Inhaltsverzeichnis zur Vorlesung: Positive Polynome

Prof. Dr. Salma Kuhlmann, Dr. Annalisa Conversano

These notes were typed by Charu Goel
SS 2010-Korrekturen WS 2018/2019

1. Vorlesung (13. April 2010)

The polynomial ring $\mathbb{R}[\underline{X}]$ - Borel Measure - Preordering
Seite
1
2. Vorlesung (15. April 2010)

Introduction - Examples - Positivstellensatz
Seite 4
3. Vorlesung (20. April 2010)

Geometric version of Positivstellensatz - \quad Seite 7
Exkurs in commutative algebra
4. Vorlesung (22. April 2010)

Exkurs in commutative algebra (continued) - \quad Seite 16
Radical ideals and Real ideals - The Real Spectrum
5. Vorlesung (27. April 2010)

The Real Spectrum - Topologies on $\operatorname{Sper}(A)$ - Seite 22
Abstract Positivstellensatz
6. Vorlesung (29. April 2010)

Generalities about polynomials - PSD- and SOS-polynomials - Seite 27
Convex sets, cones and extremality
7. Vorlesung (4. Mai 2010)

Convex Cones and generalization of Krein-Milman theorem - Seite 31
The cones $\mathcal{P}_{n, 2 d}$ and $\sum_{n, 2 d}$ - Proof of $\mathcal{P}_{3,4}=\sum_{3,4}$
8. Vorlesung (6. Mai 2010)

Proof of Hilbert's theorem
Seite 36
9. Vorlesung (10. Mai 2010)

Proof of Hilbert's Theorem (continued) - The Motzkin Form - \quad Seite 43
Robinsin Method (1970) - The Robinson Form
10. Vorlesung (18. Mai 2010)

Ring of formal power series - Algebraic independence Seite 49
11. Vorlesung (20. Mai 2010)

Algebraic independence and transcendence degree - Seite 53 Krull Dimension of a ring - Low Dimension
12. Vorlesung (25. Mai 2010)Schmüdgen's Positivstellensatz -Seite57Representation theorem (Stone-Krivine, Kadison-Dubois) -Preprimes, modules and semi-ordering in rings
13. Vorlesung (27. Mai 2010)
Archimedean modules - Seite 62
Representation Theorem (Stone-Krivine, Kadison-Dubois)
14. Vorlesung (1. Juni 2010)
Rings of bounded elements - Schmüdgen's Positivstellensatz Seite 66
15. Vorlesung (8. Juni 2010)
Schmüdgen's Nichtnegativstellensatz - Application of Schmüdgen's Seite 71
Positivstellensatz to the moment problem
16. Vorlesung (10. Juni 2010)
Application of Schmüdgen's Positivstellensatz to the moment problem - Seite 75
Schmüdgen's Nichtnegativstellensatz und Hankel matrices -
Finite solvability of the K-Moment Problem - Haviland's Theorem
17. Vorlesung (15. Juni 2010)
Haviland's Theorem Seite 80
18. Vorlesung (17. Juni 2010)
Haviland's Theorem $-\mathbb{R}[\underline{X}]$ as topological \mathbb{R}-vector space Seite 84
19. Vorlesung (22. Juni 2010)
Topology on finite and countable dimensional \mathbb{R}-vector space Seite 88
20. Vorlesung (24. Juni 2010)
Topology on finite and countable dimensional \mathbb{R}-vector space Seite 92
21. Vorlesung (29. Juni 2010)
K-Moment problem - Closed finitely generated preorderings Seite 96
22. Vorlesung (1. Juli 2010)
Closed finitely generated preorderings - Seite 100
Apllications to the K-Moment problem -
The finest locally convex topology on a \mathbb{R}-vector space
23. Vorlesung (6. Juli 2010)
The finest locally convex topology on a vector space Seite 104
24. Vorlesung (8. Juli 2010)
Topological \mathbb{R}-vector space Seite 108
25. Vorlesung (13. Juli 2010)
Topological \mathbb{R}-vector space (continued) Seite 112

POSITIVE POLYNOMIALS LECTURE NOTES

 (01: 13/04/10)SALMA KUHLMANN

Contents

1. The polynomial ring $\mathbb{R}[\underline{X}] \quad 1$
2. Borel measure $\quad 2$
3. Preordering 2

1. THE POLYNOMIAL RING $\mathbb{R}[\underline{X}]$

Notation 1.1. $\mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ is the polynomial ring in n variables and real coefficients, where \mathbb{R} is the set of real numbers.

