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Artificial Neurons
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ri: real numbers, input

w;: real numbers, weights

> w;r;: weighted sum

F: real valued function,
activation function



Activation Functions

Typical activation functions F:
e characteristic functions on intervals (a, 00)

® piecewise linear functions

1

® sigmoid function F(t) = TTow(CD)
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Artificial Neural Network
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Artificial Neural Network

X: input space, e.g. (R? x {0,...,255})12
Y': output space, e.g. {0,1}
Fi(x, w): activation functions

The network computes a class of functions X — Y.
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Learning Cycle

@ network is in an initial state h coded by the weights
@ training sample (x,y) € X x Y is chosen
@ h(x) is computed

Q the weights are adjusted depending on h(x) =y or h(x) # y (also considering
previous training samples)

Goal: After finitely many training samples the network is in a state h which gives a
good approximation to recognising the pattern.
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Formal Learning

Neural network H: set of all possible functions depending on the weights
Sample space Z=X x Y
Learning algorithm L:
o0
L:|Jz"—H.

m=1
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Learning Algorithm

p — probability measure on Z measuring the probability that a sample is chosen as
training sample

erp(h) = p{(x,y) € Z | h(x) # y} —errorof he H

opt,(H) = infpep erp(h) — best approximation in H for given p
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Learning Algorithm

Definition
Let H be a collection of functions X — Y for a given sample space Z = X x Y. A
learning algorithm L is a map

L:|Jz"—H
m=1
with the following property:
Ve,d € (0,1) 3mg € NVm > mg:
for any probability measure p on Z we have

p™{z € Z™ | erp(L(2)) < opt,(H) +e} > 13,

where p™ is the product measure on Z.
H is called learnable if there exists a learning algorithm for H.
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Model Theoretic Setting

e first-order languages L:
Ly =(+,—0,1), Loy = (+,—,,0,1,<), Lexp = (+,—,+,0,1, <,exp)
® [-structures:
(z,+,-,-,0,1), (Q,+,—,-,0,1, <), (R,+,—,-,0,1, <,exp)
e L-formulas and L-sentences:
Vxdy x+y =0
dy y <x
Vx3y exp(y) < x
® complete L-theories:
Th(R,+,—,-,0,1, <) (the theory of real closed fields) — set of all £,,-sentences
which are true in (R, +,—,+,0,1, <)
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VC Dimension

Let £ be a first-order language, let M = (M, ...) be an L-structure and let ¢(x, y) be
an L-formula.

Definition
The Vapnik—Chervonenkis dimension (VC dimension) of ¢ (in M) is defined as

ve(p(x; y)) = max(Sy)

where S, C N consists of all n € N with the following property:

There exist tuples (a;)i<n and (b;)cqo,..,n—1} in M such that for any i < n and any
JC{0,...,n—1}

¢(a;; by) holds in M if and only if i € J.

If S, has no maximum, then vc(p(x;y)) = oo.
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VC Dimension

Example
Consider the £,-structure (Z,+, —,-,0,1). The £,-formula ¢(x;y) given by

ddd-x=y

expresses “x divides y".
For any i € N, let a; € Z be the i-th prime number. For any n € N and any

JC{0,....,n—1}, let
by=1]m:
icd
Then ¢(a;; by) holds in (Z,+,—,-,0,1) if and only if i € J. Hence, vc(¢(x;y)) = co.
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NIP

Definition
A formula o(x; y) has the independence property (or is IP) if vc(p) = oo. If ¢ does
not have the independence property, it is called NIP.

An L-structure M is NIP: For every L-structure N satisfying Th(M), every
L-formula ¢(x; y) is NIP in \V.

Examples of NIP structures:
® o-minimal structures
® weakly o-minimal structures

® C-minimal structures
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O-minimality

Definition

An ordered structure (M, <,...) is called o-minimal if every parametrically definable
subset of M is a finite union of points and open intervals in M.

Theorem (Wilkie 1996)
The real exponential field Rexp = (R, +, —, -, 0,1, <, exp) is o-minimal.

