Geometry of linear matrix inequalities - Exercise sheet 3

Exercise 1 (8P) Set $g := 1 - X^4 - Y^4$ and $S := \{(x, y) \in \mathbb{R}^2 \mid g(x) > 0\}.$

- (a) Show that *S* is convex.
- (b) Show that every $f \in \mathbb{R}[X,Y]_1$ with $f \geq 0$ on S is an element of $M_4(g)$.
- (c) Find a spectrahedron $S' \subseteq \mathbb{R}^4$ such that

$$S = \{(x, y) \in \mathbb{R}^2 \mid \exists s, t \in \mathbb{R} : (x, y, s, t) \in S'\}.$$

Hint: For (c), use Hilbert's 1888 Theorem 7.5.10 and Lagrange multipliers.

Exercise 2 (8P) Let $n \in \mathbb{N}$, $g \in \mathbb{R}[\underline{X}]$ and $x \in \mathbb{R}^n$ such that g(x) = 0 and $\nabla g(x) \neq 0$. Suppose v_1, \ldots, v_n form a basis of \mathbb{R}^n , U is an open neighborhood of 0 in \mathbb{R}^{n-1} and $\varphi \colon U \to \mathbb{R}$ which is infinitely differentiable (\mathbb{C}^{∞}) and satisfies $\varphi(0) = 0$ and

(*)
$$g(x + \xi_1 v_1 + ... + \xi_{n-1} v_{n-1} + \varphi(\xi) v_n) = 0$$

for all $\xi = (\xi_1, \dots, \xi_{n-1}) \in U$. Then the following hold:

(a)
$$(\nabla g(x))^T v_1 = \dots = (\nabla g(x))^T v_{n-1} = 0 \iff \nabla \varphi(0) = 0$$

(b) If $\nabla \varphi(0) = 0$ and $(\nabla g(x))^T v_n > 0$, then

g is strictly quasiconcave at $x \iff \operatorname{Hess} \varphi(0) \succ 0$.

Exercise 3 (8P) Let $n \in \mathbb{N}$, $g \in \mathbb{R}[\underline{X}]$ and $x \in \mathbb{R}^n$ such that g(x) = 0. Let V be a neighborhood of x and v_1, \ldots, v_n be a basis of \mathbb{R}^n . the following are equivalent:

- (a) $\nabla g(x)v_n > 0$
- (b) $g(x + \lambda v_n) > 0$ for all small enough $\lambda \in \mathbb{R}_{>0}$.
- (c) $x + \lambda v_n \in (S(g) \setminus Z(g)) \cap V$ for all small enough $\lambda \in \mathbb{R}_{>0}$.

If the equivalent conditions (a)–(c) are satisfied, then the following conditions are also equivalent:

(e) g is strictly quasiconcave at x.

(f) There is an open neighborhood U of 0 in \mathbb{R}^{n-1} and a C^{∞} -function $\varphi\colon U\to\mathbb{R}$ such that $\varphi(0)=0,$ $\nabla\varphi(0)=0,$ Hess $\varphi(0)\succ 0$ and

(*)
$$g(x + \xi_1 v_1 + ... + \xi_{n-1} v_{n-1} + \varphi(\xi) v_n) = 0$$

for all
$$\xi = (\xi_1, \dots, \xi_{n-1}) \in U$$
.

(g) Condition (f) holds with (*) replaced by

$$(**) x + \xi_1 v_1 + \ldots + \xi_{n-1} v_{n-1} + \varphi(\xi) v_n \in Z(g) \cap V.$$

If the equivalent conditions (e)–(g) are satisfied, then $\nabla g(x)v_i=0$ for all $i\in\{1,\ldots,n-1\}$.

Please submit until Tuesday, July 25, 2017, 9:55 in the box named RAG II near to the room F411.