Note that $\mathbb{R}[\underline{X}]$ is a vector space of countable dimension (a basis is $\left\{\underline{X}^{\underline{\alpha}} \mid \underline{\alpha} \in \mathbb{Z}_{+}^{n}\right\}$, where $\underline{X}^{\underline{\alpha}}:=X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}}$ is a monomial).

Definition 1.2. A polynomial is said to be homogenous if it is a linear combination of monomials with same degree (or zero polynomial).
Convention: $\operatorname{deg}(0):=-\infty$, where " 0 " is the polynomial with 0 coefficients.
Definition 1.3. Let $f \in \mathbb{R}[\underline{x}]$, the homogenous decomposition of f is $f=h_{0}+$ $\ldots+h_{d}$, where h_{i} are homogenous (or 0) and $\operatorname{deg}\left(h_{i}\right)=i$ if $h_{i} \neq 0$.
Note that if $h_{d} \not \equiv 0$, then $d=\operatorname{deg}\left(h_{d}\right)=\operatorname{deg}(f)$.
Remark 1.4. Let $f, g \in \mathbb{R}[\underline{x}] ; f \not \equiv 0, g \not \equiv 0$, then:
(i) $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$
(ii) $\operatorname{deg}(f+g) \leq \max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$
(iii) $\operatorname{deg}(f+g)=\max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$, if $\operatorname{deg}(f) \neq \operatorname{deg}(g)$.

2. BOREL MEASURE

Definition 2.1. Let X be a locally compact Hausdorff topological space (ie. $\forall x \in$ $\mathrm{X} \exists \mathcal{U} \ni x$ such that $\overline{\mathcal{U}}$ is compact). A Borel measure " μ " on X is a positive measure such that every $B \in \beta^{\delta}(X)$ is measurable, where $\beta^{\delta}(X):=$ the smallest class of subsets of X which contain all compact sets and is closed under finite unions, complements and countable intersections.

Further we will assume that μ is regular, ie.
$\forall B \in \beta^{\delta}(X), \forall \epsilon>0 \exists C, \mathcal{U} \in \beta^{\delta}(X)$ with $C \subseteq B \subseteq \mathcal{U}$, where C is compact, \mathcal{U} is open and $\mu(C)+\epsilon \geq \mu(B) \geq \mu(\mathcal{U})-\epsilon$.

Definition 2.2. Let K be a closed compact subset of \mathbb{R}^{n}. K is said to be basic closed semi-algebraic if there exists a finite $S \subseteq \mathbb{R}[\underline{X}]$, say $S=\left\{g_{1}, \ldots, g_{s}\right\}$ (for $s \in \mathbb{N}$) such that $K=K_{S}=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0 \forall i=1, \ldots, s\right\}$.

Notation 2.3. $\sum \mathbb{R}[\underline{X}]^{2}:=\left\{\sigma=\sum_{i=1}^{m} f_{i}^{2} \mid f_{i} \in \mathbb{R}[\underline{X}], m \in \mathbb{N}\right\}$.
Theorem 2.4. (Schmüdgen's Positivstellensatz) Let $K \subseteq \mathbb{R}^{n}$ be a compact semialgebraic set, $K=K_{S}$ (as above). Let $L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ be a linear functional. Then L can be represented by a positive Borel measure μ defined on $K($ ie. $L(f)=$ $\int_{K} f d \mu$ for $\left.f \in \mathbb{R}[\underline{X}]\right)$ if and only if $L\left(\sigma g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}\right) \geq 0 \forall \sigma \in \sum \mathbb{R}[\underline{X}]^{2}$ and $e_{1}, \ldots, e_{s} \in\{0,1\}$.

See Corollary 2.6 in lecture 13.

3. PREORDERING

Definition 3.1. Let A be a commutative ring with 1 , $\Sigma A^{2}:=\left\{\Sigma a_{i}^{2} \mid i \geq 0, a_{i} \in A\right\}$.
(1) A quadratic module M in A is a subset $M \subseteq A$ such that $M+M \subseteq M, a^{2} M \subseteq M \forall a \in A, 1 \in M$.
(2) A preordering T in A is a quadratic module with $T T \subseteq T$. T is said to be proper if $-1 \notin T$.

Remark 3.2. If $\frac{1}{2} \in A$ then $T=A$ is the only preordering in A that is not proper.
Proof. For $a \in A$ one can write: $a=\left(\frac{a+1}{2}\right)^{2}+(-1)\left(\frac{a-1}{2}\right)^{2} \in T$

Examples 3.3.

