcal{L}_{\text{exp}}=\{+,-,\cdot,0,1,<,\text{exp}\}$

Results

References

Overview of Conjectures o

Model Theoretic Setting

- first-order languages $\mathcal{L}_{\rm or}=\{+,-,\cdot,0,1,<\}$ and $\mathcal{L}_{\text{exp}}=\{+,-,\cdot,0,1,<,\text{exp}\}$
- structures in the languages

e.g. ordered fields ${\it K}=({\it K},+,-,\cdot,0,1,<)$ or the real exponential field

 $\mathbb{R}_{\text{exp}} = (\mathbb{R}, +, -, \cdot, 0, 1, <, \text{exp})$

Results

References

Overview of Conjectures o

Model Theoretic Setting

- first-order languages $\mathcal{L}_{\rm or}=\{+,-,\cdot,0,1,<\}$ and $\mathcal{L}_{\text{exp}}=\{+,-,\cdot,0,1,<,\text{exp}\}$
- structures in the languages

e.g. ordered fields $K = (K, +, -, \cdot, 0, 1, <)$ or the real exponential field

 $\mathbb{R}_{\text{exp}} = (\mathbb{R}, +, -, \cdot, 0, 1, <, \text{exp})$

formulas and sentences

e.g. the \mathcal{L}_{or} -formula $\exists x \ x^2 + yx + 1 = 0$ or the \mathcal{L}_{exp} -sentence $\forall x \exists y \ exp(exp(x)) < exp(x + y)$

Results

References

Overview of Conjectures o

Model Theoretic Setting

- first-order languages $\mathcal{L}_{\rm or}=\{+,-,\cdot,0,1,<\}$ and $\mathcal{L}_{\text{exp}}=\{+,-,\cdot,0,1,<,\text{exp}\}$
- structures in the languages

e.g. ordered fields $\mathcal{K}=(\mathcal{K},+,-,\cdot,0,1,<)$ or the real exponential field

 $\mathbb{R}_{\text{exp}} = (\mathbb{R}, +, -, \cdot, 0, 1, <, \text{exp})$

• formulas and sentences

e.g. the \mathcal{L}_{or} -formula $\exists x \ x^2 + yx + 1 = 0$ or the \mathcal{L}_{exp} -sentence $\forall x \exists y \ exp(exp(x)) < exp(x + y)$

• definable sets

e.g. the \mathcal{L}_{exp} -formula $\exists y \ \exp(y) = x + \pi$ defines the set $(-\pi, \infty)$ in \mathbb{R}_{exp}

Results

References

Overview of Conjectures

Tarski's Quantifier Elimination

Results

References

Overview of Conjectures

Tarski's Quantifier Elimination

Theorem (Tarski, 1948)

For any \mathcal{L}_{or} -formula φ there exists a quantifier-free \mathcal{L}_{or} -formula ψ such that φ and ψ are equivalent over \mathbb{R} .

Results

References

Overview of Conjectures o

Tarski's Quantifier Elimination

Theorem (Tarski, 1948)

For any \mathcal{L}_{or} -formula φ there exists a quantifier-free \mathcal{L}_{or} -formula ψ such that φ and ψ are equivalent over \mathbb{R} .

Example: The \mathcal{L}_{or} -formula $\exists x \ x^2 + yx + 1 = 0$ is equivalent over \mathbb{R} to $y^2 - 4 \ge 0$.

Results

References

Overview of Conjectures

Tarski's Quantifier Elimination

Theorem (Tarski, 1948)

For any \mathcal{L}_{or} -formula φ there exists a quantifier-free \mathcal{L}_{or} -formula ψ such that φ and ψ are equivalent over \mathbb{R} .

Example: The \mathcal{L}_{or} -formula $\exists x \ x^2 + yx + 1 = 0$ is equivalent over \mathbb{R} to $y^2 - 4 \ge 0$.

Tarski proved this theorem by presenting an explicit quantifier elimination algorithm.

Consequences of Tarski's Quantifier Elimination

Consequences of Tarski's Quantifier Elimination

• The \mathcal{L}_{or} -theory of \mathbb{R} is decidable

Consequences of Tarski's Quantifier Elimination

• The \mathcal{L}_{or} -theory of \mathbb{R} is decidable, i.e. there exists an algorithm which decides whether a given \mathcal{L}_{or} -sentence is true or false in \mathbb{R} .

