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Model Theoretic Setting

• first-order languages Lor = {+,−, ·, 0, 1, <} and Lexp = {+,−, ·, 0, 1, <, exp}
• structures in the languages

e.g. ordered fields K = (K ,+,−, ·, 0, 1, <) or the real exponential field
Rexp = (R,+,−, ·, 0, 1, <, exp)

• formulas and sentences
e.g. the Lor-formula ∃x x2 + yx + 1 = 0 or the Lexp-sentence ∀x∃y exp(exp(x)) < exp(x + y)
• definable sets

e.g. the Lexp-formula ∃y exp(y) = x + π defines the set (−π,∞) in Rexp
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Tarski’s Quantifier Elimination

Theorem (Tarski, 1948)
For any Lor-formula ϕ there exists a quantifier-free Lor-formula ψ such that ϕ and ψ
are equivalent over R.

Example: The Lor-formula ∃x x2 + yx + 1 = 0 is equivalent over R to y2 − 4 ≥ 0.

Tarski proved this theorem by presenting an explicit quantifier elimination algorithm.
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Consequences of Tarski’s Quantifier Elimination

• The Lor-theory of R is decidable, i.e. there exists an algorithm which decides
whether a given Lor-sentence is true or false in R.

• Every Lor-definable subset of Rn is a semi-algebraic set.
• In particular, any Lor-definable subset of R is a finite union of points and open

intervals.
• Tarski’s Transfer Principle: Any Lor-sentence which is true in R is also true in

any real closed field.
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Tarski’s Exponential Function Problem: Is Rexp also decidable?
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Schanuel’s Conjecture

Schanuel’s Conjecture
Let α1, . . . , αn ∈ C be linearly independent over Q. Then

tdQ(Q(α1, . . . , αn, eα1 , . . . , eαn)) ≥ n.

→ Schanuel’s Conjecture would, for instance, imply the algebraic independence of e
and π.

Real Schanuel’s Conjecture (SC)
Let α1, . . . , αn ∈ R be linearly independent over Q. Then

tdQ(Q(α1, . . . , αn, eα1 , . . . , eαn)) ≥ n.
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Decidability of the Real Exponential Field

Decidability Conjecture
The real exponential field Rexp is decidable.

Theorem (Macintyre and Wilkie, 1996)
Assume (SC). Then Rexp is decidable.

Schanuel’s Conjecture

Decidability Conjecture
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O-minimal Exponential Fields

Definition
Let K be an ordered field. A unary function exp which is an order-preserving
isomorphism from (K ,+, 0, <) to (K>0, ·, 1, <) is called an exponential on K . The
Lexp-structure (K , exp) is called an ordered exponential field.

Definition
A linearly ordered structure (M, <, . . .) is called o-minimal if every definable subset of
M is a finite union of points and open intervals in M.

Theorem (Wilkie, 1996)
The real exponential field Rexp is o-minimal.

Example: The Lexp-formula ∃y x2 > exp(y) + π defines the set
(−∞,−

√
π) ∪ (

√
π,∞) over Rexp.
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Transfer Conjecture

• Elementary equivalence: Two L-structuresM and N are elementarily
equivalent if they satisfy exactly the same L-sentences. We writeM≡ N .
• EXP: Lexp-sentence stating that the differential equation exp′ = exp with initial
condition exp(0) = 1 holds.

Transfer Conjecture (TC)
Let (K , exp) be an o-minimal EXP-field. Then (K , exp) ≡ Rexp.

Theorem (Berarducci and Servi, 2004)
Assume (TC). Then Rexp is decidable.
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Resulting Questions

Schanuel’s Conjecture Transfer Conjecture

Decidability Conjecture

• What are the connections between Schanuel’s Conjecture and the Transfer
Conjecture?

————————–

• What properties of Rexp can be generalised to any o-minimal EXP-field?
• What are construction methods for o-minimal EXP-fields?
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Constructions of O-minimal EXP-fields

• Starting with certain countable archimedean fields F and countable divisible
ordered abelian groups G (both with additional structure), we construct
countable models of real exponentiation (K , exp) with residue field F and value
group G under the natural valuation.

• Starting with an arbitrary o-minimal EXP-field (K , exp), we construct an
exponential exp on the real closed field of surreal numbers No with
(K , exp) � (No, exp).
• Starting with certain models M of Peano Arithmetic, we construct o-minimal

EXP-fields with integer part M ∪ (−M).
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Properties of Rexp Generalised to O-minimal EXP-fields

• Several analytic properties of the exponential function, such as Taylor
approximation or exponential growth, hold in any o-minimal EXP-field.
• For any o-minimal EXP-field (K , exp), we have (K , exp) � Rexp. Here, K is the

residue field of K under the natural valuation and exp is the exponential induced
on the residue field.
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on the residue field.
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Connections between Schanuel’s Conjecture and Transfer Conjecture

• Assuming (SC), any o-minimal EXP-field satisfies the existential theory
Th∃(Rexp) of Rexp.
• Assuming (TC), if some o-minimal EXP-field satisfies Schanuel’s Conjecture, then

all o-minimal EXP-fields do so.
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Schanuel’s Conjecture Transfer Conjecture

Decidability Conjecture
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