Generalised power series determined by linear recurrence relations

Lothar Sebastian Krapp (joint work with Salma Kuhlmann and Michele Serra)

Universität Konstanz, Fachbereich Mathematik und Statistik

10 June 2022

2 Laurent series

3 Generalised linear recurrence sequences

5 Rayner fields

6 Canonical lifting property

Motivation			
00000			

- 2 Laurent series
- Generalised linear recurrence sequences
- 4 \mathcal{F} -sequences
- **5** Rayner fields
- 6 Canonical lifting property

lotivation ●●○○○○ Generalised linear recurrence seque

 \mathcal{F} -sequences

Rayner fields

Canonical lifting property

Reference

Notations

Throughout, we fix the following notations:

- G (additive) ordered abelian group
- *k* field
- \mathcal{F} family of well-ordered subsets of G

 Motivation
 Laurent series
 Generalised linear recurrence sequences
 F-sequences
 Rayner fields
 Canonical lifting property

 000000
 000000
 00000
 0000
 0000
 00000

Hahn fields

The maximal Hahn field k((G)) consists of all s: G → k with well-ordered support supp(s) = {g ∈ G | s(g) ≠ 0}. We express s ∈ k((G)) by

$$s = \sum_{g \in G} s_g t^g$$

and thus regard it as a (generalised) power series.

Hahn fields

 The minimal Hahn field k(G) is the subset of k((G)) containing all elements of the form

$$\frac{p(t^{g_1},\ldots,t^{g_n})}{q(t^{g_1},\ldots,t^{g_n})}$$

for some $n \in \mathbb{N}$, $p, q \in k[X_1, \ldots, X_n]$, $g_1, \ldots, g_n \in G$ with $q(t^{g_1}, \ldots, t^{g_n}) \neq 0$.

Note that k(G) is the smallest subfield of k((G)) containing all monomials αt^h , where $\alpha \in k$ and $h \in G$.

• A field K with $k(G) \subseteq K \subseteq k((G))$ is called a **Hahn field**.

Motivation 0000●0 Generalised linear recur

 \mathcal{F} -sequences

Rayner fields

Canonical lifting property

Reference

Recognising k(G) within k((G))

Question 1

Given a power series

$$s = \sum_{g \in G} s_g t^g \in k((G)),$$

under what conditions on the support supp(s) and the coefficients s_g of s is s already contained in k(G)?

An answer is known for the case $G = \mathbb{Z}$ (fields of Laurent series).

ivation Laurent series Generalised linear recurrence sequences \mathcal{F} -sequences Rayner fields Canonical lifting property Refer

Canonical lifting property

Given an automorphism $\rho: k \to k$ (as field) and an automorphism $\tau: G \to G$ (as ordered group), the **canonical lifting** of (ρ, τ) to k((G)) is given by

$$\sigma\colon \sum_{g\in G} s_g t^g \mapsto \sum_{g\in G} \rho(s_g) t^{\tau(g)}.$$

A Hahn field K has the **canonical lifting property** if it is closed under the canonical lifting of any pair of automorphisms.

Question 2

Find Hahn fields with and Hahn fields without the canonical lifting property.

Note that both k(G) and k((G)) have the canonical lifting property.

Motivation			
000000			

2 Laurent series

Generalised linear recurrence sequences

4 \mathcal{F} -sequences

5 Rayner fields

6 Canonical lifting property

 Motivation
 Laurent series
 Generalised linear recurrence sequences
 F-sequences
 Rayner fields
 Canonical lifting property
 References

 000000
 000000
 00000
 00000
 00000
 0
 0

Definition

The field of **Laurent series** with coefficient field k is given by

 $k((t)) := k((\mathbb{Z})).$

An element $s \in k((t))$ is of the form

$$s = \sum_{i=\ell}^{\infty} s_i t^i$$

for some $\ell \in \mathbb{Z}$.

