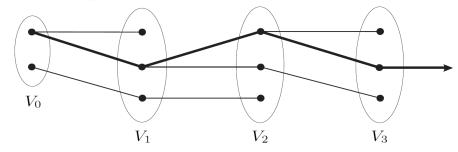
Unendlichkeitslemma

Definition 1. Sei G ein Graph und $P \subset G$ von der Form $V(P) = \{x_0, x_1, x_2, ...\}$ $E(G) = \{x_0x_1, x_1x_2, ...\}$, so nennen wir P Strahl in G. Wir schreiben dann auch $x_0x_1x_2...$ anstelle von P.

Lemma 2. Sei $V_0, V_1, V_2, ...$ eine unendliche Folge paarweise disjunkter, nichtleerer, endlicher Mengen und G ein Graph auf ihrer Vereinigung mit $\forall n \in \mathbb{N} : \forall v \in V_n : v$ hat einen Nachbar in V_{n-1} .



(Fig. 8.1.2 aus [2] verwendet)

Dann existiert ein Strahl $v_0v_1v_2$ in G mit $v_i \in V_i$ für alle $i \in \mathbb{N}_0$.

Beweis. Setze \mathcal{P} als die Menge aller Wege der Form $w_n w_{n-1} ... w_1 w_0$ mit $n \in \mathbb{N}$ und $w_i \in V_i$ für alle $i \in \{1, ..., n\}$. Offenbar ist \mathcal{P} unendlich.

Wir definieren unseren Strahl induktiv.

<u>Startpunkt:</u> Da V_0 endlich ist und \mathcal{P} unendlich ist, muss es eine Ecke $v_0 \in V_0$ geben, sodass es unendlich viele Wege aus \mathcal{P} gibt mit v_0 als Endecke. Wähle ein solches v_0 und setze \mathcal{P}_0 als die Menge aller nichttrivialen Wege aus \mathcal{P} mit Endecke v_0 .

<u>Laufvorschrift:</u> Sei nun $n \in \mathbb{N}$ und seien $v_0, v_1, ..., v_{n-1}$ mit $v_i \in V_i$ für alle $i \in \{1, ..., n-1\}$ und $\mathcal{P}_{n-1} \subset \mathcal{P}$ bereits gegeben derart, dass \mathcal{P}_{n-1} die Menge aller Wege aus \mathcal{P} ist, die $v_0v_1...v_{n-1}$ als echten Teilweg enthalten und \mathcal{P}_{n-1} unendlich ist.

Da jeder Weg aus \mathcal{P}_{n-1} genau eine Ecke aus V_n enthält, \mathcal{P}_{n-1} unendlich ist und V_n endlich ist, existiert eine Ecke $v_n \in V_n$, sodass v_n in unendlich vielen Wegen aus \mathcal{P}_{n-1} enthalten ist.

Wähle ein solches $v_n \in V_n$ und setze \mathcal{P}_n als die Menge aller Wege aus \mathcal{P}_{n-1} , die $v_0v_1...v_n$ als echten Teilweg enthalten.

Man sieht, dass \mathcal{P}_n und $v_0, v_1, ..., v_n$ gerade wieder die Voraussetzungen für unsere Laufvorschrift erfüllen.

Über unseren Startpunkt und induktives Anwenden der Laufvorschrift erhalten wir $v_0, v_1, v_2, ...$, sodass $v_0v_1v_2...$ ein Strahl in G ist mit $v_i \in V_i$ für alle $i \in \mathbb{N}_0$.

Satz 3. Sei G ein abzählbar unendlicher Graph und $k \in \mathbb{N}$. Sind alle endlichen Teilgraphen von G k-färbbar, so ist G k-färbbar.

Beweis. Wähle $v_o, v_1, ... \in V(G)$ mit $V(G) = \{v_0, v_1, ...\}$ (G abzählbar).

Setze $G_n := G[v_0, v_1, ..., v_n]$ für alle $n \in \mathbb{N}_0$.

Setze V_n als die Menge aller k-Färbungen von G_n für alle $n \in \mathbb{N}_0$.

Definiere den Graphen H durch

 $V(H):=\bigcup_{i=0}^{\infty}V_i$ und setze E(H) als die Menge aller Kanten cc' mit $c\in V_n,c'\in V_{n-1}$ für ein $n\in\mathbb{N}$ und $c|_{\{v_0,\dots,v_{n-1}\}}=c'$.