(1) $\underbrace{\Sigma A^{2}}_{\text {(the smallest preordering) }} \subseteq T$ for a preordering T in A.
(2) Let $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq A$, then

$$
T_{S}:=\left\{\sum_{e_{1}, \ldots, e_{s} \in\{0,1\}} \sigma_{e} g_{1}^{e_{1}} \ldots g_{s}^{e_{s}} \mid \sigma_{e} \in \Sigma A^{2}, e=\left(e_{1}, \ldots, e_{s}\right)\right\}
$$

is the preordering generated by g_{1}, \ldots, g_{s}.
Definiton 3.4. A preordering $T \subseteq A$ is said to be finitely generated if \exists a finite $S \subseteq A$ with $T=T_{S}$.
For example: ΣA^{2} is finitely generated with $S=\phi$.
Example 3.5. Let $S \subseteq A=\mathbb{R}[\underline{X}]$ be a finite subset. We associate to S the basic closed semi-algebraic subset $K_{S} \subseteq \mathbb{R}^{n}$ and the finitely generated preordering $T_{S} \subseteq$ $\mathbb{R}[\underline{X}]$. We recall that $K_{S}:=\left\{\underline{x} \in \mathbb{R}^{n} \mid g_{i}(\underline{x}) \geq 0 \forall i=1, \ldots, s\right\}, S=\left\{g_{1}, \ldots, g_{s}\right\}$.
For example: If $S=\phi: K_{S}=\mathbb{R}^{n}, T_{S}=\sum \mathbb{R}[\underline{X}]^{2}$.
Definiton 3.6. An element $f \in T_{S}$ is said to be positive semidefinite on K_{S} if $f(\underline{x}) \geq 0$ for all $\underline{x} \in K_{S}$.
For $K \subseteq \mathbb{R}^{n}$, set $\operatorname{Psd}(K):=\{f \in \mathbb{R}[\underline{X}] \mid f(\underline{x}) \geq 0 \forall \underline{x} \in K\}$
Note that $T_{S} \subseteq \operatorname{Psd}\left(K_{S}\right)$.
Question. If $f \in \operatorname{Psd}\left(K_{S}\right)$, then does $f \in T_{S}$?
Answer. No.
But there is a connection of f with T_{S} (which will become clear through the Positivstellensatz in the next lecture).

POSITIVE POLYNOMIALS LECTURE NOTES

(02: 15/04/10)

SALMA KUHLMANN

Contents

1. Introduction 1
2. Examples 2
3. Positivstellensatz 4

1. INTRODUCTION

Definiton 1.1. For $K \subseteq \mathbb{R}^{n}$,
$\operatorname{Psd}(K):=\{f \in \mathbb{R}[\underline{X}] \mid f(\underline{x}) \geq 0 \forall \underline{x} \in K\}$.
Let $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[\underline{X}]$, then
$\mathbf{K}_{\mathbf{S}}:=\left\{\underline{x} \in \mathbb{R}^{n} \mid g_{i}(\underline{x}) \geq 0 \forall i=1, \ldots, s\right\}$, the basic closed semi-algebraic set defined by S and
$\mathbf{T}_{\mathbf{S}}:=\left\{\sum_{e_{1}, \ldots, e_{s} \in[0,1\}} \sigma_{e} g_{1}^{e_{1}} \ldots g_{s}^{e_{s}} \mid \sigma_{e} \in \Sigma \mathbb{R}[\underline{X}]^{2}, e=\left(e_{1}, \ldots, e_{s}\right)\right\}$, the preordering generated by S.

We also introduce
$\mathbf{M}_{\mathbf{S}}:=\left\{\sigma_{0}+\sigma_{1} g_{1}+\sigma_{2} g_{2} \ldots+\sigma_{s} g_{s} \mid \sigma_{i} \in \Sigma \mathbb{R}[\underline{X}]^{2}\right\}$, the quadratic module generated by S.

Remark 1.2. (i) M_{S} is a quadratic module in $\mathbb{R}[\underline{X}]$.
(ii) $M_{S} \subseteq T_{S} \subseteq \operatorname{Psd}\left(K_{S}\right)$.
(We shall study these inclusions in more detail later. In general these inclusions may be proper.)
(iii) $\operatorname{Psd}\left(K_{S}\right)$ is a preordering.

Definiton 1.3. T_{S} (resp. M_{S}) is called saturated if $\operatorname{Psd}\left(K_{S}\right)=T_{S}\left(\right.$ resp. $\left.M_{S}\right)$.

