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Notations

Throughout, we fix the following notations:
• G – (additive) ordered abelian group
• k – field
• F – family of well-ordered subsets of G
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Hahn fields

• The maximal Hahn field k((G)) consists of all s : G → k with well-ordered
support supp(s) = {g ∈ G | s(g) 6= 0}. We express s ∈ k((G)) by

s =
∑
g∈G

sg tg

and thus regard it as a (generalised) power series.
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Hahn fields

• The minimal Hahn field k(G) is the subset of k((G)) containing all elements of
the form

p(tg1 , . . . , tgn)
q(tg1 , . . . , tgn)

for some n ∈ N, p, q ∈ k[X1, . . . ,Xn], g1, . . . , gn ∈ G with q(tg1 , . . . , tgn) 6= 0.

Note that k(G) is the smallest subfield of k((G)) containing all monomials αth,
where α ∈ k and h ∈ G .
• A field K with k(G) ⊆ K ⊆ k((G)) is called a Hahn field.
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Recognising k(G) within k((G))

Question 1
Given a power series

s =
∑
g∈G

sg tg ∈ k((G)),

under what conditions on the support supp(s) and the coefficients sg of s is s already
contained in k(G)?

An answer is known for the case G = Z (fields of Laurent series).
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Canonical lifting property

Given an automorphism ρ : k → k (as field) and an automorphism τ : G → G (as
ordered group), the canonical lifting of (ρ, τ) to k((G)) is given by

σ :
∑
g∈G

sg tg 7→
∑
g∈G

ρ(sg)tτ(g).

A Hahn field K has the canonical lifting property if it is closed under the canonical
lifting of any pair of automorphisms.

Question 2
Find Hahn fields with and Hahn fields without the canonical lifting property.

Note that both k(G) and k((G)) have the canonical lifting property.
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Definition

The field of Laurent series with coefficient field k is given by

k((t)) := k((Z)).

An element s ∈ k((t)) is of the form

s =
∞∑
i=`

si t i

for some ` ∈ Z.
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Rational functions
Fact (Kronecker, 1881)
Let

s =
∞∑
i=`

si t i ∈ k((t)).

Then the following are equivalent:
1 s ∈ k(t).
2 There exist m ∈ N and c1, . . . , cm ∈ k such that for any n > m the linear

recurrence relation with constant coefficients

sn =
m∑

j=1
cjsn−j

holds.
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Rational functions
Fact (revised)
Let

s =
∞∑
i=`

si t i ∈ k((t)).

Then the following are equivalent:
1 s ∈ k(t).
2 There exist m ∈ N, n0, . . . , nm ∈ Z with n0 < . . . < nm and c0, . . . , cm ∈ k, not all

equal to 0, such that for any n ∈ Z \ {n0, . . . , nm} the linear recurrence relation
with constant coefficients m∑

j=0
cjsn−j = 0

holds.
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Example

Let s = 1+t
1−t ∈ k((t)). Then

s = (1 + t)
∞∑

i=0
t i = 1t0 +

∞∑
i=1

2t i .

Now m = 1, n0 = 0, n1 = 1, c0 = 1 and c1 = −1 witness that s ∈ k(t). Indeed, for
any n ∈ Z \ {0, 1} the linear recurrence relation

sn − sn−1 = 0

holds.
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Linear recurrence relations

Hence, within fields of Laurent series, elements of k(t) can be recognised within k((t))
by (non-trivial) linear recurrence relations.

We establish a notion of linear recurrence relations for generalised power series.
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Linear recurrence sequences
Definition
A (generalised) linear recurrence sequence in k((G)) is a partial function r from G
to k whose domain dom(r) is well-ordered. It is non-trivial if there exists g ∈ dom(r)
with r(g) 6= 0.

• Any linear recurrence sequence r associates to a power series

r∗ :=
∑

g∈dom(r)
r(g)tg .

