Real Algebraic Geometry I - Exercise Sheet 5

Exercise $1(6 \mathrm{P})$. Let (K, \leq) be an ordered field.
(a) Show $\sigma(f) \geq \sigma((1+X) f)$ for all $f \in K[X]$.
(b) Suppose now that K is real closed. Find the number of positive and the number of negative roots in K of the polynomial $f:=X^{5}-X^{4}+3 X^{3}+9 X^{2}-X+5 \in$ $K[X]$.

Exercise $2(3 \mathrm{P})$. Let (K, \leq) be an ordered field and let $f \in K[X]$. For $f(X+a)$ and $f(X-a)$, the evaluations of f in $X+a$ and $X-a$, respectively, determine $\sigma(f(X+a))$ and $\sigma(f(X-a))$ if $a \in K$ is large.

Exercise 3 (4P). Suppose $0 \neq f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ and $r>0$. Show

$$
\exists x \in \mathbb{R}^{n}: \forall y \in \mathbb{R}^{n}:(f(y)=0 \Longrightarrow\|x-y\| \geq r)
$$

Exercise 4 (4P). Consider the following variant of Descartes' Rule of signs. Let $k \in \mathbb{N}$, $c_{1}, \ldots, c_{k} \in \mathbb{R}^{\times}$and $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R} \backslash\{0\}$ with $\alpha_{1}<\ldots<\alpha_{k}$ and consider the function

$$
f: \mathbb{R}_{>0} \rightarrow \mathbb{R}, x \mapsto c_{1} x^{\alpha_{1}}+\ldots+c_{k} x^{\alpha_{k}}
$$

For $a \in \mathbb{R}_{>0}$, define

$$
\mu(a, f):=\sup \left\{m \in \mathbb{N}_{0} \mid f^{(0)}(a)=\ldots=f^{(m-1)}(a)=0\right\} \in \mathbb{N}_{0} \cup\{\infty\}
$$

Define furthermore

$$
\mu(f):=\sum_{a \in \mathbb{R}_{>0}} \mu(a, f) \in \mathbb{N}_{0} \cup\{\infty\}
$$

where the sum should be understood as infinity if one of the terms is infinite or if it has infinitely many non-zero terms, and

$$
\sigma(f)=\#\left\{i \in\{1, \ldots, k-1\} \mid \operatorname{sgn}\left(c_{i}\right) \neq \operatorname{sgn}\left(c_{i+1}\right)\right\} \in\{0, \ldots, k-1\}
$$

Show $\mu(f) \leq \sigma(f)<k<\infty$.
Hint. Induction on k. If $\mu(f) \geq 1$, find i with $\operatorname{sgn}\left(c_{i}\right) \neq \operatorname{sgn}\left(c_{i+1}\right)$, divide by $x \mapsto x^{\alpha_{i}}$ in order to assume $\alpha_{i}=0$ and show then $\sigma\left(f^{\prime}\right)=\sigma(f)-1$ by a case distinction and $\mu\left(f^{\prime}\right) \geq \mu(f)-1$.

Please submit until Thursday, December 1, 2016, 11:44 in the box named RAG I, Number 10, near to the room F411.