2. EXAMPLES

For the examples that we are about to see, we need the following 2 lemmas:
Lemma 2.1. Let $f \in \mathbb{R}[\underline{X}] ; f \not \equiv 0$, then $\exists \underline{x} \in \mathbb{R}^{n}$ s.t. $f(\underline{x}) \neq 0$. [Here n is such that $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$.]

Proof. By induction on n.
If $n=1$, result follows since a nonzero polynomial $\in \mathbb{R}[\underline{X}]$ has only finitely many zeroes.
Let $n \geq 2$ and $0 \not \equiv f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]=\mathbb{R}\left[X_{1}, \ldots, X_{n-1}\right]\left[X_{n}\right]$.
$f \not \equiv 0 \Rightarrow f=g_{0}+g_{1} X_{n}+\ldots+g_{k} X_{n}^{k} ; g_{0}, g_{1}, \ldots, g_{k} \in \mathbb{R}\left[X_{1}, \ldots, X_{n-1}\right] ; g_{k} \not \equiv 0$.
Since $g_{k} \not \equiv 0$, so by induction on n :
$\exists\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ s.t. $g_{k}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \neq 0$.
\Rightarrow The polynomial in one variable X_{n} i.e. $f\left(x_{1}, x_{2}, \ldots, x_{n-1}, X_{n}\right) \not \equiv 0$.
Therefore by induction for $n=1, \exists x_{n} \in \mathbb{R}$ s.t.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right) \neq 0
$$

Remark 2.2. If $f \in \mathbb{R}[\underline{X}], f \not \equiv 0$, then $\mathbb{R}^{n} \backslash Z(f)=\left\{x \in \mathbb{R}^{n} \mid f(x) \neq 0\right\}$ is dense in \mathbb{R}^{n}, where $Z(f):=\left\{x \in \mathbb{R}^{n} \mid f(x)=0\right\}$ is the zero set of f.
Equivalently, $Z(f)$ has empty interior. In other words, a polynomial which vanishes on a nonempty open set is identically the zero polynomial.

Lemma 2.3. Let $\sigma:=f_{1}^{2}+\ldots+f_{k}^{2} ; f_{1}, \ldots, f_{k} \in \mathbb{R}[\underline{X}]$ and $f_{1} \not \equiv 0$, then
(i) $\sigma \not \equiv 0$
(ii) $\operatorname{deg}(\sigma)=2 \max \left\{\operatorname{deg} f_{i} ; i=1, \ldots, k\right\}$
[In particular $\operatorname{deg}(\sigma)$ is even.]
Proof. (i) Since $f_{1} \not \equiv 0$, so by lemma $2.1 \exists \underline{x} \in \mathbb{R}^{n}$ s.t. $f_{1}(\underline{x}) \neq 0$.

$$
\begin{aligned}
& \Rightarrow \sigma(\underline{x})=f_{1}(\underline{x})^{2}+\ldots+f_{k}(\underline{x})^{2}>0 \\
& \Rightarrow \sigma \not \equiv 0 .
\end{aligned}
$$

(ii) $f_{i}=h_{i_{0}}+\ldots+h_{i_{d}}$, where $d=\max \left\{\operatorname{deg} f_{i} \mid i=1, \ldots, k\right\} ; h_{i_{j}}$ homogeneous of degree j or $h_{i_{j}} \equiv 0$ for $i=1, \ldots, k$.

Clearly $\operatorname{deg}(\sigma) \leq 2 d$.
To show $\operatorname{deg}(\sigma)=2 d$, consider the homogeneous polynomial $h_{1_{d}}^{2}+\ldots+h_{k_{d}}^{2}:=h_{2 d}$
Note that if $h_{2 d} \not \equiv 0$, then $\operatorname{deg}\left(h_{2 d}\right)=2 d$ and $h_{2 d}$ is the homogeneous component of σ of highest degree (i.e. leading term), so $\operatorname{deg}(\sigma)=2 d$. Now we know that $h_{i_{d}} \not \equiv 0$ for some $i \in\{1, \ldots, k\}$, so by (i) we get $h_{2 d} \not \equiv 0$.

