Proseminar Graphentheorie Vortrag 12

Motivation: Findet man in großen Graphen immer gewisse feste kleine Strukturen oder können diese auch zu chaotisch sein?

Problem: Seien $k, l \in \mathbb{N}$ gegeben. Wir betrachten Folgen $a = (a_1, ..., a_n)$ bestehend aus verschiedenen reellen Zahlen und fragen, ob a eine aufsteigende Teilfolge der Länge (k+1) oder eine absteigende Teilfolge der Länge (l+1) enthält. Wie groß müssen wir n wählen, damit die Antwort immer ja lautet.

Lemma 0.1. Im obigen Problem ist n = kl + 1 die kleinste Zahl so, dass die Antwort immer ja ist.

Proof. n = kl reicht nicht aus: Betrachte a = (-k, -k+1..., -1, -2k, -2k+1..., -k-1, -3k, -3k+1, ..., -(l-2)k-1, -lk, -lk+1, ..., -(l-1)k-1). Dann enthält a weder eine aufsteigende Teilfolge der Länge (k+1) noch eine absteigende Teilfolge der Länge (l+1).

n = kl + 1 reicht aus: Wir führen Beweis per Induktion nach $l \in \mathbb{N}$: l = 1: Ist $a \in \mathbb{R}^{k+1}$ eine Folge verschiedener Zahlen, so ist a aufsteigend oder es gibt $i, j \in \{1, ..., k+1\}$ mit i < j aber $a_i > a_j$. Damit ist (a_i, a_j) eine absteigende Teilfolge.

Sei die Behauptung für $l-1 \in \mathbb{N}$ gezeigt: Sei $a=(a_1,...,a_{kl+1})$ eine Folge verschiedener reeller Zahlen. Nehme zum Widerspruch an, dass a weder eine aufsteigende Teilfolge der Länge (k+1) noch eine absteigende Teilfolge der Länge (l+1) enthält. Nach IV enthält a eine absteigende Teilfolge der Länge l. Sei $(a_{b(1)},...,a_{b(l)})$ eine solche Teilfolge mit streng monotonem b so, dass b(l) minimal ist unter allen solchen Teilfolgen. Setze c(1)=b(l).

Sei nun $s \in \{1,...,k\}$ und $c(1),...,c(s) \in \{1,...,kl+1\}$ bereits gewählt so, dass c streng monoton wachsend ist. Nach IV besitzt $a' := a \setminus \{c(1),...,c(s)\}$ (damit meinen wir die Folge, welche entsteht, wenn wir aus a die Einträge c(1),...,c(s) entfernen) eine absteigende Teilfolge der Länge l. Sei $(a_{b(1)},...,a_{b(l)})$ eine solche Teilfolge mit streng monotonem b so, dass b(l) minimal ist unter allen solchen Teilfolgen. Setze c(s+1)=b(l). Insgesamt erhalten wir c streng monoton wachsend und die Folge $(a_{c(1)},...,a_{c(k+1)})$ muss aufsteigend sein, ansonsten hätte a eine absteigende Teilfolge der Länge l+1. Das ist ein Widerspruch.

Definition 0.2. Sei K^r (bzw. $\overline{K^r}$) der Graph auf r Ecken, in dem je zwei Ecken (bzw. keine zwei Ecken) durch eine Kante verbunden sind. K^r (bzw. $\overline{K^r}$) heißt vollständiger (leerer) Graph auf r Ecken

Lemma 0.3. Im obigen Problem gibt es $n \in \mathbb{N}$ so, dass die Antwort ja ist.

Proof. Sei $a=(a_1,...,a_n)$ eine Folge verschiedener reeller Zahlen. Wir definieren den Graphen $G_a=(V_a,E_a)$ mit $V_a=\{1,...,n\}$ und $(i,j)\in E_a$ wenn i< j und $a_i< a_j$. Enthält G_a den K_r (bzw. $\overline{K_r}$) als induzierten Teilgraphen, so korrespondiert dieser zu einer aufsteigenden (bzw. absteigenden) Teilfolge der Länge r. Damit folgt die Aussage aus folgendem Satz von Ramsey.

1

Satz 0.4. (Satz von Ramsey) (a) Sei $r \in \mathbb{N}$. Dann existiert $n \in \mathbb{N}$ so, dass jeder Graph G auf mindestens n Ecken K_r oder $\overline{K_r}$ als i. Teilgraph enthält.

- (b) Seien $r, t \in \mathbb{N}$. Dann existiert $n \in \mathbb{N}$ so, dass für jede "Fürbung" $c : E(K_n) \to \{1,...,t\}$ (wir stellen uns eine Fürbung als eine Funktion vor, welche Kanten Farben zuordnet. Im Gegensatz zu einer Färbung müssen aber adjazente Kanten nicht unterschiedlich gefärbt sein) eine r-elementige Teilmenge W der Ecken von K_n so, dass c auf den Kanten von $K_n[W]$ konstant ist.
- (c) Sei $k \in \mathbb{N}$. Für jede "Fürbung" $c : E(K_{\infty}) \to \{1,...,t\}$ existiert eine unendliche Teilmenge W der Ecken von K_{∞} so, dass c auf den Kanten von $K_{\infty}[W]$ konstant ist.
- *Proof.* (c) Wähle $x_1 \in K_\infty$ beliebig und setze $X_1 = K_\infty \setminus \{x_1\}$. Sind $x_1, ..., x_k$ und eine unendliche Menge $X_k \subseteq K_\infty \setminus \{x_0, ..., x_k\}$ bereits so gewählt, so gibt es ist eine der Mengen $C_j := \{x \in X_k \mid c(x, x_k) = j\}$ für $j \in \{1, ..., t\}$ zwangsläufig unendlich. Wähle ein solches j(k), ein Element $x_{k+1} \in C_j$ und setze $X_k = C_j \setminus \{x_{k+1}\}$.

Seien nun $k, l \in \mathbb{N}$ mit k < l. Dann gilt $c(x_k, x_l) = j(k)$. Wähle nun $s \in \{1, ..., t\}$ mit $j^{-1}(s)$ unendlich und setze $W = \{x_k \mid k \in j^{-1}(s)\}$.

(b) Wir benutzen das Unendlichkeitslemma: Angenommen die Behauptung ist falsch für gewisse $r,k\in\mathbb{N}$. Für jedes $n\in\mathbb{N}$ gibt es dann eine "falsche Fürbung" $c:E(K_n)\to\{1,...,t\}$, d.h. eine für welche keine r-elementige Teilmenge W der Ecken von K_n existiert so, dass c auf den Kanten von $K_n[W]$ konstant ist.

Setze $V_n = \{c_n : E(K_n) \to \{1, ..., t\}$ falsche Fürbung $\}$ für $n \in \mathbb{N}$ und interpretiere $\bigcup_{n \in \mathbb{N}}$ als die Eckenmenge eines Graphen G. Es seien dort ein c_n und ein c_{n-1} benachbart, wenn $c_n|_{K_{n-1}^2} = c_{n-1}$. Es ist einfach zu sehen, dass die Bedingungen des Unendlichkeitslemmas erfüllt sind, welches besagt, dass es eine Folge $c = (c_n)_{n \in \mathbb{N}}$ gibt mit $c_n \in V_n$ und $c_n|_{K_m^2} = c_m$ für n > m. In natürlicher Weise definiert c eine falsche Fürbung auf $E(K_{\infty})$.

(a) Setze k = 2 und benutze (a).