Generalised linear recurrence seque

F-sequences

Rayner fields

Canonical lifting property

Reference

Rational functions

Fact (Kronecker, 1881)

Let

$$s = \sum_{i=\ell}^{\infty} s_i t^i \in k((t)).$$

Then the following are equivalent:

 $s \in k(t).$

② There exist $m \in \mathbb{N}$ and $c_1, ..., c_m \in k$ such that for any n > m the linear recurrence relation with constant coefficients

$$s_n = \sum_{j=1}^m c_j s_{n-j}$$

holds.

Generalised linear recurrence seque

F-sequences

Rayner fields

Canonical lifting property

Reference

Rational functions

Fact (revised)

Let

$$s = \sum_{i=\ell}^{\infty} s_i t^i \in k((t)).$$

Then the following are equivalent:

- $s \in k(t).$
- ② There exist $m \in \mathbb{N}$, $n_0, \ldots, n_m \in \mathbb{Z}$ with $n_0 < \ldots < n_m$ and $c_0, \ldots, c_m \in k$, not all equal to 0, such that for any $n \in \mathbb{Z} \setminus \{n_0, \ldots, n_m\}$ the linear recurrence relation with constant coefficients

$$\sum_{j=0}^{m} c_j s_{n-j} = 0$$

holds.

 Motivation
 Laurent series
 Generalised linear recurrence sequences
 F-sequences
 Rayner fields
 Canonical lifting property
 References

 000000
 000000
 000000
 0000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td

Let $s = \frac{1+t}{1-t} \in k((t))$. Then

$$s = (1 + t) \sum_{i=0}^{\infty} t^{i} = 1t^{0} + \sum_{i=1}^{\infty} 2t^{i}.$$

Now m = 1, $n_0 = 0$, $n_1 = 1$, $c_0 = 1$ and $c_1 = -1$ witness that $s \in k(t)$. Indeed, for any $n \in \mathbb{Z} \setminus \{0, 1\}$ the linear recurrence relation

$$s_n-s_{n-1}=0$$

holds.

lotivation 00000 Generalised linear recurrence so

 \mathcal{F} -sequences

Rayner fields

Canonical lifting property

Reference

Linear recurrence relations

Hence, within fields of Laurent series, elements of k(t) can be recognised within k((t)) by (non-trivial) **linear recurrence relations**.

We establish a notion of linear recurrence relations for generalised power series.

Motivation			
000000			

- 2 Laurent series
- 3 Generalised linear recurrence sequences
- 4 \mathcal{F} -sequences
- **5** Rayner fields
- 6 Canonical lifting property

Generalised linear recurrence se

 \mathcal{F} -sequences

Rayner fields

Canonical lifting property

Reference

Linear recurrence sequences

Definition

A (generalised) linear recurrence sequence in k((G)) is a partial function r from G to k whose domain dom(r) is well-ordered. It is **non-trivial** if there exists $g \in dom(r)$ with $r(g) \neq 0$.

• Any linear recurrence sequence r associates to a power series

$$r^* := \sum_{g \in \operatorname{dom}(r)} r(g) t^g.$$

• Any power series s associates to a linear recurrence sequence

$$s^*$$
: supp $(s) \to k, g \mapsto s(g)$.

Laurent series Generalised linear recurrence sequences . 000000 0000000

 \mathcal{F} -sequences

Rayner fields

Canonical lifting property

Reference

Determined sets

Let *r* be a linear recurrence sequence. Then the order-type α of its domain is an ordinal and we may enumerate *r* as $r = (g_i, r_i)_{i < \alpha}$, where dom $(r) = \{g_i \mid i < \alpha\}$ and $r_i = r(g_i)$.

Definition

Let $r = (g_i, r_i)_{i < \alpha}$ be a linear recurrence sequence. We define $\langle r \rangle$ to be the set of all $s \in k(G)$ such that for any $h \in G \setminus \text{dom}(r)$ the following (generalised) linear recurrence relation holds:

$$\sum_{i<\alpha}r(g_i)s_{h-g_i}=0.$$

For any set R of linear recurrence sequences, we set

$$\langle R \rangle = \bigcup_{r \in R} \langle r \rangle.$$

Laurent series Generalised linear recurrence sequence

 \mathcal{F} -sequences

Rayner fields

Canonical lifting property

Reference

Example

Part 1: Let $A = \{g_{\beta} \mid \beta < \alpha\}$ be a well-ordered subset of G of order-type α with $0 \in A$. Set dom $(r_A) = A$, $r_A(0) = 1$ and $r_A(g) = 0$ for any $g \in A \setminus \{0\}$. Moreover, let $\beta < \alpha$ with $g_{\beta} = 0$.