Now coming back to the inclusion: $T_{S} \subseteq \operatorname{Psd}\left(K_{S}\right)$
Example 2.4.(1) (i) $S=\phi, n=1 \Rightarrow K_{S}=\mathbb{R}$ and $T_{S}=\sum \mathbb{R}[X]^{2}$

$$
\Rightarrow T_{S}=\operatorname{Psd}(\mathbb{R})
$$

(ii) $S=\left\{\left(1-X^{2}\right)^{3}\right\}, n=1 \Rightarrow K_{S}=[-1,1]$ (compact), $T_{S}=\left\{\sigma_{0}+\sigma_{1}\left(1-X^{2}\right)^{3} \mid \sigma_{0}, \sigma_{1} \in \sum \mathbb{R}[X]^{2}\right\}=M_{S}$.
Claim. $T_{S} \subsetneq \operatorname{Psd}\left(K_{S}\right)$
For example: $\left(1-X^{2}\right) \in \operatorname{Psd}[-1,1]$ (clearly),
but ($1-X^{2}$) $\notin T_{S}$, since if we assume for a contradiction that

$$
\begin{equation*}
\left(1-X^{2}\right)=\sigma_{0}+\sigma_{1}\left(1-X^{2}\right)^{3} \tag{1}
\end{equation*}
$$

where $\sigma_{0}=\sum f_{i}^{2}$. Then evaluating (1) at $x= \pm 1$ we get
$\sigma_{0}(\pm 1)=\sum f_{i}^{2}(\pm 1)=0$
$\Rightarrow f_{i}(\pm 1)=0$
$\Rightarrow f_{i}=\left(1-X^{2}\right) g_{i}$, for some $g_{i} \in \mathbb{R}[X]$
$\Rightarrow \sigma_{0}=\left(1-X^{2}\right)^{2} \sum g_{i}^{2}$
Substituting σ_{0} back in (1) we get

$$
\begin{equation*}
1=\left(1-X^{2}\right) \sum g_{i}^{2}+\left(1-X^{2}\right)^{2} \sigma_{1} \tag{2}
\end{equation*}
$$

Evaluating (2) at $x= \pm 1$ yields $1=0$, a contradiction.
(iii) $S=\left\{X^{3}\right\}, n=1 \Rightarrow K_{S}=[0, \infty)$ (noncompact), $T_{S}=\left\{\sigma_{0}+\sigma_{1} X^{3} \mid \sigma_{0}, \sigma_{1} \in \sum \mathbb{R}[X]^{2}\right\}=M_{S}$.
Claim. $T_{S} \subsetneq \operatorname{Psd}\left(K_{S}\right)$
For example: $X \in \operatorname{Psd}\left(K_{S}\right)$, but $X \notin T_{S}$ (we will use degree argument to show this).
We compute the possible degrees of elements $t \in T_{S} ; t \not \equiv 0$
Let

$$
t=\sigma_{0}+\sigma_{1} X^{3} ; \sigma_{0}, \sigma_{1} \in \sum \mathbb{R}[X]^{2}
$$

POSITIVE POLYNOMIALS LECTURE NOTES

 (03: 20/04/10)
SALMA KUHLMANN

Contents

1. Geometric version of Positivstellensatz 1
2. Exkurs in commutative algebra 6

1. GEOMETRIC VERSION OF POSITIVSTELLENSATZ

Theorem 1.1. (Recall) (Positivstellensatz: Geometric Version) Let $A=\mathbb{R}[\underline{X}]$. Let $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[\underline{X}], f \in \mathbb{R}[\underline{X}]$. Then
(1) $f>0$ on $K_{S} \Leftrightarrow \exists p, q \in T_{S}$ s.t. $p f=1+q$ (Striktpositivstellensatz)
(2) $f \geq 0$ on $K_{S} \Leftrightarrow \exists m \in \mathbb{Z}_{+}, \exists p, q \in T_{S}$ s.t. $p f=f^{2 m}+q$ (Nonnegativstellensatz)
(3) $f=0$ on $K_{S} \Leftrightarrow \exists m \in \mathbb{Z}_{+}$s.t. $-f^{2 m} \in T_{S}$ (Real Nullstellensatz (first form))
(4) $K_{S}=\phi \Leftrightarrow-1 \in T_{S}$.

Proof. It consists of two parts:
-Step I: prove that $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(1)$
-Step II: prove (4) [using Tarski Transfer]
We will start with step II:
Clearly $K_{S} \neq \phi \Rightarrow-1 \notin T_{S}$ (since $-1 \in T_{S} \Rightarrow K_{S}=\phi$), so it only remains to prove the following proposition:

Proposition 1.2. (3.2 of last lecture) If $-1 \notin T_{S}$ (i.e. if T_{S} is a proper preordering), then $K_{S} \neq \phi$.

