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Artificial Neurons

ri : real numbers, input
wi : real numbers, weights∑

wi ri : weighted sum
F : real valued function,

activation function
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Activation Functions

Typical activation functions F :
• characteristic functions on intervals (a,∞)
• piecewise linear functions
• sigmoid function F (t) = 1

1+exp(−t)
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Artificial Neural Network

(10 neurons, 4 layers)
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Artificial Neural Network

X : input space, e.g. (R2 × {0, . . . , 255})12
Y : output space, e.g. {0, 1}
Fi(x ,w): activation functions

The network computes a class of functions X → Y .
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Learning Cycle

1 network is in an initial state h coded by the weights
2 training sample (x , y) ∈ X × Y is chosen
3 h(x) is computed
4 the weights are adjusted depending on h(x) = y or h(x) 6= y (also considering

previous training samples)
Goal: After finitely many training samples the network is in a state h which gives a
good approximation to recognising the pattern.
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Formal Learning

Neural network H: set of all possible functions depending on the weights
Sample space Z = X × Y
Learning algorithm L:

L :
∞⋃

m=1
Zm → H.
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Learning Algorithm

p – probability measure on Z measuring the probability that a sample is chosen as
training sample

erp(h) = p{(x , y) ∈ Z | h(x) 6= y} – error of h ∈ H

optp(H) = infh∈H erp(h) – best approximation in H for given p
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Learning Algorithm
Definition
Let H be a collection of functions X → Y for a given sample space Z = X × Y . A
learning algorithm L is a map

L :
∞⋃

m=1
Zm → H

with the following property:
∀ε, δ ∈ (0, 1) ∃m0 ∈ N ∀m ≥ m0 :
for any probability measure p on Z we have

pm{z ∈ Zm | erp(L(z)) < optp(H) + ε} ≥ 1− δ,

where pm is the product measure on Zm.
H is called learnable if there exists a learning algorithm for H.
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Model Theoretic Setting

• first-order languages L:
Lr = (+,−, ·, 0, 1), Lor = (+,−, ·, 0, 1, <), Lexp = (+,−, ·, 0, 1, <, exp)
• L-structures:

(Z,+,−, ·, 0, 1), (Q,+,−, ·, 0, 1, <), (R,+,−, ·, 0, 1, <, exp)
• L-formulas and L-sentences:
∀x∃y x + y = 0
∃y y < x
∀x∃y exp(y) < x
• complete L-theories:

Th(R,+,−, ·, 0, 1, <) (the theory of real closed fields) – set of all Lor-sentences
which are true in (R,+,−, ·, 0, 1, <)
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Model Theoretic Setting

• first-order languages L:
Lr = (+,−, ·, 0, 1), Lor = (+,−, ·, 0, 1, <), Lexp = (+,−, ·, 0, 1, <, exp)
• L-structures:

(Z,+,−, ·, 0, 1), (Q,+,−, ·, 0, 1, <), (R,+,−, ·, 0, 1, <, exp)
• L-formulas and L-sentences:
∀x∃y x + y = 0 – true in (R,+,−, ·, 0, 1, <)
∃y y < x
∀x∃y exp(y) < x – false in (R,+,−, ·, 0, 1, <, exp)
• complete L-theories:
Th(R,+,−, ·, 0, 1, <) (the theory of real closed fields) – set of all Lor-sentences
which are true in (R,+,−, ·, 0, 1, <)
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VC Dimension
Let L be a first-order language, letM = (M, . . .) be an L-structure and let ϕ(x , y) be
an L-formula.
Definition
The Vapnik–Chervonenkis dimension (VC dimension) of ϕ (inM) is defined as

vc(ϕ(x ; y)) := max(Sϕ)

where Sϕ ⊆ N consists of all n ∈ N with the following property:
There exist tuples (ai)i<n and (bJ)J⊆{0,...,n−1} in M such that for any i < n and any
J ⊆ {0, . . . , n − 1}

ϕ(ai ; bJ) holds inM if and only if i ∈ J .