Set determined by r_A : We have $s \in \langle r_A \rangle$ if and only if for any $h \in G \setminus A$:

$$0=\sum_{i<\alpha}r_{\mathcal{A}}(g_i)s_{h-g_i}=r_{\mathcal{A}}(g_{\beta})s_{h-g_{\beta}}=s_h.$$

We obtain

$$\langle r_A \rangle = \{ s \in k((G)) \mid \operatorname{supp}(s) \subseteq A \}.$$

Part 2: Setting R_{fin} to be the set of all r_A where A is a finite subset of G containing 0, we obtain

$$\langle R_{\mathrm{fin}} \rangle = k[G] := \{ p(t^{g_1}, \ldots, t^{g_n}) \mid n \in \mathbb{N}, p \in k[X_1, \ldots, X_n], g_1, \ldots, g_n \in G \}.$$

Generalised linear recurrence sequenc

F-sequences

Rayner fields

Canonical lifting property

Reference

Main Lemma

Proposition

For any trivial linear recurrence sequence r, we have $\langle r \rangle = k((G))$.

Main Lemma

Let r be a non-trivial linear recurrence sequence. Then

$$\langle r \rangle = \left\{ rac{s}{r^*} \mid s \in k((G)), \operatorname{supp}(s) \subseteq \operatorname{dom}(r)
ight\}.$$

Hence, $\langle r \rangle$ is a *k*-vector space containing *k*.

However, $\langle R \rangle$ is not in general closed under addition.

Motivation Laurent series Generalised linear recurrence sequences F-sequences Rayner fields Canonical lifting property References occorrection occor

Consider

$$s = 1 + 1t + 2t^2 + 3t^3 + 5t^4 + 8t^5 + 13t^6 + \ldots \in k((\mathbb{Z}))$$

For any $n \in \mathbb{Z} \setminus \{0, 1, 2\}$, the linear recurrence relation

$$s_n-s_{n-1}-s_{n-2}=0$$

holds. By our Main Lemma, $s \in \Big\{ rac{a+bt+ct^2}{1-t-t^2} \ \Big| \ a,b,c \in k \Big\}$. Indeed,

$$s=rac{1}{1-t-t^2}\in k(\mathbb{Z}).$$

Consider

$$s = 1 + 1t^{\sqrt{2}} + 2t^{2\sqrt{2}} + 3t^{3\sqrt{2}} + 5t^{4\sqrt{2}} + 8t^{5\sqrt{2}} + 13t^{6\sqrt{2}} + \ldots \in k((\mathbb{R}))$$

For any $h \in \mathbb{R} \setminus \{0, \sqrt{2}, 2\sqrt{2}\}$, the linear recurrence relation

$$s_h - s_{h-\sqrt{2}} - s_{h-2\sqrt{2}} = 0$$
holds. By our Main Lemma, $s \in \left\{ \frac{a+bt^{\sqrt{2}}+ct^{2\sqrt{2}}}{1-t^{\sqrt{2}}-t^{2\sqrt{2}}} \middle| a, b, c \in k \right\}$. Indeed,

$$s=rac{1}{1-t^{\sqrt{2}}-t^{2\sqrt{2}}}\in k(\mathbb{R}).$$

Generalised linear recurrence sec

F-sequences

Rayner fields

Canonical lifting property

Reference

Determined fields

Proposition

Let R be a non-empty set of non-trivial linear recurrence sequences satisfying the following:

For any r ∈ R, any other non-trivial linear recurrence with domain dom(r) also lies in R.