• Any power series s associates to a linear recurrence sequence

s∗ : supp(s)→ k, g 7→ s(g).
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Determined sets
Let r be a linear recurrence sequence. Then the order-type α of its domain is an
ordinal and we may enumerate r as r = (gi , ri)i<α, where dom(r) = {gi | i < α} and
ri = r(gi).

Definition
Let r = (gi , ri)i<α be a linear recurrence sequence. We define 〈r〉 to be the set of all
s ∈ k((G)) such that for any h ∈ G \ dom(r) the following (generalised) linear
recurrence relation holds: ∑

i<α
r(gi)sh−gi = 0.

For any set R of linear recurrence sequences, we set

〈R〉 =
⋃
r∈R
〈r〉.
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Example
Part 1: Let A = {gβ | β < α} be a well-ordered subset of G of order-type α with
0 ∈ A. Set dom(rA) = A, rA(0) = 1 and rA(g) = 0 for any g ∈ A \ {0}. Moreover, let
β < α with gβ = 0.

Set determined by rA: We have s ∈ 〈rA〉 if and only if for any h ∈ G \ A:
0 =

∑
i<α

rA(gi)sh−gi = rA(gβ)sh−gβ
= sh.

We obtain
〈rA〉 = {s ∈ k((G)) | supp(s) ⊆ A}.

Part 2: Setting Rfin to be the set of all rA where A is a finite subset of G containing 0,
we obtain

〈Rfin〉 = k[G ] := {p(tg1 , . . . , tgn) | n ∈ N, p ∈ k[X1, . . . ,Xn], g1, . . . , gn ∈ G}.
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Main Lemma

Proposition
For any trivial linear recurrence sequence r , we have 〈r〉 = k((G)).

Main Lemma
Let r be a non-trivial linear recurrence sequence. Then

〈r〉 =
{ s
r∗

∣∣∣∣ s ∈ k((G)), supp(s) ⊆ dom(r)
}
.

Hence, 〈r〉 is a k-vector space containing k.

However, 〈R〉 is not in general closed under addition.
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Example

Consider
s = 1 + 1t + 2t2 + 3t3 + 5t4 + 8t5 + 13t6 + . . . ∈ k((Z)).

For any n ∈ Z \ {0, 1, 2}, the linear recurrence relation

sn − sn−1 − sn−2 = 0

holds. By our Main Lemma, s ∈
{

a+bt+ct2
1−t−t2

∣∣∣ a, b, c ∈ k
}
. Indeed,

s = 1
1− t − t2 ∈ k(Z).
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Example

Consider

s = 1 + 1t
√
2 + 2t2

√
2 + 3t3

√
2 + 5t4

√
2 + 8t5

√
2 + 13t6

√
2 + . . . ∈ k((R)).

For any h ∈ R \ {0,
√
2, 2
√
2}, the linear recurrence relation

sh − sh−
√
2 − sh−2

√
2 = 0

holds. By our Main Lemma, s ∈
{

a+bt
√
2+ct2

√
2

1−t
√
2−t2

√
2

∣∣∣∣ a, b, c ∈ k
}
. Indeed,

s = 1
1− t

√
2 − t2

√
2
∈ k(R).
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Determined fields

Proposition
Let R be a non-empty set of non-trivial linear recurrence sequences satisfying the
following:

1 For any r ∈ R, any other non-trivial linear recurrence with domain dom(r) also
lies in R.

2 For any r1, r2 ∈ R, any non-trivial linear recurrence with domain
dom(r1) + dom(r2) = {h1 + h2 | h1 ∈ dom(r1), h2 ∈ dom(r2)} also lies in R.

Then 〈R〉 is a subfield of k((G)) containing k.

Idea: Let R consist of all non-trivial linear recurrence sequences whose domain lies in a
given family F of well-ordered subsets of G .
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Definition

Recall that F denotes a family of well-ordered subsets of G .

Definition
An F-sequence is a non-trivial linear recurrence sequence whose domain lies in F . We
denote by S(F) the set of all F-sequences.

