Tom-Lukas Kriel María López Quijorna Markus Schweighofer

Real Algebraic Geometry II – Exercise Sheet 1

Exercise 1 (4P). For $m \in \mathbb{N}_0$ and $g = (g_1, \ldots, g_m) \in \mathbb{R}[\underline{X}]^m$, we define the *quadratic module*

$$M(g) := \sum \mathbb{R}[\underline{X}]^2 + \sum \mathbb{R}[\underline{X}]^2 g_1 + \ldots + \sum \mathbb{R}[\underline{X}]^2 g_m$$

generated by g_1, \ldots, g_m and the basic closed semialgebraic set

$$S(g) := \{x \in \mathbb{R}^n \mid g_1(x) \ge 0, \dots, g_m(x) \ge 0\},\$$

and we say that *g* is a *Putinar-tuple* if S(g) is compact and every $f \in \mathbb{R}[\underline{X}]$ that is (pointwise) positive on S(g) lies in M(g).

Show that if (g_1, \ldots, g_m) is a Putinar-tuple and $h \in \mathbb{R}[\underline{X}]$, then (g_1, \ldots, g_m, h) is also a Putinar-tuple.

Hint: Let $f \in \mathbb{R}[\underline{X}]$ be positive on S(g,h). Find $\lambda > 0$ and $k \in \mathbb{N}_0$ such that

$$f - (1 - \lambda h)^{2k} h > 0$$

on S(g).

Exercise 2 (5P) Let $g \in \mathbb{R}[\underline{X}]^m$.

- (a) Show that the following are equivalent:
 - (i) For all $p \in \mathbb{R}[\underline{X}]$, there is $N \in \mathbb{N}$ such that $N + p \in M(g)$.
 - (ii) There is $N \in \mathbb{N}$ such that $N \sum_{i=1}^{n} X_i^2 \in M(g)$.
 - (iii) There is $f \in M(g)$ such that S(f) is compact.

If one of the above conditions is fulfilled, we call M(g) Archimedean.

(b) Prove *Putinar's Positivstellensatz*: Let M(g) be Archimedean and $f \in \mathbb{R}[\underline{X}]$ be positive on S(g). Then $f \in M(g)$.

Exercise 3 (6P) Suppose $g \in \mathbb{R}[X]^m$ is a tuple of univariate polynomials with compact S(g). Show that M(g) is Archimedean.

Exercise 4 (5P) Let (A, \mathcal{O}) be a topological space. If \mathcal{O} comes from a metric on A we have the following well-known characterization of closed sets:

A set $B \subseteq A$ is closed if and only if every sequence $(x_n)_{n \in \mathbb{N}}$ in B with a limit $x \in A$ fulfills already $x \in B$.

However, we will see on a later exercise sheet that this characterization fails for arbitrary topological spaces. Generalize the above result in the language of (ultra)-filters (instead of sequences) so that it becomes true for every topological space (A, \mathcal{O}) .

Exercise 5 (4P)

- (a) Let *I* be a set, and for each $i \in I$ let X_i be a nonempty topological space. Let *X* be the product space $\prod_{i \in I} X_i$. Show that *X* is $\begin{cases} a \text{ Hausdorff space} \\ quasicompact \\ compact \end{cases}$ if and only if each X_i is $\begin{cases} a \text{ Hausdorff space} \\ quasicompact \\ compact \end{cases}$.
- (b) Show that a topological space *M* is a Hausdorff space if and only if every ultrafilter on *M* converges in *M* to at most one point.

Please submit until Tuesday, May 2, 2017, 11:44 in the box named RAG II near to the room F411.