Tom-Lukas Kriel María López Quijorna Markus Schweighofer

Real Algebraic Geometry II – Exercise Sheet 8

Exercise 1 (8P) Let $f : \mathbb{R} \to \mathbb{R}$ be a semialgebraic function and R be a real closed extension field of \mathbb{R} .

- (a) Show that $\operatorname{Transfer}_{\mathbb{R},\mathbb{R}}(\Gamma_f) \subseteq \mathbb{R}^2$ equals the graph Γ_g of an \mathbb{R} -semialgebraic function $g \colon \mathbb{R} \to \mathbb{R}$.
- (b) Let $x \in \mathbb{R}$ and $\delta \in \mathfrak{m}_R \setminus \{0\}$. Show that f is continuous at x if and only if $g(x \delta), g(x + \delta) \in \mathcal{O}_R$ and

$$\operatorname{st}(g(x-\delta)) = f(x) = \operatorname{st}(g(x+\delta)).$$

(c) Let $x \in \mathbb{R}$, $\delta \in \mathfrak{m}_R \setminus \{0\}$ and $a \in \mathbb{R}$. Show that f is differentiable at x with f'(x) = a if and only if $\frac{g(x-\delta)-g(x)}{-\delta}$, $\frac{g(x+\delta)-g(x)}{\delta} \in \mathcal{O}_R$ and

$$\operatorname{st}\left(\frac{g(x-\delta)-g(x)}{-\delta}\right) = a = \operatorname{st}\left(\frac{g(x+\delta)-g(x)}{\delta}\right).$$

Exercise 2 (4P) Let $A \subseteq \mathbb{R}^n$ be closed and convex. Show that the following are equivalent for $x \in A$:

- (a) *x* is an extreme point of *A*.
- (b) For every $\varepsilon > 0$, there exists a linear function $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ such that $\varphi(x) > c$ and $\forall y \in A : (\varphi(y) > c \implies ||x y|| < \varepsilon)$.

Hint: Consider the case where *A* is bounded first.

Exercise 3 (4P) Let $A \subseteq \mathbb{R}^n$ be convex. An *exposed extreme point* of A is a point $x \in A$ such that $\{x\}$ is an exposed face of A. Now suppose that A is compact. Show that the closure of the set of exposed extreme points of A contains all extreme points of A.

Hint: Consider $x \in \text{extr } A$. Let $\varepsilon > 0$ be arbitrary. We want to find an exposed extreme point z of A with $||z - x|| < \varepsilon$. For this purpose, choose $w \in \mathbb{R}^n$ and $c \in \mathbb{R}$ such that $w^T x > c$ and $\forall y \in A : (w^T y > c \implies ||x - y|| < \varepsilon)$. Now show that for $\lambda \in \mathbb{R}$ big enough, every point $z \in A$ maximizing $||z - (x - \lambda w)||$ does the job.

Please submit until Tuesday, June 20, 2017, 9:55 in the box named RAG II near to the room F411.