For proving this we need the following results:
Lemma 1.3.1. (3.4.1 of last lecture) Let A be a commutative ring with 1 . Let P be a maximal proper preordering in A. Then P is an ordering.
Proof. We have to show:
(i) $P \cup-P=A$, and
(ii) $\mathfrak{p}:=P \cap-P$ is a prime ideal of A.
(i) Assume $a \in A$, but $a \notin P \cup-P$.

By maximality of P, we have: $-1 \in(P+a P)$ and $-1 \in(P-a P)$
Thus

$$
\begin{aligned}
& -1=s_{1}+a t_{1} \quad \text { and } \\
& -1=s_{2}-a t_{2} ; s_{1}, s_{2}, t_{1}, t_{2} \in P
\end{aligned}
$$

So (rewritting)

$$
\begin{aligned}
-a t_{1} & =1+s_{1} \text { and } \\
a t_{2} & =1+s_{2}
\end{aligned}
$$

Multiplying we get:

$$
-a^{2} t_{1} t_{2}=1+s_{1}+s_{2}+s_{1} s_{2}
$$

$$
\Rightarrow-1=s_{1}+s_{2}+s_{1} s_{2}+a^{2} t_{1} t_{2} \in P, \text { a contradiction. }
$$

(ii) Now consider $\mathfrak{p}:=P \cap-P$, clearly it is an ideal.

We claim that \mathfrak{p} is prime.
Let $a b \in \mathfrak{p}$ and $a, b \notin \mathfrak{p}$.
Assume w.l.o.g. that $a, b \notin P$.
Then as above in (i), we get:
$-1 \in(P+a P)$ and $-1 \in(P+b P)$
So, $-1=s_{1}+a t_{1}$ and
$-1=s_{2}+b t_{2} ; s_{1}, s_{2}, t_{1}, t_{2} \in P$
Rearranging and multiplying we get:

$$
\begin{aligned}
& \left(a t_{1}\right)\left(b t_{2}\right)=\left(1+s_{1}\right)\left(1+s_{2}\right)=1+s_{1}+s_{2}+s_{1} s_{2} \\
& \Rightarrow-1=\underbrace{s_{1}+s_{2}+s_{1} s_{2}}_{\in P} \underbrace{-a b t_{1} t_{2}}_{\in \mathfrak{p} \subset P} \\
& \Rightarrow-1 \in P, \text { a contradiction. }
\end{aligned}
$$

Lemma 1.3.2. (3.4.2 of last lecture) Let A be a commutative ring with 1 and $P \subseteq A$ an ordering. Then P induces uniquely an ordering \leq_{P} on $F:=f f(A / \mathfrak{p})$ defined by:

$$
\forall a, b \in A, b \notin \mathfrak{p}: \frac{\bar{a}}{\bar{b}} \geq_{P} 0(\text { in } F) \Leftrightarrow a b \in P \text {, where } \bar{a}=a+\mathfrak{p} \text {. }
$$

Recall 1.3.3. (Tarski Transfer Principle) Suppose $(\mathbb{R}, \leq) \subseteq(F, \leq)$ is an ordered field extension of \mathbb{R}. If $\underline{x} \in F^{n}$ satisfies a finite system of polynomial equations and inequalities with coefficients in \mathbb{R}, then $\exists \underline{r} \in \mathbb{R}^{n}$ satisfying the same system.

Using lemma 1.3.1, lemma 1.3.2 and TTP (recall 1.3.3), we prove the proposition 1.2 as follows:

Proof of Propostion 1.2. To show: $-1 \notin T_{S} \Rightarrow K_{S} \neq \phi$.
Set $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[\underline{X}]$
$-1 \notin T_{S} \Rightarrow T_{S}$ is a proper preordering.
By Zorn, extend T_{S} to a maximal proper preordering P.
By lemma 1.3.1, P is an ordering on $\mathbb{R}[\underline{X}] ; \mathfrak{p}:=P \cap-P$ is prime.
By lemma 1.3.2, let $\left(F, \leq_{P}\right)=\left(f f(\mathbb{R}[\underline{X}] / \mathfrak{p}), \leq_{P}\right)$ is an ordered field extension of (\mathbb{R}, \leq).
Now consider the system $\mathcal{S}:=\left\{\begin{array}{c}g_{1} \geq 0 \\ \vdots \\ g_{s} \geq 0 .\end{array}\right.$
Claim: The system \mathcal{S} has a solution in F^{n}, namely $\underline{X}:=\left(\overline{X_{1}}, \ldots, \overline{X_{n}}\right)$,
i.e. to show: $g_{i}\left(\overline{X_{1}}, \ldots, \overline{X_{n}}\right) \geq_{P} 0 ; i=1, \ldots, s$.