If Sϕ has no maximum, then vc(ϕ(x ; y)) =∞.
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VC Dimension

Example
Consider the Lr-structure (Z,+,−, ·, 0, 1). The Lr-formula ϕ(x ; y) given by

∃d d · x = y

expresses “x divides y”.
For any i ∈ N, let ai ∈ Z be the i-th prime number. For any n ∈ N and any
J ⊆ {0, . . . , n − 1}, let

bJ =
∏
i∈J

pi .

Then ϕ(ai ; bJ) holds in (Z,+,−, ·, 0, 1) if and only if i ∈ J . Hence, vc(ϕ(x ; y)) =∞.
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NIP

Definition
A formula ϕ(x ; y) has the independence property (or is IP) if vc(ϕ) =∞. If ϕ does
not have the independence property, it is called NIP.

An L-structureM is NIP: For every L-structure N satisfying Th(M), every
L-formula ϕ(x ; y) is NIP in N .

Examples of NIP structures:
• o-minimal structures
• weakly o-minimal structures
• C-minimal structures
• ...
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O-minimality

Definition
An ordered structure (M, <, . . .) is called o-minimal if every parametrically definable
subset of M is a finite union of points and open intervals in M.

Theorem (Wilkie 1996)
The real exponential field Rexp = (R,+,−, ·, 0, 1, <, exp) is o-minimal.

Example: The formula ∃y x2 > exp(y) + π parametrically defines the set{
x ∈ R | ∃y x2 > exp(y) + π

}
= (−∞,−

√
π) ∪ (

√
π,∞) over Rexp.
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NIP Implies Learnability

Theorem
Let R = (R,+, ·, <, . . .) be an NIP expansion of (R,+, ·, <), let X ⊆ Rd be a
(parametrically) definable set over R and let H be a collection of activation functions
of a neural network X → {0, 1} (parametrically) definable over R. Then H is learnable.

Since Rexp is o-minimal and thus NIP, any set H of Rexp-definable activation functions
of a neural network is learnable.
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Brief Historical Overview

• Vapnik, Chervonenkis, 1971: paper on statistical learning theory introducing
the notion of VC dimensions (for sets rather than formulas)
• Shelah, 1971: paper on model theory introducing the independence property
• Pillay, Steinhorn, 1986: proof that o-minimality implies NIP
• Laskowski, 1992: connecting the notion of VC dimension to the independence
property
• Wilkie, 1996: proof that Rexp is o-minimal
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Classification Question

What are necessary and sufficient conditions on a general ordered field
(K ,+,−, ·, 0, 1, <) to be NIP?

With view to neural network learning: What ordered subfields

(K ,+,−, ·, 0, 1, <) ⊆ (R,+,−, ·, 0, 1, <)

are NIP?
(Note that (Q,+,−, ·, 0, 1, <) is not NIP!)
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Shelah–Hasson Conjecture

Shelah–Hasson Conjecture (specialised to ordered fields)
Any (strongly) NIP ordered field (K ,+,−, ·, 0, 1, <) is either real closed or contains a
non-trivial henselian valuation ring that is definable in the language Lor.

This conjecture would imply that the NIP ordered subfields of (R,+,−, ·, 0, 1, <) are
exactly its real closed subfields!
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Convex Valuation Rings

Definition
Let (K ,+,−, ·, 0, 1, <) be an ordered field. A convex valuation ring in K is a convex
subring R ⊆ K such that for any a ∈ K×

a ∈ R or a−1 ∈ R.

Maximal ideal (of infinitesimals): I = {a ∈ K× | a−1 /∈ R} ∪ {0}.
Residue field: K = R/I.
Residue elements: For a ∈ R we write a = a + I.
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Convex Valuation Rings

Examples
• For any ordered subfield (K ,+,−, ·, 0, 1, <) of (R,+,−, ·, 0, 1, <), the only
convex valuation ring in K is R = K (the trivial valuation ring).
• The field of Laurent series R((x)) in one variable over R can be ordered by setting

1
x > r for any r ∈ R>0. Its only non-trivial convex valuation ring is the power
series ring R[[x ]].
• The only Lor-definable convex valuation ring in an o-minimal (or, equivalently,

real closed) ordered field is the trivial valuation ring.
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Henselian Valuation Rings

Definition
Let (K ,+,−, ·, 0, 1, <) be an ordered field. A convex valuation ring R in K is
henselian if for any polynomial

p(x) = anxn + . . .+ a0 ∈ R[x ]

and any simple zero a ∈ K of

p(x) = anxn + . . .+ a0 ∈ K [x ],

there exists a zero b ∈ R of p(x) with b = a.