Por any r₁, r₂ ∈ R, any non-trivial linear recurrence with domain dom(r₁) + dom(r₂) = {h₁ + h₂ | h₁ ∈ dom(r₁), h₂ ∈ dom(r₂)} also lies in R. Then ⟨R⟩ is a subfield of k((G)) containing k.

Idea: Let R consist of all non-trivial linear recurrence sequences whose domain lies in a given family \mathcal{F} of well-ordered subsets of G.

Motivation			
000000			

2 Laurent series

3 Generalised linear recurrence sequences

5 Rayner fields

6 Canonical lifting property

Generalised linear recurrence sequenc

F-sequences ⊃●○○

Rayner fields

Canonical lifting property

Reference

Recall that \mathcal{F} denotes a family of well-ordered subsets of G.

Definition

An \mathcal{F} -sequence is a non-trivial linear recurrence sequence whose domain lies in \mathcal{F} . We denote by $S(\mathcal{F})$ the set of all \mathcal{F} -sequences.

Corollary

Suppose that \mathcal{F} is non-empty and closed under sums, i.e. for any $A, B \in \mathcal{F}$ also $A + B \in \mathcal{F}$. Then $\langle S(\mathcal{F}) \rangle$ is a subfield of k((G)) containing k.

Generalised linear recurrence se

-sequences

Rayner fields

Canonical lifting property

Reference

Determined Hahn fields

Proposition

Let $\mathcal{F}_{\mathrm{fin}}$ be the family of all finite subsets of G. Then

 $\langle S(\mathcal{F}_{\mathrm{fin}}) \rangle = k(G).$

Thus, elements of k(G) (the field of fractions of k[G]) are determined by linear recurrence relations.

Corollary

Suppose that \mathcal{F} is closed under sums and contains \mathcal{F}_{fin} . Then $\langle S(\mathcal{F}) \rangle$ is a Hahn field.

Example: non-determined Hahn field

Not every Hahn field is determined by linear recurrence relations!

For instance, let K be the relative algebraic closure of $\mathbb{Q}(\mathbb{Z})$ inside $\mathbb{Q}((\mathbb{Z}))$. (Or take any other countable ordered abelian group instead of \mathbb{Z} .) Then K is countable.

However, any field determined by linear recurrence relations strictly containing $\mathbb{Q}(\mathbb{Z})$ must be uncountable.

Indeed, if R contains a linear recurrence sequence r with infinite domain, then

$$R \supseteq \langle r \rangle = \left\{ \frac{s}{r^*} \mid s \in k((G)), \operatorname{supp}(s) \subseteq \operatorname{dom}(r) \right\}.$$

Motivation			
000000			

2 Laurent series

3 Generalised linear recurrence sequences

4 \mathcal{F} -sequences

5 Rayner fields

6 Canonical lifting property

 Motivation
 Laurent series
 Generalised linear recurrence sequences
 \$\mathcal{F}\$-sequences
 Rayner fields
 Canonical lifting property
 References

 000000
 0000000
 0000
 0000
 00000
 0

k-hulls

Definition

We define the k-hull of \mathcal{F} as the set

$$k((\mathcal{F})) = \{s \in k((G)) \mid \operatorname{supp}(s) \in \mathcal{F}\}.$$

Definition

Suppose that \mathcal{F} satisfies the following:

- $\mathcal{F} \neq \emptyset$ and $\bigcup_{A \in \mathcal{F}} A$ generates G as a group.
- If $B \subseteq A \in \mathcal{F}$, then $B \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$.
- If $A \in \mathcal{F}$ and $g \in G$, then $A + \{g\} \in \mathcal{F}$.
- If $A \in \mathcal{F}$ with $A \subseteq G^{\geq 0}$, then $\{\sum_{i=1}^{n} a_i \mid n \in \mathbb{N} \cup \{0\}, a_1, \dots, a_n \in A\} \in \mathcal{F}$.

Then \mathcal{F} is called a **Rayner field family** and $k((\mathcal{F}))$ is called its **Rayner field**.