Indeed $g_{i}\left(\overline{X_{1}}, \ldots, \overline{X_{n}}\right)=\overline{g_{i}\left(X_{1}, \ldots, X_{n}\right)}$, and since $g_{i} \in T_{S} \subset P$, it follows by definition of \leq_{P} that $\overline{g_{i}} \geq_{P} 0$.

Now apply TTP (recall 1.3.3) to conclude that:
$\exists \underline{r} \in \mathbb{R}^{n}$ satisfying the system \mathcal{S}, i.e. $g_{i}(\underline{x}) \geq 0 ; i=1, \ldots, s$.
$\Rightarrow \underline{r} \in K_{S} \Rightarrow K_{S} \neq \phi$.
This completes step II.
Now we will do step I:
i.e. we show $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(1)$
(1) $\Rightarrow(2)$

Let $f \geq 0$ on $K_{S}, f \not \equiv 0$.
Consider $S^{\prime} \subseteq \mathbb{R}[\underline{X}, Y], S^{\prime}:=S \cup\{Y f-1,-Y f+1\}$
So, $K_{S^{\prime}}=\left\{(\underline{x}, y) \mid g_{i}(\underline{x}) \geq 0 ; y f(\underline{x})=1\right\}$.

Thus $f(\underline{X}, Y)=f(\underline{X})>0$ on $K_{S^{\prime}}$, so applying (1) $\exists p^{\prime}, q^{\prime} \in T_{S^{\prime}}$ s.t.

$$
p^{\prime}(\underline{X}, Y) f(\underline{X})=1+q^{\prime}(\underline{X}, Y)
$$

Substitute $Y:=\frac{1}{f(\underline{X})}$ in above equation and clear denominators by multiplying both sides by $f(\underline{X})^{2 m}$ for $m \in \mathbb{Z}_{+}$sufficiently large to get:

$$
p(\underline{X}) f(\underline{X})=f(\underline{X})^{2 m}+q(\underline{X}),
$$

with $p(\underline{X}):=f(\underline{X})^{2 m} p^{\prime}\left(\underline{X}, \frac{1}{f(\underline{X})}\right) \in \mathbb{R}[\underline{X}]$ and

$$
q(\underline{X}):=f(\underline{X})^{2 m} q^{\prime}\left(\underline{X}, \frac{1}{f(\underline{X})}\right) \in \mathbb{R}[\underline{X}] .
$$

To finish the proof we claim that: $p(\underline{X}), q(\underline{X}) \in T_{S}$ for sufficiently large m.
Observe that $p^{\prime}(\underline{X}, Y) \in T_{S^{\prime}}$, so p^{\prime} is a sum of terms of the form:

$$
\underbrace{\sigma(\underline{X}, Y)}_{\in \mathbb{R}[\underline{X}, Y]^{2}} g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}(Y f(\underline{X})-1)^{e_{s+1}}(-Y f(\underline{X})+1)^{e_{s+2}} ; e_{1}, \ldots, e_{s}, e_{s+1}, e_{s+2} \in\{0,1\}
$$

say $\sigma(\underline{X}, Y)=\sum_{j} h_{j}(\underline{X}, Y)^{2}$.
Now when we substitute Y by $\frac{1}{f(\underline{X})}$ in $p^{\prime}(\underline{X}, Y)$, all terms with e_{s+1} or e_{s+2} equal to 1 vanish.
So, the remaining terms are of the form

$$
\sigma\left(\underline{X}, \frac{1}{f(\underline{X})}\right) g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}=\left(\sum_{j}\left[h_{j}\left(\underline{X}, \frac{1}{f(\underline{X})}\right)\right]^{2}\right) g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}
$$

So, we want to choose m large enough so that $f(\underline{X})^{2 m} \sigma\left(\underline{X}, \frac{1}{f(\underline{X})}\right) \in \Sigma \mathbb{R}[\underline{X}]^{2}$.
Write $h_{j}(\underline{X}, Y)=\sum_{i} h_{i j}(\underline{X}) Y^{i}$
Let $m \geq \operatorname{deg}\left(h_{j}(\underline{X}, Y)\right)$ in Y, for all j.
Substituting $Y=\frac{1}{f(\underline{X})}$ in $h_{j}(\underline{X}, Y)$ and multiplying by $f(\underline{X})^{m}$, we get:

$$
f(\underline{X})^{m} h_{j}\left(\underline{X}, \frac{1}{f(\underline{X})}\right)=\sum_{i} h_{i j}(\underline{X}) f(\underline{X})^{m-i}, \text { with }(m-i) \geq 0 \forall i
$$

so that $f(\underline{X})^{m} h_{j}\left(\underline{X}, \frac{1}{f(\underline{X})}\right) \in \mathbb{R}[\underline{X}]$, for all j.