Motto: Simple zeros can be lifted from the residue field.
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Henselian Valuation Rings

Examples
• Any trivial valuation ring is henselian, as the residue field coincides with the field.
• R[[x ]] is a henselian valuation ring of R((x)).
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Approach towards Shelah–Hasson Conjecture

Refinements of the property ‘NIP’:

o-minimal→ weakly o-minimal
→ dp-minimal→ dp-finite
→ strongly NIP→ NIP

Currently the Shelah–Hasson Conjecture specialised to ordered fields has been verified
for the dp-minimal case. Hence, an ordered subfield of (R,+,−, ·, 0, 1, <) is
dp-minimal if and only if it is real closed.
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Strongly NIP Ordered Fields

Theorem (K., Kuhlmann, Lehéricy)
The following are equivalent:
• The Shelah–Hasson Conjecture specialised to ordered fields: Any strongly NIP
ordered field is either real closed or admits a non-trivial Lor-definable henselian
valuation ring.
• Any strongly NIP ordered field admits a henselian valuation ring with real closed
residue field.

Lothar Sebastian Krapp Neural Networks, NIP and Definable Valuations



Neural Networks NIP Definable Valuations References

References
• M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical Foundations

(Cambridge University Press, Cambridge, 1999).
• K. Dupont, A. Hasson and S. Kuhlmann, ‘Definable Valuations induced by multiplicative

subgroups and NIP Fields’, Arch. Math. Logic 58 (2019) 819–839.
• F. Jahnke, P. Simon and E. Walsberg, ‘Dp-minimal valued fields’, J. Symb. Log. 82 (2017)

151–165.
• L. S. Krapp, ‘Algebraic and Model Theoretic Properties of O-Minimal Exponential Fields’,

doctoral thesis, Universität Konstanz, 2019.
• L. S. Krapp, S. Kuhlmann and G. Lehéricy, ‘Strongly NIP Almost Real Closed Fields’, to

appear in Math. Log. Q., arXiv:2010.14770.
• L. S. Krapp, S. Kuhlmann and G. Lehéricy, ‘Ordered Fields Dense in Their Real Closure

and Definable Convex Valuations’, accepted, arXiv:2010.11832.
• M. C. Laskowski, ‘Vapnik–Chervonenkis classes of definable sets’, J. London Math. Soc. (2)

45 (1992) 377–384.

Lothar Sebastian Krapp Neural Networks, NIP and Definable Valuations



Neural Networks NIP Definable Valuations References

References

• A. Pillay and C. Steinhorn, ‘Definable sets in ordered structures’, I, Trans. Amer. Math.
Soc. 295 (1986) 565–592.

• S. Shelah, ‘Stability, the f.c.p., and superstability; model theoretic properties of formulas in first
order theory’, Ann. Math. Logic 3 (1971) 271–362.

• V. N. Vapnik and A. Ya. Chervonenkis, ‘The uniform convergence of frequencies of the
appearance of events to their probabilities’, Teor. Verojatnost. i Primenen. 16 (1971) 264–279
(Russian), Theor. Probability Appl. 16 (1971) 264–280 (English).

• A. J. Wilkie, ‘Model completeness results for expansions of the ordered field of real numbers by
restricted Pfaffian functions and the exponential function’, J. Amer. Math. Soc. 9 (1996)
1051–1094.

• Graphics from: M. Tressl, ‘Introduction to o-minimal structures and an application to neural
network learning’, Manuscript, 2010.

Lothar Sebastian Krapp Neural Networks, NIP and Definable Valuations


	Neural Networks
	NIP
	Definable Valuations
	References

