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Valuation Rings

Definition
Let (K , +,−, ·, 0, 1) be a field. A valuation ring in K is a subring R ⊆ K such that for
any a ∈ K×

a ∈ R or a−1 ∈ R.

Maximal ideal: I = {a ∈ K× | a−1 /∈ R} ∪ {0}.
Residue field: K = R/I.
Residue elements: For a ∈ R we write a = a + I.
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Valuations
Let (K , +,−, ·, 0, 1) be a field and let R ⊆ K be a valuation ring.
Define an equivalence relation on K×:

a ∼R b :⇔ a
b ∈ R ∧ b

a ∈ R.

Then G = {[a] | a ∈ K×} forms an ordered abelian group: [a] + [b] = [ab] and
[a] < [b] if and only if a

b /∈ R.
The map

v : K → G ∪ {∞},
{
a 7→ [a] if a ∈ K×,

0 7→ ∞

is the valuation on K with value group G , valuation ring R = {a ∈ K | v(a) ≥ 0} and
valuation ideal I = {a ∈ K | v(a) > 0}.
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Valuations

Examples
• For any field K the trivial valuation v : K× → {0} has the valuation ring K and

the residue field K .
• The field of Laurent series k((x)) with coefficient field k can be equipped with the

valuation
vmin

( ∞∑
`=m

a`x `

)
= m

(where am 6= 0) with value group Z, valuation ring k[[x ]] and residue field k.
• For any totally ordered field (K , +,−, ·, 0, 1, <), any convex subring of K is a

valuation ring of K . The finest convex valuation ring on K produces an
archimedean residue field.
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Henselian Valuations

Definition
Let (K , +,−, ·, 0, 1) be a field. A valuation v with valuation ring R on K is henselian
if for any polynomial

p(x) = anxn + . . . + a0 ∈ R[x ]

and any simple zero a ∈ K of

p(x) = anxn + . . . + a0 ∈ K [x ],

there exists a zero b ∈ R of p(x) with b = a.

Motto: Simple zeros can be lifted from the residue field.
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Henselian Valuation Rings

Examples
• Any trivial valuation is henselian, as the residue field coincides with the field.
• The valuation vmin on k((x)) is henselian.
• If (K , +,−, ·, 0, 1, <) is a real closed ordered field, any valuation on K with

convex valuation ring is henselian.
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Model Theoretic Setting

• first-order languages L:
Lr = (+,−, ·, 0, 1), Lor = (+,−, ·, 0, 1, <)
• L-structures:

(Z, +,−, ·, 0, 1), (R, +,−, ·, 0, 1, <)
• L-formulas and L-sentences:
∀x∃y x + y = 0
• L-definability (without and with parameters):
∃y x · y = 1 defines {1,−1} in (Z, +,−, ·, 0, 1) and R \ {0} in (R, +,−, ·, 0, 1, <).
x · x <

√
3 defines (− 4√3, 4√3) in (R, +,−, ·, 0, 1, <).
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Main Questions

A valuation v is said to be L-definable if its valuation ring R is L-definable.

Let (K , +,−, ·, 0, 1) be a field and let v be a henselian valuation on K .

What are necessary and sufficient conditions such that v is Lr-definable?
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Main Questions

A valuation v is said to be L-definable if its valuation ring R is L-definable.

Let (K , +,−, ·, 0, 1, <) be an ordered field and let v be a henselian valuation on K .

What are necessary and sufficient conditions such that v is Lor-definable?
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Motivation: Decidability

Theorem (Ax, 1965)
Let k be a field. Then vmin is (parameter-free) Lr definable in k((x)).

Since the residue field of vmin is k, Ax concludes: If (k, +,−, ·, 0, 1) is undecidable,
then (k((x)), +,−, ·, 0, 1) is undecidable.
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Motivation: Classification of NIP Fields

What are necessary and sufficient conditions on a field (an ordered field) to be
NIP?

Examples of NIP structures:
• o-minimal structures
• weakly o-minimal structures
• C-minimal structures
• ...
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Motivation: Classification of NIP Fields

Shelah–Hasson Conjecture
Any infinite NIP field (K , +,−, ·, 0, 1) is either algebraically closed, real closed or
admits a non-trivial Lr-definable henselian valuation.

Refinements of the property ‘NIP’:

dp-minimal→ dp-finite
→ strongly NIP→ NIP

Currently the Shelah–Hasson Conjecture has been verified for the dp-finite case
(Johnson, 2020).

Lothar Sebastian Krapp Definable Henselian Valuations by Conditions on the Value Group



Valuations Definability Conditions on the Value Group References

1 Valuations

2 Definability

3 Conditions on the Value Group

Lothar Sebastian Krapp Definable Henselian Valuations by Conditions on the Value Group



Valuations Definability Conditions on the Value Group References

Main Questions – Revised

Let (K , +,−, ·, 0, 1) be a field and let v be a henselian valuation on K .

What are necessary and sufficient conditions on the residue field and the value
group such that v is Lr-definable?

We concentrate on the value group.
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Main Questions – Revised

Let (K , +,−, ·, 0, 1, <) be an ordered field and let v be a henselian valuation on K .

What are necessary and sufficient conditions on the residue field and the value
group such that v is Lor-definable?

We concentrate on the value group.
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Discretely Ordered Case

An ordered abelian group (G , +, 0, <) is discretely ordered if there exists a least
positive element in G .

Theorem (Hong, 2013)
Let (K , +,−, ·, 0, 1) be a field and let v be a henselian valuation on K. Suppose that
its value group G is discretely ordered. Then v is Lr-definable (using one parameter).

One can generally not obtain definability without parameters, even if one allows the
richer language Lor (K., Kuhlmann, Link, 2021). However, if (G , +, 0, <) is already
elementarily equivalent to (Z, +, 0, <), then v is already Lr-definable without
parameters.
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Densely Ordered Case

An ordered abelian group (G , +, 0, <) is densely ordered if it is not discretely ordered.
The divisible hull of G is given by Gdiv = {g

n | g ∈ G , n ∈ N}.

Theorem (K., Kuhlmann, Link, 2021)
Let (K , +,−, ·, 0, 1) be a field and let v be a henselian valuation on K. Suppose that
its value group G is not closed in Gdiv with respect to the order-topology. Then v is
Lr-definable (using one parameter).

Examples of such ordered abelian groups are densely ordered subgroups of Q. Again,
one can generally not obtain definability without parameters, even if one allows the
richer language Lor.
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