Corollary
Suppose that F is non-empty and closed under sums, i.e. for any A,B ∈ F also
A + B ∈ F . Then 〈S(F)〉 is a subfield of k((G)) containing k.

Lothar Sebastian Krapp Generalised power series determined by linear recurrence relations



Motivation Laurent series Generalised linear recurrence sequences F-sequences Rayner fields Canonical lifting property References

Determined Hahn fields

Proposition
Let Ffin be the family of all finite subsets of G . Then

〈S(Ffin)〉 = k(G).

Thus, elements of k(G) (the field of fractions of k[G ]) are determined by linear
recurrence relations.
Corollary
Suppose that F is closed under sums and contains Ffin. Then 〈S(F)〉 is a Hahn field.
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Example: non-determined Hahn field

Not every Hahn field is determined by linear recurrence relations!

For instance, let K be the relative algebraic closure of Q(Z) inside Q((Z)). (Or take
any other countable ordered abelian group instead of Z.) Then K is countable.

However, any field determined by linear recurrence relations strictly containing Q(Z)
must be uncountable.

Indeed, if R contains a linear recurrence sequence r with infinite domain, then

R ⊇ 〈r〉 =
{ s
r∗

∣∣∣∣ s ∈ k((G)), supp(s) ⊆ dom(r)
}
.
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k-hulls
Definition
We define the k-hull of F as the set

k((F)) = {s ∈ k((G)) | supp(s) ∈ F}.

Definition
Suppose that F satisfies the following:
• F 6= ∅ and

⋃
A∈F A generates G as a group.

• If B ⊆ A ∈ F , then B ∈ F .
• If A,B ∈ F , then A ∪ B ∈ F .
• If A ∈ F and g ∈ G , then A + {g} ∈ F .
• If A ∈ F with A ⊆ G≥0, then {

∑n
i=1 ai | n ∈ N ∪ {0}, a1, . . . , an ∈ A} ∈ F .

Then F is called a Rayner field family and k((F)) is called its Rayner field.
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Hahn and Rayner fields

Theorem (K., Kuhlmann, Serra; 2022)
Suppose that char(k) = 0. Then k((F)) is a Hahn field if and only if it is a Rayner
fields.

Are all Rayner fields determined by linear recurrence relations?
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Determined Rayner fields

For a well-ordered subset A of G , we set

rA : A ∪ {0} → k, g 7→
{
1, if g = 0,
0, if g ∈ A \ {0}.

Moreover, we set
RF = {rA | A ∈ F}.

Proposition
Suppose that F is closed under subsets and unions with {0}. Then 〈RF 〉 = k((F)). In
particular, if F is a Rayner field family, then 〈RF 〉 is its Rayner field.
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Task

Find Hahn fields with and Hahn fields without the canonical lifting property (CLP).
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Rayner fields without the CLP
Proposition (Kuhlmann, Serra; 2022)
A Rayner field k((F)) has the canonical lifting property if and only if F is stable under
automorphisms on G , i.e. for any automorphism τ on G and any A ∈ F also τ(A) ∈ F .

Constructing a Rayner field family F that is not stable under automorphisms on G:
Let G =

∐
ZQ and let A = {−1/pi · 11 | i ∈ N}, where pi denotes the i-th prime

number. Let F consist of all well-ordered subsets of subgroups of G of the form

〈g1, . . . , gn,A〉,

where g1, . . . , gn ∈ G . Then F is not stable under the automorphism on G induced by

1n 7→ 1n−1

for any n ∈ Z.
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Hahn fields with the CLP determined by F -sequences

Theorem
Suppose that F satisfies the following:
• Ffin ⊆ F .
• F is closed under sums.
• F is closed under automorphisms on G .

Then 〈S(F)〉 is a Hahn field with the canonical lifting property.

This gives a construction methods for Hahn field with the canonical lifting property via
families of well-ordered subsets of F .
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Thank you for your attention!
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