Real Algebraic Geometry II - Exercise Sheet 5
Exercise 1 (4P) Let $f:=X^{4} Y^{2}+X^{2} Y^{4}-3 X^{2} Y^{2}+2 \in \mathbb{R}[X, Y]$ (cf. Example 2.4.15).
(a) Show that for all $R \in \mathbb{R}$ there exist $s, t \in \sum \mathbb{R}[X, Y]^{2}$ with

$$
(*) \quad f=s+t\left(R^{2}-\left(X^{2}+Y^{2}\right)\right)
$$

(b) Show that there is no $D \in \mathbb{N}$ such that for every $R \in \mathbb{R}$ there exist $s, t \in$ $\sum \mathbb{R}[X, Y]_{D}^{2}$ with $(*)$.

Exercise 2 (4P) ("intermediate value theorem for semialgebraic functions")
Suppose R is a real closed field, $f: R \rightarrow R$ a semialgebraic function and $a, b \in R$ such that $a \leq b$ and $\operatorname{sgn}(f(a)) \neq \operatorname{sgn}(f(b))$. Show that there is $c \in[a, b]_{R}$ with $f(c)=0$.

Exercise $3(4 \mathrm{P}+4 \mathrm{BP})$ Let R be a real closed field and $f: R \rightarrow R$ semialgebraic. Show that there is a finite set $E \subseteq R$ such that the restriction of f onto $R \backslash E$ is continuous. Find a proof by using one of the two strategies suggested in the following hint (for the bonus points follow both strategies).
Hint: Justify that if is enough to consider the case $R=\mathbb{R}$. Argue that it suffices to show that every nonempty open set $A \subseteq R$ contains a point x where f is continuous (in the usual sense, i.e., the preimage of every neighborhood of $f(x)$ is a neighborhood of x).

Strategy 1: First consider the easy case in which where exists a non-empty open set $B \subseteq A$ such that $\# f(B)<\infty$. In the remaining case find an appropriate point x via nested intervals.

Strategy 2: Find an infinite compact interval $I \subseteq A$ and $g, h_{1}, \ldots, h_{m} \in \mathbb{R}[X, Y]$ such that

$$
\Gamma_{f} \cap(I \times \mathbb{R})=\left\{(x, y) \in I \times \mathbb{R} \mid g(x, y)=0, h_{1}(x, y)>0, \ldots, h_{m}(x, y)>0\right\}
$$

Argue that we can shrink I in such a way that there is an $\varepsilon>0$ such that $\Gamma_{f} \cap(I \times \mathbb{R})$ is bounded and such that there is $\varepsilon \in \mathbb{R}_{>0}$ with

$$
\Gamma_{f} \cap(I \times \mathbb{R})=\left\{(x, y) \in I \times \mathbb{R} \mid g(x, y)=0, h_{1}(x, y) \geq \varepsilon, \ldots, h_{m}(x, y) \geq \varepsilon\right\}
$$

so that $\Gamma_{f} \cap(I \times \mathbb{R})$ is compact. Now every point in the interior of I can be taken as the desired point x.

Exercise 4 (4P) Let R be a real closed field and $f: R \rightarrow R$ a semialgebraic function. Show that there exists a finite set $E \subseteq R$ such that for all $a, b \in R$ with $a<b$ for which $I:=(a, b)_{R} \subseteq R \backslash E$, we have that $\left.f\right|_{I}$ is continuous and exactly one of the following holds:
(a) $\left.f\right|_{I}$ is constant,
(b) $\left.f\right|_{I}$ injective and monotonic,
(c) $\left.f\right|_{I}$ is injective and anti-monotonic

Hint: Let $a, b, c, d \in R$ with $a<b$ and $c<d$ and suppose that $g:[a, b] \rightarrow R$ is a continuous semialgebraic function with $[c, d] \subseteq g([a, b])$. Let $e=f(a)$ and show that

$$
h:[c, d] \rightarrow[a, b], y \mapsto \min \{x \in[a, b] \mid g(x)=y\}
$$

is monotonic or anti-monotonic on both $[c, e]$ and $[e, d]$. What does this information tell us about monotonicity properties of g ?

Exercise 5 (4P) Let

$$
\begin{aligned}
A & :=\left\{(x, y) \in \mathbb{R}^{2} \mid x>1, y>1\right\} \quad \text { and } \\
B & :=\left\{(x, y) \in \mathbb{R}^{2} \mid x<-1 \text { or } y<-1\right\} .
\end{aligned}
$$

Show that there exists no $f \in \mathbb{R}[X, Y]$ with $f \geq 1$ on A and $f \leq-1$ on B.

Please submit until Tuesday, May 30, 2017, 9:55 in the box named RAG II near to the room F411.

