Lothar Sebastian Krapp

Universität Konstanz, Fachbereich Mathematik und Statistik

27 September 2022

Colloquium Logicum 2022, PhD Colloquium

- Motivating Conjectures
- Overview of Main Results

Models of Peano Arithmetic

- first-order languages $\mathcal{L}_{or} = \{+, -, \cdot, 0, 1, <\}$ and $\mathcal{L}_{exp} = \{+, -, \cdot, 0, 1, <, exp\}$
- structures in the languages e.g. ordered fields $(K, +, -, \cdot, 0, 1, <)$ or the real exponential field $\mathbb{R}_{\text{exp}} = (\mathbb{R}, +, -, \cdot, 0, 1, <, \exp)$
- formulas and sentences e.g. the \mathcal{L}_{or} -formula $\exists x \ x^2 + yx + 1 = 0$ or the \mathcal{L}_{exp} -sentence $\forall x \exists y \ \exp(\exp(x)) < \exp(x + y)$
- (complete) first-order theories e.g. the \mathcal{L}_{or} -theory of real closed fields $\operatorname{Th}(\mathbb{R},+,-,\cdot,0,1,<)$ consisting of all \mathcal{L}_{or} -sentences true over \mathbb{R}
- definable sets e.g. the \mathcal{L}_{exp} -formula $\exists y \ \exp(y) = x + \pi$ defines the set $(-\pi, \infty)$ in \mathbb{R}_{exp}

Theorem (Tarski, 1948)

For any \mathcal{L}_{or} -formula φ there exists a quantifier-free \mathcal{L}_{or} -formula ψ such that φ and ψ are equivalent over \mathbb{R} .

Example: The \mathcal{L}_{or} -formula $\exists x \ x^2 + yx + 1 = 0$ is equivalent over \mathbb{R} to $y^2 - 4 > 0$.

Tarski proved this theorem by presenting an explicit quantifier elimination algorithm.

Consequences of Tarski's Quantifier Elimination

- The $\mathcal{L}_{\mathrm{or}}$ -theory of $\mathbb R$ is decidable, i.e. there exists an algorithm which decides whether a given \mathcal{L}_{or} -sentence is true or false in \mathbb{R} .
- Every \mathcal{L}_{or} -definable subset of \mathbb{R}^n is a semi-algebraic set.
- In particular, any \mathcal{L}_{or} -definable subset of \mathbb{R} is a finite union of points and open intervals.
- Tarski's Transfer Principle: Any \mathcal{L}_{or} -sentence which is true in $\mathbb R$ is also true in any real closed field.

- The $\mathcal{L}_{\mathrm{or}}$ -theory of $\mathbb R$ is decidable, i.e. there exists an algorithm which decides whether a given \mathcal{L}_{or} -sentence is true or false in \mathbb{R} .
- Every \mathcal{L}_{or} -definable subset of \mathbb{R}^n is a semi-algebraic set.
- In particular, any \mathcal{L}_{or} -definable subset of $\mathbb R$ is a finite union of points and open intervals.
- Tarski's Transfer Principle: Any \mathcal{L}_{or} -sentence which is true in $\mathbb R$ is also true in any real closed field.

Tarski's Exponential Function Problem: Is \mathbb{R}_{exp} also decidable?

Schanuel's Conjecture

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then

$$\mathsf{td}_{\mathbb{Q}}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n,\mathrm{e}^{\alpha_1},\ldots,\mathrm{e}^{\alpha_n})) \geq n.$$

 \rightarrow Schanuel's Conjecture would, for instance, imply the algebraic independence of e and π .

Real Schanuel's Conjecture (SC)

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ be linearly independent over \mathbb{O} . Then

$$\mathsf{td}_{\mathbb{Q}}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n,\mathrm{e}^{\alpha_1},\ldots,\mathrm{e}^{\alpha_n})) \geq n.$$

Decidability Conjecture

The real exponential field \mathbb{R}_{exp} is decidable.

Theorem (Macintyre and Wilkie, 1996)

Assume (SC). Then \mathbb{R}_{exp} is decidable.

Schanuel's Conjecture Decidability Conjecture

Definition

Let K be an ordered field. A unary function exp which is an order-preserving isomorphism from (K, +, 0, <) to $(K^{>0}, \cdot, 1, <)$ is called an **exponential** on K. The \mathcal{L}_{exp} -structure (K, exp) is called an **ordered exponential field**.

