Henselian Valuations

Definability 00000000000 References 0

Topological Properties of Ordered Abelian Groups and Definable Henselian Valuations

Lothar Sebastian Krapp

Universität Konstanz, Fachbereich Mathematik und Statistik

07 February 2022

Oberseminar "Complexity Theory, Model Theory, Set Theory"

Lothar Sebastian Krapp

Definability 00000000000

)

① Ordered Abelian Groups

2 Henselian Valuations

Definability

)

① Ordered Abelian Groups

2 Henselian Valuations

othar Sebastian Krapp

Henselian Valuations

Definability 00000000000

Definition

Ordered abelian group

Let (G, +, 0) be an *abelian group* and let < be a *strict linear order* on G. Then (G, +, -, 0, <) is an **ordered abelian group** if for any $a, b, c \in G$:

$$a < b \rightarrow a + c < b + c$$
.

We fix the language of ordered groups $\mathcal{L}_{og} = (+, -, 0, <)$. If the operations and linear ordering are clear from the context, then we simply write G for an ordered abelian group.

Henselian Valuations

Definability 00000000000

Divisible Hull

Definition

Let G be an ordered abelian group. We define its divisible hull G^{div} by

$$G^{\mathsf{div}} := \left\{ rac{g}{n} \mid g \in G, n \in \mathbb{N}_{>0}
ight\}.$$

 G^{div} becomes an ordered abelian group with usual addition

$$\frac{g}{n} + \frac{h}{m} = \frac{mg + nh}{nm}$$

and ordering $\frac{g}{n} > 0$ if and only if g > 0. If $G = G^{\text{div}}$, then G is called **divisible**. Moreover, G is a topological subspace of G^{div} with respect to the order-topology.

Henselian Valuations 000000 Definability 00000000000 References 0

Discrete and Dense Orderings

Definition

An ordered abelian group G is **discretely ordered** if there exists a least positive element, i.e. an element $1 \in G$ with 0 < 1 and $(0, 1) \cap G = \emptyset$. Otherwise, it is called **densely ordered**.

Note that a group G is densely ordered if and only if for any $a, b \in G$ with a < b there exists $c \in G$ such that a < c < b.

Henselian Valuations

Definability 00000000000

Archimedean Groups

Hölder

An ordered abelian group G is **archimedean** if and only if it can be embedded (as an \mathcal{L}_{og} -structure) into ($\mathbb{R}, +, -, 0, <$).

Hence, the divisible hull of an archimedean ordered abelian group is also archimedean.

Dichotomy: An archimedean ordered abelian group is either isomorphic to $(\mathbb{Z}, +, -, 0, <)$ (in which case it is **closed in its divisible hull**) or **dense in its divisible hull**.

What about the non-archimedean case?

Definability 00000000000

Examples of Non-Archimedean Groups

Let G and H be non-trivial ordered abelian groups. Its **lexicographic sum** $G \oplus H$ is an ordered abelian group with the linear ordering

$$(g,h) < (g',h') :\Leftrightarrow [g < g' \lor (g = g' \land h < h')].$$

Any lexicographic sum is non-archimedean.

- $\mathbb{Q} \oplus \mathbb{Q}$ is densely ordered and divisible, thus both dense and closed in its divisible hull $\mathbb{Q} \oplus \mathbb{Q}$.
- $\mathbb{Z} \oplus \mathbb{Z}$ and $\mathbb{Q} \oplus \mathbb{Z}$ are discretely ordered, thus closed in their divisible hull $\mathbb{Q} \oplus \mathbb{Q}$.
- $\mathbb{Z} \oplus \mathbb{Q}$ is densely ordered but closed in its divisible hull $\mathbb{Q} \oplus \mathbb{Q}$! E.g. $\mathbb{Z} \oplus \mathbb{Q}$ contains no element strictly between $(\frac{1}{2}, -1)$ and $(\frac{1}{2}, 1)$, so $(\frac{1}{2}, 0) \in \mathbb{Q} \oplus \mathbb{Q}$ is no limit point of $\mathbb{Z} \oplus \mathbb{Q}$.