Consequences of Tarski's Quantifier Elimination

- The \mathcal{L}_{or} -theory of \mathbb{R} is decidable, i.e. there exists an algorithm which decides whether a given \mathcal{L}_{or} -sentence is true or false in \mathbb{R} .
- Every $\mathcal{L}_{\mathrm{or}}$ -definable subset of \mathbb{R}^n is a semi-algebraic set.

Consequences of Tarski's Quantifier Elimination

- The \mathcal{L}_{or} -theory of \mathbb{R} is decidable, i.e. there exists an algorithm which decides whether a given \mathcal{L}_{or} -sentence is true or false in \mathbb{R} .
- Every $\mathcal{L}_{\mathrm{or}}$ -definable subset of \mathbb{R}^n is a semi-algebraic set.
- In particular, any $\mathcal{L}_{or}\text{-definable}$ subset of $\mathbb R$ is a finite union of points and open intervals.

Consequences of Tarski's Quantifier Elimination

- The \mathcal{L}_{or} -theory of \mathbb{R} is decidable, i.e. there exists an algorithm which decides whether a given \mathcal{L}_{or} -sentence is true or false in \mathbb{R} .
- Every \mathcal{L}_{or} -definable subset of \mathbb{R}^n is a semi-algebraic set.
- In particular, any $\mathcal{L}_{or}\text{-definable}$ subset of $\mathbb R$ is a finite union of points and open intervals.
- Tarski's Transfer Principle: Any \mathcal{L}_{or} -sentence which is true in \mathbb{R} is also true in any real closed field.

Consequences of Tarski's Quantifier Elimination

- The \mathcal{L}_{or} -theory of \mathbb{R} is decidable, i.e. there exists an algorithm which decides whether a given \mathcal{L}_{or} -sentence is true or false in \mathbb{R} .
- Every \mathcal{L}_{or} -definable subset of \mathbb{R}^n is a semi-algebraic set.
- In particular, any $\mathcal{L}_{or}\text{-definable}$ subset of $\mathbb R$ is a finite union of points and open intervals.
- Tarski's Transfer Principle: Any \mathcal{L}_{or} -sentence which is true in \mathbb{R} is also true in any real closed field.

Tarski's Exponential Function Problem: Is \mathbb{R}_{exp} also decidable?

Results

References

Overview of Conjectures

Schanuel's Conjecture

Results

References

Overview of Conjectures

Schanuel's Conjecture

Schanuel's Conjecture

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then

 $\mathsf{td}_{\mathbb{Q}}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n,\mathrm{e}^{\alpha_1},\ldots,\mathrm{e}^{\alpha_n}))\geq n.$

Results

References

Overview of Conjectures

Schanuel's Conjecture

Schanuel's Conjecture

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then

 $\mathsf{td}_{\mathbb{Q}}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n,\mathrm{e}^{\alpha_1},\ldots,\mathrm{e}^{\alpha_n}))\geq n.$

 $\rightarrow\,$ Schanuel's Conjecture would, for instance, imply the algebraic independence of $e\,$ and $\pi.$

Results

References

Overview of Conjectures

Schanuel's Conjecture

Schanuel's Conjecture

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then

 $\mathsf{td}_{\mathbb{Q}}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n,\mathrm{e}^{\alpha_1},\ldots,\mathrm{e}^{\alpha_n}))\geq n.$

 $\rightarrow\,$ Schanuel's Conjecture would, for instance, imply the algebraic independence of $e\,$ and $\pi.$

Real Schanuel's Conjecture (SC)

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ be linearly independent over \mathbb{Q} . Then

$$\mathsf{td}_{\mathbb{Q}}(\mathbb{Q}(lpha_1,\ldots,lpha_n,\mathrm{e}^{lpha_1},\ldots,\mathrm{e}^{lpha_n}))\geq n.$$

Results

References

Overview of Conjectures

Decidability of the Real Exponential Field

Overview of Conjectures

Decidability of the Real Exponential Field

Decidability Conjecture

The real exponential field \mathbb{R}_{exp} is decidable.

Overview of Conjectures

Decidability of the Real Exponential Field

Decidability Conjecture

The real exponential field \mathbb{R}_{exp} is decidable.

Theorem (Macintyre and Wilkie, 1996)

Assume (SC). Then \mathbb{R}_{exp} is decidable.

Overview of Conjectures

Decidability of the Real Exponential Field

Decidability Conjecture

The real exponential field \mathbb{R}_{exp} is decidable.

Theorem (Macintyre and Wilkie, 1996)

Assume (SC). Then \mathbb{R}_{exp} is decidable.