Definition

A linearly ordered structure $(M, <, \ldots)$ is called **o-minimal** if every definable subset of M is a finite union of points and open intervals in M.

Theorem (Wilkie, 1996)

The real exponential field \mathbb{R}_{exp} is o-minimal.

Example: The \mathcal{L}_{exp} -formula $\exists y \ x^2 > \exp(y) + \pi$ defines the set $(-\infty, -\sqrt{\pi}) \cup (\sqrt{\pi}, \infty)$ over $\mathbb{R}_{\text{exp.}}$

Transfer Conjecture

- Elementary equivalence: Two \mathcal{L} -structures \mathcal{M} and \mathcal{N} are elementarily equivalent if they satisfy exactly the same \mathcal{L} -sentences. We write $\mathcal{M} \equiv \mathcal{N}$.
- EXP: \mathcal{L}_{exp} -sentence stating that the differential equation exp' = exp with initial condition exp(0) = 1 holds.

Transfer Conjecture (TC)

Let (K, \exp) be an o-minimal EXP-field. Then $(K, \exp) \equiv \mathbb{R}_{\exp}$.

Theorem (Berarducci and Servi, 2004)

Assume (TC). Then \mathbb{R}_{exp} is decidable.

- What are the connections between Schanuel's Conjecture and the Transfer Conjecture?
- What properties of \mathbb{R}_{exp} can be generalised to any o-minimal EXP-field?
- What are construction methods for o-minimal EXP-fields?

Overview of Main Results

Connections between Schanuel's Conjecture and Transfer Conjecture

- Assuming (SC), any o-minimal EXP-field satisfies the existential theory $\mathsf{Th}_{\exists}(\mathbb{R}_{\mathsf{exp}}) \text{ of } \mathbb{R}_{\mathsf{exp}}.$
- Assuming (TC), if some o-minimal EXP-field satisfies Schanuel's Conjecture, then all o-minimal EXP-fields do so.

Properties of \mathbb{R}_{exp} Generalised to O-minimal EXP-fields

- Several analytic properties of the exponential function, such as Taylor approximation or exponential growth, hold in any o-minimal EXP-field.
- For any o-minimal EXP-field (K, \exp) , we have $(\overline{K}, \overline{\exp}) \leq \mathbb{R}_{\exp}$. Here, \overline{K} is the residue field of K under the natural valuation and $\overline{\exp}$ is the exponential induced on the residue field.

Constructions of O-minimal EXP-fields

- Starting with certain countable archimedean fields F and countable divisible **ordered abelian groups** G (both with additional structure), we construct countable models of real exponentiation (K, exp) with **residue field** F and **value group** G under the natural valuation.
- Starting with an arbitrary o-minimal EXP-field (K, \exp) , we construct an exponential exp on the real closed field of surreal numbers No with $(K, \exp) \prec (\mathbf{No}, \exp).$
- Starting with certain models M of Peano Arithmetic, we construct o-minimal EXP-fields with **integer part** $M \cup (-M)$.

Constructions of O-minimal EXP-fields

- Starting with certain countable archimedean fields F and countable divisible **ordered abelian groups** G (both with additional structure), we construct countable models of real exponentiation (K, exp) with residue field F and value **group** G under the natural valuation.
- Starting with an arbitrary o-minimal EXP-field (K, \exp) , we construct an exponential exp on the real closed field of surreal numbers No with $(K, \exp) \prec (No, \exp).$
- Starting with certain models M of **Peano Arithmetic**, we construct o-minimal EXP-fields with **integer part** $M \cup (-M)$.

Models of Peano Arithmetic

- first-order language $\mathcal{L}_{PA} = \{+, \cdot, 0, 1, <\}$
- PA⁻: axiomatisation of discretely ordered commutative semirings with modified subtraction, 0 as least element and 1 as its direct successor
- **Peano Arithmetic** PA: extension of PA⁻ by induction scheme for every \mathcal{L}_{PA} -formula
- Open Induction IOpen: extension of PA⁻ by induction scheme for every quantifier-free $\mathcal{L}_{P\Delta}$ -formulas
- True Arithmetic: complete first-ordered \mathcal{L}_{PA} -theory of $\mathbb N$

 $PA^- \subseteq IOpen \subseteq further fragments of arithmetic \subseteq PA \subseteq Th(\mathbb{N}, +, \cdot, 0, 1, <)$

Integer Parts

Integer part: a discretely ordered subring Z of ordered field K such that for any $a \in K$ there exists a unique $k \in Z$ with k < a < k + 1

e.g. \mathbb{Z} is an integer part of \mathbb{O} and of \mathbb{R}

Theorem (Shepherdson, 1964)

Let M be a model of PA⁻. Then the following are equivalent:

- **1** $M \cup (-M)$ is an integer part of a real closed field.
- **2** *M* is a model of IOpen.