Nach Voraussetzung sind $V_0, V_1, ...$ nicht leer. $V_0, V_1, ...$ sind paarweise disjunkt, da sich der Definitionsbereich der Funktionen aus V(H) sich von Menge zu Menge ändert. Für alle $n \in \mathbb{N}$ ist V_n endlich denn $V_n \subset \{1, ..., k\}^{\{v_0, ..., v_n\}}$ und damit

$$\#V_n \le \#\{1, ..., k\}^{\{v_0, ..., v_n\}} = k^n.$$

Sei $n \in \mathbb{N}$ und $c \in V_n$. Dann ist $c|_{\{v_0,\dots,v_{n-1}\}}$ offenbar eine k-Färbung von G_{n-1} und somit in V_{n-1} enthalten und nach Definition von E(H) benachbart zu c.

Wir können nun das Unendlichkeitslemma auf den Graphen H anwenden und erhalten die Existenz eines Strahls $c_0c_1c_2...$ mit $c_i \in V_i$ für alle $i \in \mathbb{N}_0$.

Setze
$$c_G: V(G) \to \{1, ...k\}, v_n \mapsto c_n(v_n) \qquad (n \in \mathbb{N}_0)$$

Dann ist c_G eine k-Färbung von G, denn:

Seien $v_i, v_j \in V(G)$ mit $i, j \in \mathbb{N}_0, i \neq j$ und v_i, v_j benachbart. Œ i < j, dann gilt $c_G(v_i) = c_i(v_i) = c_j(v_i) \neq c_j(v_j) = c_G(v_j)$, da c_j k-Färbung von G_j ist, $v_i, v_j \in G_j$ und v_i, v_j benachbart.

Proposition 4. Sei G ein unendlicher, zusammenhängender Graph. Dann enthält G einen Strahl oder eine Ecke mit unendlichem Grad.

Beweis. Wähle einen beliebigen Knoten $v_0 \in V(G)$ und setze $V_0 := \{v_0\}$. Definiere nun induktiv $V_n := \{v \in V(G) \setminus \bigcup_{i=0}^{n-1} V_i\} \mid v$ hat einen Nachbarn in $V_{n-1}\}$ für alle $n \in \mathbb{N}$.

Fall $1: \exists i \in \mathbb{N}: V_i$ ist unendlich

 \times V_{i-1} endlich (ansonsten betrache V_{i-1} usw.). Es gilt nun also, dass die endlich vielen Knoten aus V_{i-1} unendlich viele Nachbarn haben (nach Definition von V_i). Daraus folgt, dass ein Knoten in V_{n-1} existieren muss mit unendlichem Grad.

Fall $2: \forall i \in \mathbb{N}: V_i$ ist endlich

Fall $2.1: \exists k \in \mathbb{N}: V_k = \emptyset$

Man sieht, dass nun für alle $j \in \mathbb{N}, j \geq k$ gelten muss: $V_j = \emptyset$.

Da nun gilt $\bigcup_{i=0}^{\infty} V_i$ ist endlich und V(G) ist unendlich, existiert ein $v \in V(G) \setminus \bigcup_{i=0}^{\infty} V_i$. Da G zusammenhängend ist, existiert ein Weg zwischen v_0 und v in G. Man sieht, dass

Da G zusammennangend ist, existiert ein Weg zwischen v_0 und v in G. Man sieht, dass alle Knoten des Weges in $\bigcup_{i=0}^{\infty} V_i$ enthalten sein müssen, da sie mit v_0 über einen Weg ver-

bunden sind. Also gilt insbesondere $v \in \bigcup_{i=0}^{\infty} V_i$. Widerspruch! Dieser Fall kann also nie eintreten.

Fall $2.2: \forall k \in \mathbb{N}: V_k \neq \emptyset$

Man sieht, dass $V_0, V_1, ...$ paarweise disjunkt sind. Man sieht auch, dass für alle $n \in \mathbb{N}$ und für alle $v \in V_n$ ein Nachbar von v in V_{n-1} existiert. Fall 2.1 zeigt auch, dass $V(G) = \bigcup_{i=0}^{\infty} V_i$ gelten muss.

Somit sind alle Voraussetzungen erfüllt, um auf G das Unendlichkeitslemma anwenden zu können und erhalten die Existenz eines Strahls in G.

In allen möglichen Fällen gilt also unsere Behauptung.

Literatur

- [1] **Diestel:** Graphentheorie, 5.Auflage, Springer.
- [2] Schlacht-Skript: https://www.math.uni-hamburg.de/home/schacht/lehre/SS13/GT/Ch8prelims.pdf