Henselian Valuations

Definability 00000000000

Densely Ordered

• A lexicographic sum $G \oplus H$ is densely ordered if and only if H is densely ordered.

In particular, if H is archimedean, then $G \oplus H$ is discretely ordered if and only if H is isomorphic to \mathbb{Z} .

• A Hahn sum $\bigoplus_{i \in \mathbb{N}} G_i = G_0 \oplus G_1 \oplus \ldots$ is *always* densely ordered.

In particular, $\mathbb{Z} \oplus \mathbb{Z} \oplus \ldots$ is densely ordered.

Henselian Valuations 000000 Definability 00000000000 References 0

Closed in Divisible Hull

- Every discretely ordered abelian group is closed in its divisible hull.
- If G is non-divisible and H is divisible, then G ⊕ H is densely ordered and closed in its divisible hull. (E.g. Z ⊕ Q.)
- A Hahn sum ⊕_{i∈ℕ} G_i = G₀ ⊕ G₁ ⊕ ... is either divisible (i.e. each component G_i is divisible) or closed in its divisible hull.

Henselian Valuations

Definability 00000000000 References

Dense in Divisible Hull

Theorem (K., Kuhlmann, Lehéricy; and others)

Let G be a densely ordered abelian group. Then the following are equivalent:

- *G* is dense in its divisible hull.
- **2** G is \mathcal{L}_{og} -elementarily equivalent to some archimedean ordered abelian group.
- **③** *G* is regular: for any *n* ∈ $\mathbb{N}_{>0}$ and any infinite convex subset *I* of *G* there is some *n*-divisible element in *I*.
- G has no proper non-trivial \mathcal{L}_{og} -definable convex subgroup.

Definability 00000000000

Further Examples

Let $A = \{\frac{a}{2^n} \mid a \in \mathbb{Z}, n \in \mathbb{N}\}$ (the 2-divisible hull of \mathbb{Z}). Consider the following non-divisible densely ordered abelian groups with divisible hull $\mathbb{Q} \oplus \mathbb{Q}$:

- $\mathbb{Q} \oplus A$ is dense in its divisble hull. E.g. $(0, \frac{1}{3}) < (0, \frac{1}{2}) < (0, \frac{2}{3})$.
- $A \oplus \mathbb{Q}$ is closed in its divisible hull.

E.g. $A \oplus \mathbb{Q}$ contains no element strictly between $(\frac{1}{3}, -1)$ and $(\frac{1}{3}, 1)$, so $(\frac{1}{3}, 0)$ is no limit point of $A \oplus \mathbb{Q}$.

A ⊕ A is neither dense nor closed in its divisible hull.
 E.g. again (¹/₃, 0) ∈ Q ⊕ Q is no limit point of A ⊕ A but (0, ¹/₃) ∉ A ⊕ A is a limit point of A ⊕ A.

Definability

)

Ordered Abelian Groups

2 Henselian Valuations

othar Sebastian Krapp

Henselian Valuations

Definability 00000000000

Valuation Rings

Definition

Let $(K, +, -, \cdot, 0, 1)$ be a field. A valuation ring in K is a subring $R \subseteq K$ such that for any $a \in K^{\times}$

$$a \in R$$
 or $a^{-1} \in R$.

Maximal ideal: $I = \{a \in K^{\times} \mid a^{-1} \notin R\} \cup \{0\}.$

Residue field: $\overline{K} = R/I$.

Residue elements: For $a \in R$ we write $\overline{a} = a + I$.

Definability 00000000000

Valuations

Let $(K, +, -, \cdot, 0, 1)$ be a field and let $R \subseteq K$ be a valuation ring. Define an equivalence relation on K^{\times} :

$$a \sim_R b :\Leftrightarrow \frac{a}{b} \in R \land \frac{b}{a} \in R.$$

Then $G = \{[a] \mid a \in K^{\times}\}$ forms an ordered abelian group: [a] + [b] = [ab] and [a] < [b] if and only if $\frac{a}{b} \notin R$. The map

$$v \colon \mathcal{K} \to \mathcal{G} \cup \{\infty\}, egin{cases} a \mapsto [a] & ext{if } a \in \mathcal{K}^{ imes}, \ 0 \mapsto \infty \end{cases}$$

is the **valuation** on K with value group G, valuation ring $R = \{a \in K \mid v(a) \ge 0\}$ and valuation ideal $I = \{a \in K \mid v(a) > 0\}$.