Example: The formula E!y x? > exp(y) + m parametrically defines the set
{x eR| Iy x? > exp(y) + 7} = (—00, —/7) U (y/7,00) over Reyp.
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NIP Implies Learnability

Theorem

Let R = (R, +,-,<,...) be an NIP expansion of (R, +,-, <), let X CR? be a
(parametrically) definable set over R and let H be a collection of activation functions
of a neural network X — {0,1} (parametrically) definable over R. Then H is learnable.

Since Reyp is o-minimal and thus NIP, any set H of Rey,-definable activation functions
of a neural network is learnable.
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Brief Historical Overview

® Vapnik, Chervonenkis, 1971: paper on statistical learning theory introducing
the notion of VC dimensions (for sets rather than formulas)

e Shelah, 1971: paper on model theory introducing the independence property
¢ Pillay, Steinhorn, 1986: proof that o-minimality implies NIP

® Laskowski, 1992: connecting the notion of VC dimension to the independence
property
® Wilkie, 1996: proof that Reyp is o-minimal
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Classification Question

What are necessary and sufficient conditions on a general ordered field
(K,+,—,-,0,1,<) to be NIP?

With view to neural network learning: What ordered subfields

(K7+7_7 '70’ 11<) g (R7+7_7 '707 17 <)

are NIP?
(Note that (Q,+, —,-,0,1,<) is not NIP!)
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Shelah—Hasson Conjecture

Shelah—Hasson Conjecture (specialised to ordered fields)

Any (strongly) NIP ordered field (K, 4+, —,-,0,1, <) is either real closed or contains a
non-trivial henselian valuation ring that is definable in the language L.

This conjecture would imply that the NIP ordered subfields of (R, 4+, —,-,0,1, <) are
exactly its real closed subfields!

Lothar Sebastian Krapp



© Definable Valuations

Lothar Sebastian Krapp



Convex Valuation Rings

Definition

Let (K,+,—,-,0,1,<) be an ordered field. A convex valuation ring in K is a convex
subring R C K such that for any a € K*
acRoraleRr.
Maximal ideal (of infinitesimals): / = {a € K* | a~! ¢ R} U {0}.
Residue field: K = R/I.

Residue elements: For a € R we write 3 = a + /.
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Convex Valuation Rings

Examples

® For any ordered subfield (K, 4+, —,-,0,1,<) of (R,+,—,-,0,1, <), the only
convex valuation ring in K is R = K (the trivial valuation ring).

® The field of Laurent series R((x)) in one variable over R can be ordered by setting
% > r for any r € R>C. lts only non-trivial convex valuation ring is the power
series ring R[x].

® The only L-definable convex valuation ring in an o-minimal (or, equivalently,
real closed) ordered field is the trivial valuation ring.
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Henselian Valuation Rings

Definition
Let (K,+,—,-,0,1,<) be an ordered field. A convex valuation ring R in K is
henselian if for any polynomial

p(x) =anx"+ ...+ a0 € R[x]

and any simple zero a € K of

there exists a zero b € R of p(x) with b = a.

Motto: Simple zeros can be lifted from the residue field.
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Henselian Valuation Rings

Examples
® Any trivial valuation ring is henselian, as the residue field coincides with the field.

e R[x] is a henselian valuation ring of R((x)).
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Approach towards Shelah—Hasson Conjecture

Refinements of the property ‘NIP’:

o-minimal — weakly o-minimal
— dp-minimal — dp-finite
— strongly NIP — NIP

Currently the Shelah—Hasson Conjecture specialised to ordered fields has been verified
for the dp-minimal case. Hence, an ordered subfield of (R, +, —,-,0,1,<) is
dp-minimal if and only if it is real closed.
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Strongly NIP Ordered Fields

Theorem (K., Kuhlmann, Lehéricy)
The following are equivalent:

® The Shelah—Hasson Conjecture specialised to ordered fields: Any strongly NIP
ordered field is either real closed or admits a non-trivial £,.-definable henselian
valuation ring.

® Any strongly NIP ordered field admits a henselian valuation ring with real closed
residue field.
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