Real Algebraic Geometry II – Exercise Sheet 2

Exercise 1 (5P) Suppose M is a set, define $\mathscr{F}_0 := \{U \in \mathscr{P}(M) \mid M \setminus U \text{ is finite}\}$. Show the following:

- (a) Let \mathscr{F} be an ultrafilter on M. Then either $\mathscr{F}_0 \subseteq \mathscr{F}$ or there exists an $s \in M$ such that $\mathscr{F} = \{U \in \mathscr{P}(M) \mid s \in U\}$. An ultrafilter of the $\left\{ \begin{array}{c} \text{first} \\ \text{second} \end{array} \right\}$ type is called $\left\{ \begin{array}{c} \text{free} \\ \text{principal} \end{array} \right\}$.
- (b) Show that *M* is finite if and only if every ultrafilter on *M* is principal.
- (c) Determine $\{ \cap \mathcal{F} \mid \mathcal{F} \text{ ultrafilter on } M \}$.

Exercise 2 (5P) Let *M* be a set.

- (a) Find a condition that characterizes when a subset of $\mathcal{P}(M)$ generates a filter on M (in the sense that there is a smallest filter on M containing it).
- (b) Show that a countably infinite subset of $\mathcal{P}(M)$ never generates a free ultrafilter on M.
- (c) Show that every filter on *M* is an intersection of ultrafilters.

Exercise 3 (14P) Let *I* be a set, $(K_i, \leq_i)_{i \in I}$ a family of ordered fields and \mathscr{U} an ultrafilter on *I*.

(a) Show that

$$\mathfrak{m} := \left\{ (a_i)_{i \in I} \in \prod_{i \in I} K_i \mid \{i \in I \mid a_i = 0\} \in \mathscr{U} \right\}$$

is a maximal ideal of the ring $\prod_{i \in I} K_i$ so that

$$R := \left(\prod_{i \in I} K_i\right) / \mathscr{U} := \left(\prod_{i \in I} K_i\right) / \mathfrak{m}$$

is a field.

(b) Show that

$$\overline{(a_i)_{i\in I}}^{\mathfrak{m}} \leq \overline{(b_i)_{i\in I}}^{\mathfrak{m}} : \iff \{i \in I \mid a_i \leq b_i\} \in \mathscr{U} \qquad \left((a_i)_{i\in I}, (b_i)_{i\in I} \in \prod_{i\in I} K_i \right)$$

defines an order \leq of the field R so that

$$\left(\prod_{i\in I}(K_i,\leq_i)\right)/\mathscr{U}:=(R,\leq)$$

is an ordered field. We call this ordered field the *ultraproduct* of the ordered fields (K_i, \leq_i) , $i \in I$, along the ultrafilter \mathscr{U} .

- (c) Show that *R* is Euclidean if K_i is Euclidean for each $i \in I$.
- (d) Show that *R* is real closed if K_i is real closed for each $i \in I$.

Now let \mathcal{U} be a free ultrafilter on $I := \mathbb{N}$.

- (e) Show that (R, \leq) is not Archimedean.
- (f) Show that every convergent $[\to 1.1.9(b)]$ sequence $(a_n)_{n\in\mathbb{N}}$ in R is eventually constant.
- (g) Endow R with the topology induced by the order \leq in the sense that it is generated by $\{\{x \in R \mid a < x\} \mid a \in R\} \cup \{\{x \in R \mid x < a\} \mid a \in R\}$. Show that 1 is then in the closure of $I := \{x \in R \mid 0 \leq x < 1\}$ but it is not the limit of any sequence in I. This gives the counterexample that was promised in Exercise 4 of Sheet 1.

Please submit until Tuesday, May 9, 2017, 11:44 in the box named RAG II near to the room F411.