Geometry of linear matrix inequalities - Exercise sheet 3

Exercise 1 (8P) Set $g:=1-X^{4}-Y^{4}$ and $S:=\left\{(x, y) \in \mathbb{R}^{2} \mid g(x) \geq 0\right\}$.
(a) Show that S is convex.
(b) Show that every $f \in \mathbb{R}[X, Y]_{1}$ with $f \geq 0$ on S is an element of $M_{4}(g)$.
(c) Find a spectrahedron $S^{\prime} \subseteq \mathbb{R}^{4}$ such that

$$
S=\left\{(x, y) \in \mathbb{R}^{2} \mid \exists s, t \in \mathbb{R}:(x, y, s, t) \in S^{\prime}\right\} .
$$

Hint: For (c), use Hilbert's 1888 Theorem 7.5.10 and Lagrange multipliers.
Exercise 2 (8P) Let $n \in \mathbb{N}, g \in \mathbb{R}[\underline{X}]$ and $x \in \mathbb{R}^{n}$ such that $g(x)=0$ and $\nabla g(x) \neq 0$. Suppose v_{1}, \ldots, v_{n} form a basis of \mathbb{R}^{n}, U is an open neighborhood of 0 in \mathbb{R}^{n-1} and $\varphi: U \rightarrow \mathbb{R}$ which is infinitely differentiable $\left(C^{\infty}\right)$ and satisfies $\varphi(0)=0$ and

$$
\text { (*) } \quad g\left(x+\xi_{1} v_{1}+\ldots+\xi_{n-1} v_{n-1}+\varphi(\xi) v_{n}\right)=0
$$

for all $\xi=\left(\xi_{1}, \ldots, \xi_{n-1}\right) \in U$. Then the following hold:
(a) $(\nabla g(x))^{T} v_{1}=\ldots=(\nabla g(x))^{T} v_{n-1}=0 \Longleftrightarrow \nabla \varphi(0)=0$
(b) If $\nabla \varphi(0)=0$ and $(\nabla g(x))^{T} v_{n}>0$, then g is strictly quasiconcave at $x \Longleftrightarrow \operatorname{Hess} \varphi(0) \succ 0$.

Exercise 3 (8P) Let $n \in \mathbb{N}, g \in \mathbb{R}[\underline{X}]$ and $x \in \mathbb{R}^{n}$ such that $g(x)=0$. Let V be a neighborhood of x and v_{1}, \ldots, v_{n} be a basis of \mathbb{R}^{n}. the following are equivalent:
(a) $\nabla g(x) v_{n}>0$
(b) $g\left(x+\lambda v_{n}\right)>0$ for all small enough $\lambda \in \mathbb{R}_{>0}$.
(c) $x+\lambda v_{n} \in(S(g) \backslash Z(g)) \cap V$ for all small enough $\lambda \in \mathbb{R}_{>0}$.

If the equivalent conditions (a)-(c) are satisfied, then the following conditions are also equivalent:
(e) g is strictly quasiconcave at x.
(f) There is an open neighborhood U of 0 in \mathbb{R}^{n-1} and a C^{∞}-function $\varphi: U \rightarrow \mathbb{R}$ such that $\varphi(0)=0, \nabla \varphi(0)=0$, Hess $\varphi(0) \succ 0$ and

$$
\begin{aligned}
& \quad(*) \quad g\left(x+\xi_{1} v_{1}+\ldots+\xi_{n-1} v_{n-1}+\varphi(\xi) v_{n}\right)=0 \\
& \text { for all } \xi=\left(\xi_{1}, \ldots, \xi_{n-1}\right) \in U .
\end{aligned}
$$

(g) Condition (f) holds with (*) replaced by

$$
(* *) \quad x+\xi_{1} v_{1}+\ldots+\xi_{n-1} v_{n-1}+\varphi(\xi) v_{n} \in Z(g) \cap V .
$$

If the equivalent conditions (e)-(g) are satisfied, then $\nabla g(x) v_{i}=0$ for all $i \in\{1, \ldots, n-$ $1\}$.

Please submit until Tuesday, July 25, 2017, 9:55 in the box named RAG II near to the room F411.

