Definability 0000000 Conditions on the Value Group

References 0

Definable Henselian Valuations by Conditions on the Value Group

Lothar Sebastian Krapp

Universität Konstanz, Fachbereich Mathematik und Statistik

27 September 2021

DMV-ÖMG 2021, Section 11 - Logic

Lothar Sebastian Krapp

Conditions on the Value Group

2 Definability

Conditions on the Value Group

othar Sebastian Krapp

Conditions on the Value Group

2 Definability

Conditions on the Value Group

othar Sebastian Krapp

Definability 0000000 Conditions on the Value Group

Reference: 0

Valuation Rings

Definition

Let $(K, +, -, \cdot, 0, 1)$ be a field. A valuation ring in K is a subring $R \subseteq K$ such that for any $a \in K^{\times}$

$$a \in R$$
 or $a^{-1} \in R$.

Maximal ideal: $I = \{a \in K^{\times} \mid a^{-1} \notin R\} \cup \{0\}.$

Residue field: $\overline{K} = R/I$.

Residue elements: For $a \in R$ we write $\overline{a} = a + I$.

Let $(K, +, -, \cdot, 0, 1)$ be a field and let $R \subseteq K$ be a valuation ring. Define an equivalence relation on K^{\times} :

$$a \sim_R b :\Leftrightarrow \frac{a}{b} \in R \land \frac{b}{a} \in R.$$

Then $G = \{[a] \mid a \in K^{\times}\}$ forms an ordered abelian group: [a] + [b] = [ab] and [a] < [b] if and only if $\frac{a}{b} \notin R$. The map

$$v \colon \mathcal{K} \to \mathcal{G} \cup \{\infty\}, egin{cases} a \mapsto [a] & ext{if } a \in \mathcal{K}^{ imes}, \ 0 \mapsto \infty \end{cases}$$

is the **valuation** on K with value group G, valuation ring $R = \{a \in K \mid v(a) \ge 0\}$ and valuation ideal $I = \{a \in K \mid v(a) > 0\}$.

Valuations

Examples

- For any field K the trivial valuation v: K[×] → {0} has the valuation ring K and the residue field K.
- The field of Laurent series k((x)) with coefficient field k can be equipped with the valuation

$$u_{\min}\left(\sum_{\ell=m}^{\infty}a_{\ell}x^{\ell}\right)=m$$

(where $a_m \neq 0$) with value group \mathbb{Z} , valuation ring k[x] and residue field k.

For any totally ordered field (K, +, −, ·, 0, 1, <), any convex subring of K is a valuation ring of K. The finest convex valuation ring on K produces an archimedean residue field.

۱

Definability

Conditions on the Value Group

References 0

Henselian Valuations

Definition

Let $(K, +, -, \cdot, 0, 1)$ be a field. A valuation v with valuation ring R on K is **henselian** if for any polynomial

$$p(x) = a_n x^n + \ldots + a_0 \in R[x]$$

and any simple zero $a \in \overline{K}$ of

$$\overline{p}(x) = \overline{a_n}x^n + \ldots + \overline{a_0} \in \overline{K}[x],$$

there exists a zero $b \in R$ of p(x) with $\overline{b} = a$.

Motto: Simple zeros can be lifted from the residue field.

Henselian Valuation Rings

Examples

- Any trivial valuation is henselian, as the residue field coincides with the field.
- The valuation v_{\min} on k((x)) is henselian.
- If (K, +, −, ·, 0, 1, <) is a real closed ordered field, any valuation on K with convex valuation ring is henselian.

Conditions on the Value Group

2 Definability

Conditions on the Value Group

othar Sebastian Krapp

Definability

Conditions on the Value Group

Reference

Model Theoretic Setting

- first-order languages $\mathcal{L}:$ $\mathcal{L}_{\rm r}=(+,-,\cdot,0,1),~\mathcal{L}_{\rm or}=(+,-,\cdot,0,1,<)$
- *L*-structures:

 $(\mathbb{Z},+,-,\cdot,0,1)$, $(\mathbb{R},+,-,\cdot,0,1,<)$

- \mathcal{L} -formulas and \mathcal{L} -sentences: $\forall x \exists y \ x + y = 0$
- \mathcal{L} -definability (*without* and *with* parameters): $\exists y \ x \cdot y = 1$ defines $\{1, -1\}$ in $(\mathbb{Z}, +, -, \cdot, 0, 1)$ and $\mathbb{R} \setminus \{0\}$ in $(\mathbb{R}, +, -, \cdot, 0, 1, <)$. $x \cdot x < \sqrt{3}$ defines $(-\sqrt[4]{3}, \sqrt[4]{3})$ in $(\mathbb{R}, +, -, \cdot, 0, 1, <)$.

Definability

Conditions on the Value Group

References 0

Main Questions

A valuation v is said to be \mathcal{L} -definable if its valuation ring R is \mathcal{L} -definable.

Let $(K, +, -, \cdot, 0, 1)$ be a field and let v be a henselian valuation on K.