General Questions

- Let K be an ordered field and let Z be an integer part of K. What algebraic and model theoretic information of K is already "encoded" in Z?
- 2 Let Z be a discretely ordered ring such that $Z^{\geq 0}$ models a fragment of arithmetic. Is there an ordered field K having Z as an integer part and exhibiting good algebraic and model theoretic properties?

- Let K be an ordered field and let Z be an integer part of K. What algebraic and model theoretic information of K is already "encoded" in Z?
- 2 Let Z be a discretely ordered ring such that $Z^{\geq 0}$ models a fragment of arithmetic. Is there an ordered field K having Z as an integer part and exhibiting good algebraic and model theoretic properties?

Let M be a model of PA.

- *M*-integers: $\mathbb{Z}_M = M \cup (-M)$.
- *M*-rationals: \mathbb{Q}_M is the field of fractions of \mathbb{Z}_M .
- M-reals: K_M consists of equivalence classes of rational M-Cauchy sequences $a: M \to \mathbb{Q}_M, n \mapsto a_n$ definable over \mathbb{Q}_M .

By this construction, \mathbb{Z}_M is an integer part of K_M with $\mathbb{Z}_M^{\geq 0} = M$ and \mathbb{Q}_M is dense in K_{M} .

Theorem (Models of PA)

Let M be a model of Peano Arithmetic. Then K_M can be endowed with an exponential E such that (K_M, E) is a real closed EXP-field. Moreover, if (K_M, E) is model complete, then it is o-minimal.

Theorem (Models of $Th(\mathbb{N}, +, \cdot, 0, 1, <)$)

Let M be a model of True Arithmetic. Then $(K_M, E) \equiv \mathbb{R}_{exp.}$

Theorem (IPA-RCFs)

Let K be a countable non-archimedean real closed field with an integer part Z such that $Z^{\geq 0}$ is a model of Peano Arithmetic. Then K admits an exponential.

References

- [1] A. BERARDUCCI and T. SERVI, 'An effective version of Wilkie's theorem of the complement and some effective o-minimality results', Ann. Pure Appl. Logic 125 (2004) 43-74.
- [2] S. KUHLMANN, Ordered Exponential Fields, Fields Inst. Monogr. 12 (Amer. Math. Soc., Providence, RI. 2000).
- [3] A. MACINTYRE and A. J. WILKIE, 'On the decidability of the real exponential field'. Kreiseliana: about and around Georg Kreisel (ed. P. Odifreddi; A. K. Peters, Wellesley, MA, 1996) 441-467.
- [4] J. C. Shepherdson, 'A Non-standard Model for a Free Variable Fragment of Number Theory', Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964) 79-86.
- [5] A. Tarski, A decision method for elementary algebra and geometry (RAND Corporation. Santa Monica, CA, 1948).
- [6] A. J. WILKIE. 'Model completeness results for expansions of the ordered Field of real numbers by restricted Pfaffian functions and the exponential function', J. Amer. Math. Soc. 9 (1996) 1051–1094.

Publications

- [1] L. S. Krapp, 'Algebraic and Model Theoretic Properties of O-minimal Exponential Fields', doctoral thesis. Universität Konstanz. 2019.
- [2] L. S. Krapp, 'Value groups and residue fields of models of real exponentiation', J. Log. Anal. 11:1 (2019) 1-23.
- [3] L. S. Krapp and M. Carl, 'Models of true arithmetic are integer parts of models of real exponentation', J. Log. Anal. 13:3 (2021) 1-21.
- [4] L. S. KRAPP, S. KUHLMANN and G. LEHÉRICY, 'Ordered fields dense in their real closure and definable convex valuations', Forum Math. 33 (2021) 953-972.
- [5] L. S. Krapp, S. Kuhlmann and G. Lehéricy, 'Strongly NIP almost real closed fields', MLQ Math. Log. Q. 67 (2021) 321-328.
- L. S. Krapp, 'Prime models of o-minimal exponential fields', in preparation. [6]