Generalised linear recurrenc

F-sequences

Rayner fields

anonical lifting property

Reference

Hahn and Rayner fields

Theorem (K., Kuhlmann, Serra; 2022)

Suppose that char(k) = 0. Then $k((\mathcal{F}))$ is a Hahn field if and only if it is a Rayner fields.

Are all Rayner fields determined by linear recurrence relations?

Generalised linear recurrence so

 \mathcal{F} -sequences

Rayner fields

Canonical lifting property

Reference

Determined Rayner fields

For a well-ordered subset A of G, we set

$$r_{\mathcal{A}} \colon \mathcal{A} \cup \{0\} o k, g \mapsto egin{cases} 1, & ext{if } g = 0, \ 0, & ext{if } g \in \mathcal{A} \setminus \{0\}. \end{cases}$$

Moreover, we set

$$R_{\mathcal{F}} = \{ r_A \mid A \in \mathcal{F} \}.$$

Proposition

Suppose that \mathcal{F} is closed under subsets and unions with $\{0\}$. Then $\langle R_{\mathcal{F}} \rangle = k((\mathcal{F}))$. In particular, if \mathcal{F} is a Rayner field family, then $\langle R_{\mathcal{F}} \rangle$ is its Rayner field.

Motivation			

2 Laurent series

Generalised linear recurrence sequences

4 \mathcal{F} -sequences

5 Rayner fields

6 Canonical lifting property

Find Hahn fields with and Hahn fields without the canonical lifting property (CLP).

Generalised linear recurrence

 \mathcal{F} -sequences

Rayner fields

Canonical lifting property

Reference

Rayner fields without the CLP

Proposition (Kuhlmann, Serra; 2022)

A Rayner field $k((\mathcal{F}))$ has the canonical lifting property if and only if \mathcal{F} is stable under automorphisms on G, i.e. for any automorphism τ on G and any $A \in \mathcal{F}$ also $\tau(A) \in \mathcal{F}$.

Constructing a Rayner field family $\mathcal F$ that is not stable under automorphisms on G:

Let $G = \coprod_{\mathbb{Z}} \mathbb{Q}$ and let $A = \{-1/p_i \cdot \mathbb{1}_1 \mid i \in \mathbb{N}\}$, where p_i denotes the *i*-th prime number. Let \mathcal{F} consist of all well-ordered subsets of subgroups of G of the form

$$\langle g_1,\ldots,g_n,A\rangle,$$

where $g_1, \ldots, g_n \in G$. Then \mathcal{F} is not stable under the automorphism on G induced by

$$\mathbb{1}_n \mapsto \mathbb{1}_{n-1}$$

for any $n \in \mathbb{Z}$.

Generalised linear recurrence sequenc

F-sequences

Rayner fields

Canonical lifting property

Reference

Hahn fields with the CLP determined by \mathcal{F} -sequences

Theorem

Suppose that \mathcal{F} satisfies the following:

- $\mathcal{F}_{fin} \subseteq \mathcal{F}$.
- \mathcal{F} is closed under sums.
- \mathcal{F} is closed under automorphisms on G.

Then $\langle S(\mathcal{F}) \rangle$ is a Hahn field with the canonical lifting property.

This gives a construction methods for Hahn field with the canonical lifting property via families of well-ordered subsets of \mathcal{F} .

Generalised linear recurrence sequences

 \mathcal{F} -sequences

Rayner fields

anonical lifting property

Referenc

Thank you for your attention!

References

- L. S. KRAPP, S. KUHLMANN and M. SERRA, 'On Rayner structures', Comm. Algebra 50 (2022) 940–948, doi:10.1080/00927872.2021.1976789.
- L. S. KRAPP, S. KUHLMANN and M. SERRA, 'Generalised power series determined by linear recurrence relations', Preprint, 2022, arXiv:2206.04126v1.
- L. KRONECKER, 'Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen', *Berl. Monatsber.* (1881), 535–600.
- S. KUHLMANN and M. SERRA, 'The automorphism group of a valued field of generalised power series', J. Algebra 605 (2022) 339–376, doi:10.1016/j.jalgebra.2022.04.023.