Schanuel's Conjecture

Decidability Conjecture

Results

References

Overview of Conjectures

O-minimal Exponential Fields

Results

References

Overview of Conjectures

O-minimal Exponential Fields

Definition

Let K be an ordered field. A unary function exp which is an order-preserving isomorphism from (K, +, 0, <) to $(K^{>0}, \cdot, 1, <)$ is called an **exponential** on K. The \mathcal{L}_{exp} -structure (K, exp) is called an **ordered exponential field**.

Results

Overview of Conjectures

O-minimal Exponential Fields

Definition

Let *K* be an ordered field. A unary function exp which is an order-preserving isomorphism from (K, +, 0, <) to $(K^{>0}, \cdot, 1, <)$ is called an **exponential** on *K*. The \mathcal{L}_{exp} -structure (K, exp) is called an **ordered exponential field**.

Definition

A linearly ordered structure (M, <, ...) is called **o-minimal** if every definable subset of M is a finite union of points and open intervals in M.

Overview of Conjectures

O-minimal Exponential Fields

Definition

Let *K* be an ordered field. A unary function exp which is an order-preserving isomorphism from (K, +, 0, <) to $(K^{>0}, \cdot, 1, <)$ is called an **exponential** on *K*. The \mathcal{L}_{exp} -structure (K, exp) is called an **ordered exponential field**.

Definition

A linearly ordered structure (M, <, ...) is called **o-minimal** if every definable subset of M is a finite union of points and open intervals in M.

Theorem (Wilkie, 1996)

The real exponential field \mathbb{R}_{exp} is o-minimal.

Results

References

Overview of Conjectures

O-minimal Exponential Fields

Definition

Let *K* be an ordered field. A unary function exp which is an order-preserving isomorphism from (K, +, 0, <) to $(K^{>0}, \cdot, 1, <)$ is called an **exponential** on *K*. The \mathcal{L}_{exp} -structure (K, exp) is called an **ordered exponential field**.

Definition

A linearly ordered structure (M, <, ...) is called **o-minimal** if every definable subset of M is a finite union of points and open intervals in M.

Theorem (Wilkie, 1996)

The real exponential field \mathbb{R}_{exp} is o-minimal.

Example: The
$$\mathcal{L}_{exp}$$
-formula $\exists y \ x^2 > \exp(y) + \pi$ defines the set $(-\infty, -\sqrt{\pi}) \cup (\sqrt{\pi}, \infty)$ over \mathbb{R}_{exp} .

Results

References

Overview of Conjectures

Transfer Conjecture

Results

References

Overview of Conjectures o

Transfer Conjecture

• Elementary equivalence: Two \mathcal{L} -structures \mathcal{M} and \mathcal{N} are elementarily equivalent if they satisfy exactly the same \mathcal{L} -sentences. We write $\mathcal{M} \equiv \mathcal{N}$.

Results

References

Transfer Conjecture

- Elementary equivalence: Two \mathcal{L} -structures \mathcal{M} and \mathcal{N} are elementarily equivalent if they satisfy exactly the same \mathcal{L} -sentences. We write $\mathcal{M} \equiv \mathcal{N}$.
- **EXP:** \mathcal{L}_{exp} -sentence stating that the differential equation exp' = exp with initial condition exp(0) = 1 holds.

Results

References

Transfer Conjecture

- Elementary equivalence: Two \mathcal{L} -structures \mathcal{M} and \mathcal{N} are elementarily equivalent if they satisfy exactly the same \mathcal{L} -sentences. We write $\mathcal{M} \equiv \mathcal{N}$.
- **EXP:** \mathcal{L}_{exp} -sentence stating that the differential equation exp' = exp with initial condition exp(0) = 1 holds.

Transfer Conjecture (TC)

Let (K, exp) be an o-minimal EXP-field. Then $(K, exp) \equiv \mathbb{R}_{exp}$.

Results

References

Transfer Conjecture

- Elementary equivalence: Two \mathcal{L} -structures \mathcal{M} and \mathcal{N} are elementarily equivalent if they satisfy exactly the same \mathcal{L} -sentences. We write $\mathcal{M} \equiv \mathcal{N}$.
- **EXP:** \mathcal{L}_{exp} -sentence stating that the differential equation exp' = exp with initial condition exp(0) = 1 holds.

Transfer Conjecture (TC)

Let (K, exp) be an o-minimal EXP-field. Then $(K, exp) \equiv \mathbb{R}_{exp}$.

Theorem (Berarducci and Servi, 2004)

Assume (TC). Then \mathbb{R}_{exp} is decidable.

• What are the connections between Schanuel's Conjecture and the Transfer Conjecture?

• What are the connections between Schanuel's Conjecture and the Transfer Conjecture?