Definability 00000000000

Valuations

Examples

- For any field K the trivial valuation $v \colon K^{\times} \to \{0\}$ has valuation ring K and residue field K.
- The field of Laurent series k((x)) with coefficient field k can be equipped with the valuation

$$u_{\min}\left(\sum_{\ell=m}^{\infty}a_{\ell}x^{\ell}\right)=m$$

(where $a_m \neq 0$) with value group \mathbb{Z} , valuation ring k[x] and residue field k.

For any totally ordered field (K, +, −, ·, 0, 1, <), any convex subring of K is a valuation ring of K. The finest convex valuation ring on K produces an archimedean residue field.

۱

Henselian Valuations

Definability 00000000000

Henselian Valuations

Definition

Let $(K, +, -, \cdot, 0, 1)$ be a field. A valuation v with valuation ring R on K is **henselian** if for any polynomial

$$p(x) = a_n x^n + \ldots + a_0 \in R[x]$$

and any simple zero $a \in \overline{K}$ of

$$\overline{p}(x) = \overline{a_n}x^n + \ldots + \overline{a_0} \in \overline{K}[x],$$

there exists a zero $b \in R$ of p(x) with $\overline{b} = a$.

Motto: Simple zeros can be lifted from the residue field.

Henselian Valuations 000000 Definability 00000000000 References 0

Henselian Valuation Rings

Examples

- Any trivial valuation is henselian, as the residue field coincides with the field.
- The valuation v_{\min} on k((x)) is henselian.
- If (K, +, −, ·, 0, 1, <) is a real closed ordered field, any valuation on K with convex valuation ring is henselian.

Definability

References

Ordered Abelian Groups

2 Henselian Valuations

othar Sebastian Krapp

Henselian Valuations

Definability 0000000000 References

Model Theoretic Setting

- first-order languages \mathcal{L} : $\mathcal{L}_{\mathrm{r}}=(+,-,\cdot,0,1)$, $\mathcal{L}_{\mathrm{or}}=(+,-,\cdot,0,1,<)$
- *L*-structures:

 $(\mathbb{Z},+,-,\cdot,0,1)$, $(\mathbb{R},+,-,\cdot,0,1,<)$

- \mathcal{L} -formulas and \mathcal{L} -sentences: $\forall x \exists y \ x + y = 0$
- \mathcal{L} -definability (*without* and *with* parameters): $\exists y \ x \cdot y = 1$ defines $\{1, -1\}$ in $(\mathbb{Z}, +, -, \cdot, 0, 1)$ and $\mathbb{R} \setminus \{0\}$ in $(\mathbb{R}, +, -, \cdot, 0, 1, <)$. $x \cdot x < \sqrt{3}$ defines $(-\sqrt[4]{3}, \sqrt[4]{3})$ in $(\mathbb{R}, +, -, \cdot, 0, 1, <)$.

Definability 0000000000

Main Questions

A valuation v is said to be \mathcal{L} -definable if its valuation ring R is \mathcal{L} -definable.

Let $(K, +, -, \cdot, 0, 1)$ be a field and let v be a henselian valuation on K.

What are necessary and sufficient conditions such that v is \mathcal{L}_r -definable?

Definability 00000000000

Main Questions

A valuation v is said to be \mathcal{L} -definable if its valuation ring R is \mathcal{L} -definable.

Let $(K, +, -, \cdot, 0, 1, <)$ be an ordered field and let v be a henselian valuation on K.

What are necessary and sufficient conditions such that v is \mathcal{L}_{or} -definable?

Note: In a real closed field $(K, +, -, \cdot, 0, 1, <)$, no non-trivial henselian and thus convex valuation is \mathcal{L}_{or} -definable. (Due to o-minimality.)

Henselian Valuations

Definability 00000000000 References

Motivation: Decidability

Theorem (Ax, 1965)

Let k be a field. Then v_{\min} is (parameter-free) \mathcal{L}_r definable in k((x)).