What are necessary and sufficient conditions such that v is \mathcal{L}_r -definable?

Definability

Conditions on the Value Group

References 0

Main Questions

A valuation v is said to be \mathcal{L} -definable if its valuation ring R is \mathcal{L} -definable.

Let $(K, +, -, \cdot, 0, 1, <)$ be an ordered field and let v be a henselian valuation on K.

What are necessary and sufficient conditions such that v is \mathcal{L}_{or} -definable?

Definability

Conditions on the Value Group

References

Motivation: Decidability

Theorem (Ax, 1965)

Let k be a field. Then v_{\min} is (parameter-free) \mathcal{L}_r definable in k((x)).

Since the residue field of v_{\min} is k, Ax concludes: If $(k, +, -, \cdot, 0, 1)$ is undecidable, then $(k(x)), +, -, \cdot, 0, 1)$ is undecidable.

Motivation: Classification of NIP Fields

What are necessary and sufficient conditions on a field (an ordered field) to be NIP?

Examples of NIP structures:

- o-minimal structures
- weakly o-minimal structures
- C-minimal structures
- ...

Motivation: Classification of NIP Fields

Shelah–Hasson Conjecture

Any infinite NIP field $(K, +, -, \cdot, 0, 1)$ is either algebraically closed, real closed or admits a non-trivial \mathcal{L}_r -definable henselian valuation.

Refinements of the property 'NIP':

dp-minimal \rightarrow dp-finite \rightarrow strongly NIP \rightarrow NIP

Currently the Shelah–Hasson Conjecture has been verified for the dp-finite case (Johnson, 2020).

Conditions on the Value Group

2 Definability

Conditions on the Value Group

othar Sebastian Krapp

Definability 0000000 Conditions on the Value Group

References 0

Main Questions – Revised

Let $(K, +, -, \cdot, 0, 1)$ be a field and let v be a henselian valuation on K.

What are necessary and sufficient conditions on the residue field and the value group such that v is \mathcal{L}_r -definable?

We concentrate on the value group.

Definability 0000000 Conditions on the Value Group

References 0

Main Questions – Revised

Let $(K, +, -, \cdot, 0, 1, <)$ be an ordered field and let v be a henselian valuation on K.

What are necessary and sufficient conditions on the residue field and the value group such that v is \mathcal{L}_{or} -definable?

We concentrate on the value group.

Discretely Ordered Case

An ordered abelian group (G, +, 0, <) is **discretely ordered** if there exists a least positive element in G.

Theorem (Hong, 2013)

Let $(K, +, -, \cdot, 0, 1)$ be a field and let v be a henselian valuation on K. Suppose that its value group G is discretely ordered. Then v is \mathcal{L}_r -definable (using one parameter).

One can generally not obtain definability without parameters, even if one allows the richer language $\mathcal{L}_{\mathrm{or}}$ (K., Kuhlmann, Link, 2021). However, if (G, +, 0, <) is already elementarily equivalent to $(\mathbb{Z}, +, 0, <)$, then v is already \mathcal{L}_{r} -definable *without parameters*.

Densely Ordered Case

An ordered abelian group (G, +, 0, <) is **densely ordered** if it is not discretely ordered. The **divisible hull** of G is given by $G^{\text{div}} = \{\frac{g}{n} \mid g \in G, n \in \mathbb{N}\}.$

Theorem (K., Kuhlmann, Link, 2021)

Let $(K, +, -, \cdot, 0, 1)$ be a field and let v be a henselian valuation on K. Suppose that its value group G is not closed in G^{div} with respect to the order-topology. Then v is \mathcal{L}_r -definable (using one parameter).

Examples of such ordered abelian groups are densely ordered subgroups of \mathbb{Q} . Again, one can generally not obtain definability without parameters, even if one allows the richer language \mathcal{L}_{or} .

References

- J. Ax, 'On the undecidability of power series fields', Proc. Amer. Math. Soc. 16 (1965) 846.
- A. FEHM and F. JAHNKE, 'Recent progress on definability of Henselian valuations', Ordered Algebraic Structures and Related Topics, Contemp. Math. 697 (eds F. Broglia, F. Delon, M. Dickmann, D. Gondard-Cozette and V. A. Powers; Amer. Math. Soc., Providence, RI, 2017), 135–143.
- W. JOHNSON, 'Dp-finite fields VI: the dp-finite Shelah conjecture', Preprint, 2020, arXiv:2005.13989v1.
- J. HONG, 'Definable non-divisible Henselian valuations', Bull. Lond. Math. Soc. 46 (2014) 14-18.
- L. S. KRAPP, S. KUHLMANN and G. LEHÉRICY, 'Ordered fields dense in their real closure and definable convex valuations', *Forum Math.* 33 (2021) 953–972.
- L. S. KRAPP, S. KUHLMANN and M. LINK, 'Definability of henselian valuations by conditions on the value group', Preprint, 2021, arXiv:2105.09234v1.