- What are the connections between Schanuel's Conjecture and the Transfer Conjecture?
- What properties of $\mathbb{R}_{\mathsf{exp}}$ can be generalised to any o-minimal $\mathrm{EXP}\text{-field}?$

- What are the connections between Schanuel's Conjecture and the Transfer Conjecture?
- What properties of \mathbb{R}_{exp} can be generalised to any o-minimal EXP-field?
- What are construction methods for o-minimal EXP-fields?

Results

References

Overview of Conjectures

Results

References

Overview of Conjectures

Constructions of O-minimal EXP-fields

Overview of Conjectures

Constructions of O-minimal $\operatorname{EXP}\xspace$ fields

• Starting with certain countable archimedean fields *F* and countable divisible ordered abelian groups *G* (both with additional structure), we construct countable models of real exponentiation (*K*, exp) with residue field *F* and value group *G* under the natural valuation.

Overview of Conjectures

Constructions of O-minimal $\operatorname{EXP}\xspace$ fields

- Starting with certain **countable archimedean fields** *F* and **countable divisible ordered abelian groups** *G* (both with additional structure), we construct countable models of real exponentiation (*K*, exp) with **residue field** *F* and **value group** *G* under the natural valuation.
- Starting with an **arbitrary o-minimal** EXP-field (K, exp), we construct an exponential exp on the real closed field of surreal numbers No with (K, exp) \leq (No, exp).

Overview of Conjectures

Constructions of O-minimal $\operatorname{EXP}\xspace$ fields

- Starting with certain **countable archimedean fields** *F* and **countable divisible ordered abelian groups** *G* (both with additional structure), we construct countable models of real exponentiation (*K*, exp) with **residue field** *F* and **value group** *G* under the natural valuation.
- Starting with an **arbitrary o-minimal** EXP-field (K, exp), we construct an exponential exp on the real closed field of surreal numbers No with (K, exp) \leq (No, exp).
- Starting with certain models M of **Peano Arithmetic**, we construct o-minimal EXP-fields with **integer part** $M \cup (-M)$.

Results

Overview of Conjectures

Properties of \mathbb{R}_{exp} Generalised to O-minimal $\operatorname{EXP}\textsc{-fields}$

Properties of \mathbb{R}_{exp} Generalised to O-minimal $\operatorname{EXP}\textsc{-fields}$

• Several analytic properties of the exponential function, such as Taylor approximation or exponential growth, hold in any o-minimal EXP-field.

Properties of \mathbb{R}_{exp} Generalised to O-minimal $\operatorname{EXP}-fields$

- Several analytic properties of the exponential function, such as Taylor approximation or exponential growth, hold in any o-minimal EXP-field.
- For any o-minimal EXP-field (K, exp), we have (K, exp) ≤ R_{exp}. Here, K is the residue field of K under the natural valuation and exp is the exponential induced on the residue field.

Connections between Schanuel's Conjecture and Transfer Conjecture

Connections between Schanuel's Conjecture and Transfer Conjecture

• Assuming (SC), any o-minimal EXP-field satisfies the existential theory $Th_{\exists}(\mathbb{R}_{exp})$ of \mathbb{R}_{exp} .

Connections between Schanuel's Conjecture and Transfer Conjecture

- Assuming (SC), any o-minimal EXP-field satisfies the existential theory $Th_{\exists}(\mathbb{R}_{exp})$ of \mathbb{R}_{exp} .
- Assuming (TC), if some o-minimal EXP-field satisfies Schanuel's Conjecture, then all o-minimal EXP-fields do so.

References

- [1] A. BERARDUCCI and T. SERVI, 'An effective version of Wilkie's theorem of the complement and some effective o-minimality results', *Ann. Pure Appl. Logic* 125 (2004) 43–74.
- [2] L. S. KRAPP, 'Algebraic and Model Theoretic Properties of O-minimal Exponential Fields', doctoral thesis, Universität Konstanz, 2019.
- [3] A. MACINTYRE and A. J. WILKIE, 'On the decidability of the real exponential field', *Kreiseliana: about and around Georg Kreisel* (ed. P. Odifreddi; A. K. Peters, Wellesley, MA, 1996) 441–467.
- [4] A. TARSKI, A decision method for elementary algebra and geometry (RAND Corporation, Santa Monica, CA, 1948).
- [5] A. J. WILKIE, 'Model completeness results for expansions of the ordered Field of real numbers by restricted Pfaffian functions and the exponential function', *J. Amer. Math. Soc.* 9 (1996) 1051–1094.