Since the residue field of v_{\min} is k, Ax concludes: If $(k, +, -, \cdot, 0, 1)$ is undecidable, then $(k(x)), +, -, \cdot, 0, 1)$ is undecidable.

Definability 00000000000

Motivation: Classification of NIP Fields

What are necessary and sufficient conditions on a field (an ordered field) to be NIP?

Examples of NIP structures:

- o-minimal structures
- weakly o-minimal structures
- C-minimal structures
- ...

Definability 00000000000

Motivation: Classification of NIP Fields

Shelah–Hasson Conjecture

Any infinite NIP field $(K, +, -, \cdot, 0, 1)$ is either algebraically closed, real closed or admits a non-trivial \mathcal{L}_r -definable henselian valuation.

Refinements of the property 'NIP':

dp-minimal \rightarrow dp-finite \rightarrow strongly NIP \rightarrow NIP

Currently the Shelah–Hasson Conjecture has been verified for the dp-finite case (Johnson, 2020).

Lothar Sebastian Krapp

Henselian Valuations

Definability 000000000000 References 0

```
Main Questions – Revised
```

Let $(K, +, -, \cdot, 0, 1)$ be a field and let v be a henselian valuation on K.

What are necessary and sufficient conditions on the residue field and the value group such that v is \mathcal{L}_r -definable?

We concentrate on the value group.

Henselian Valuations

Definability 000000000000 References 0

Main Questions – Revised

Let $(K, +, -, \cdot, 0, 1, <)$ be an ordered field and let v be a henselian valuation on K.

What are necessary and sufficient conditions on the residue field and the value group such that v is \mathcal{L}_{or} -definable?

We concentrate on the value group.

Henselian Valuations

Definability 00000000000 References

Discretely Ordered Case

Theorem (Hong, 2013/2014)

Let $(K, +, -, \cdot, 0, 1)$ be a field and let v be a henselian valuation on K. Suppose that its value group G is discretely ordered. Then v is \mathcal{L}_r -definable (using one parameter).

- One can generally not obtain definability without parameters, even if one allows the richer language \mathcal{L}_{or} (K., Kuhlmann, Link, 2021).
- However, if (G, +, −, 0, <) is already elementarily equivalent to (Z, +, −, 0, <), then v is already L_r-definable without parameters.

Henselian Valuations

Definability

References

Densely Ordered Case

Theorem (K., Kuhlmann, Link, 2021)

Let $(K, +, -, \cdot, 0, 1)$ be a field and let v be a henselian valuation on K. Suppose that its value group G is not closed in G^{div} . Then v is \mathcal{L}_r -definable (using one parameter).

- Again, one can generally not obtain definability without parameters, even if one allows the richer language \mathcal{L}_{or} . (K., Kuhlmann, Link, 2021)
- However, if G is non-divisible but dense in G^{div} , then one obtains \mathcal{L}_r -definability without parameters. (E.g. Hong, 2013/2014, previously shown by Koenigsmann.)

Definability 00000000000

References

- J. Ax, 'On the undecidability of power series fields', Proc. Amer. Math. Soc. 16 (1965) 846.
- A. FEHM and F. JAHNKE, 'Recent progress on definability of Henselian valuations', Ordered Algebraic Structures and Related Topics, Contemp. Math. 697 (eds F. Broglia, F. Delon, M. Dickmann, D. Gondard-Cozette and V. A. Powers; Amer. Math. Soc., Providence, RI, 2017), 135–143.
- J. HONG, 'Definable non-divisible Henselian valuations', Bull. Lond. Math. Soc. 46 (2014) 14–18.
- W. JOHNSON, 'Dp-finite fields VI: the dp-finite Shelah conjecture', Preprint, 2020, arXiv:2005.13989v1.
- L. S. KRAPP, S. KUHLMANN and G. LEHÉRICY, 'Ordered fields dense in their real closure and definable convex valuations', *Forum Math.* 33 (2021) 953–972.
- L. S. KRAPP, S. KUHLMANN and M. LINK, 'Definability of henselian valuations by conditions on the value group', to appear, 2021, arXiv:2105.09234v1.