Real Algebraic Geometry I - Exercise Sheet 10

Exercise 1 (4P). Adapt the proof of Cassels' Theorem 2.1.2 to show that an integer that is a sum of 3 squares of rational numbers is also a sum of 3 squares of integers.

Exercise 2 (4P). Let K be a field with char $K \neq 2, f \in K[\underline{X}] \cap \sum K(\underline{X})^{2}$. Show that $f(a) \in \sum K^{2}$ for all $a \in K^{n}$.

Exercise 3 (4P). Which polytopes arise as the Newton polytope of a real polynomial of degree 8 in two variables that is a sum of fourth powers of polynomials?

Exercise 4 (3P). Let $f=X^{2} Y^{2}+X^{2} Z^{2}+Y^{2} Z^{2}-4 X Y W Z+W^{4} \in \mathbb{R}[W, X, Y, Z]$. Show that f is nonnegative on \mathbb{R}^{4} while it is not a sum of squares in $\mathbb{R}[W, X, Y, Z]$.

Exercise 5 (3P). Let K be a Euclidean field. Write

$$
f:=2 X_{1}^{4}-12 X_{1}^{3} X_{2}+30 X_{1}^{2} X_{2}^{2}-36 X_{1} X_{2}^{3}+17 X_{2}^{4} \in K\left[X_{1}, X_{2}\right]
$$

as a sum of squares of polynomials.

Please submit until Thursday, January 19, 2017, 11:44 in the box named RAG I, Number 10, near to the room F411.

