Real Algebraic Geometry I – Exercise Sheet 9

Exercise 1 (4P). Give an algorithm deciding if a polynomial $f \in \mathbb{Q}[X, Y]$ has only finitely many roots in \mathbb{R}^2 .

Exercise 2 (4P). Let *R* be a real closed field and $n \in \mathbb{N}_0$. Show that a semialgebraic set $A \subseteq \mathbb{R}^n$ has nonempty interior \mathring{A} if and only if *A* is Zariski-dense in \mathbb{R}^n (i.e., if no polynomial $f \in \mathbb{R}[X_1, ..., X_n] \setminus \{0\}$ vanishes on *A*).

Exercise 3 (8P). Show that the following sets are not *K*-semialgebraic:

- (a) the garden fence $\{(x, y) \in \mathbb{R}^2 \mid y \ge 0, y \le |\lfloor x \rfloor x + \frac{1}{2}| + 10\}$ where $K := \mathbb{R}$,
- (b) $\{(x, 2^x) \mid x \in \mathbb{R}\}$ where $K := \mathbb{Q}$,
- (c) the set of all *infinitesimal* elements in an arbitrary fixed non-archimedean real closed field R where K := R, and
- (d) the set $\{(x, y, z) \in \mathbb{R}^3_{>0} \mid \forall n \in \mathbb{N} : x \ge yn \ge zn^2\}$ for an arbitrary fixed non-archimedean real closed field \mathbb{R} where $K := \mathbb{R}$.

Bonus exercise (4BP). Let *R* be a real closed field and *A* a finitely generated *R*-algebra. Suppose there exists an algebra homomorphism $\varphi: A \to S$ where *S* into a real closed extension field *S* of *R*.

- (a) Show that there exists also an algebra homomorphism $A \rightarrow R$.
- (b) Give a counterexample to (a) in the case where one drops the requirement that *R* is real closed.

Hint: For (a), find an ideal *I* with $\psi \colon A \xrightarrow{\cong} R[\underline{X}]/I$ and analyze the algebra homomorphism $\gamma \colon R[\underline{X}] \to R_1, f \mapsto \varphi(\psi^{-1}(\overline{f}))$ which is a point evaluation.

Please submit until Thursday, January 12, 2017, 11:44 in the box named RAG I, Number 10, near to the room F411.