$$
\text { So } \begin{aligned}
& f(\underline{X})^{2 m} \sigma\left(\underline{X}, \frac{1}{f(\underline{X})}\right)=f(\underline{X})^{2 m}\left(\sum_{j}\left[h_{j}\left(\underline{X}, \frac{1}{f(\underline{X})}\right)\right]^{2}\right) \\
& =\sum_{j}\left[f(\underline{X})^{m} h_{j}\left(\underline{X}, \frac{1}{f(\underline{X})}\right)\right]^{2} \in \Sigma \mathbb{R}[\underline{X}]^{2}
\end{aligned}
$$

Thus p and (similarly) $q \in T_{S}$, which proves our claim and hence (1) \Rightarrow (2).
(2) $\Rightarrow(3)$

Assume $f=0$ on K_{S}. Apply (2) to f and $-f$ to get:

$$
\begin{aligned}
p_{1} f & =f^{2 m_{1}}+q_{1} \\
-p_{2} f & =f^{2 m_{2}}+q_{2} ; \text { where } p_{1}, p_{2}, q_{1}, q_{2} \in T_{S}, m_{i} \in \mathbb{Z}_{+}
\end{aligned}
$$

Multiplying yields:

$$
\begin{aligned}
& -p_{1} p_{2} f^{2}=f^{2\left(m_{1}+m_{2}\right)}+f^{2 m_{1}} q_{2}+f^{2 m_{2}} q_{1}+q_{1} q_{2} \\
\Rightarrow & -f^{2\left(m_{1}+m_{2}\right)}=\underbrace{p_{1} p_{2} f^{2}+f^{2 m_{1}} q_{2}+f^{2 m_{2}} q_{1}+q_{1} q_{2}}_{\in T_{S}}
\end{aligned}
$$

i.e. $-f^{2 m} \in T_{S}, m \in \mathbb{Z}_{+}$
(3) \Rightarrow (4)

Assume $K_{S}=\phi$
\Rightarrow the constant polynomial $f(\underline{X}) \equiv 1$ vanishes on K_{S}.
Applying (3), gives $-1 \in T_{S}$.
$\underline{(4) \Rightarrow(1)}$
Let $S^{\prime}=S \cup\{-f\}$
Since $f>0$ on K_{S} we have $K_{S^{\prime}}=\phi$, so $-1 \in T_{S^{\prime}}$ by (4).
Moreover from $S^{\prime}=S \cup\{-f\}$, we have $T_{S}^{\prime}=T_{S}-f T_{S}$
$\Rightarrow-1=q-p f$; for some $p, q \in T_{S}$
i.e. $p f=1+q$

This completes step I and hence the proof of Positivstellensatz.
We will now study other forms of the Real Nullstellensatz that will relate it to Hilbert's Nullstellensatz.

2. EXKURS IN COMMUTATIVE ALGEBRA

Recall 2.1. Let K be a field, $S \subseteq K[\underline{X}]$. Define
$\mathcal{Z}(S):=\left\{\underline{x} \in K^{n} \mid g(\underline{x})=0 \forall g \in S\right\}$, the zero set of S.
Proposition 2.2. Let $V \subseteq K^{n}$. Then the following are equivalent:
(1) $V=\mathcal{Z}(S)$; for some finite $S \subseteq K[\underline{X}]$
(2) $V=\mathcal{Z}(S)$; for some set $S \subseteq K[\underline{X}]$
(3) $V=\mathcal{Z}(I)$; for some ideal $I \subseteq K[\underline{X}]$

Proof. (1) \Rightarrow (2) Clear.
(2) \Rightarrow (3) Take $I:=<S>$, the ideal generated by S.
(3) \Rightarrow (1) Using Hilbert Basis Theorem (i.e. for a field K, every ideal in $K[\underline{X}]$ is finitely generated):

$$
\begin{aligned}
& I=\langle S\rangle, S \text { finite } \\
& \Rightarrow \mathcal{Z}(I)=\mathcal{Z}(S) .
\end{aligned}
$$

Definition 2.3. $V \subseteq K^{n}$ is an algebraic set if V satisfies one of the equivalent conditions of Proposition 2.2.

Definition 2.4. Given a subset $A \subseteq K^{n}$, we form:
$\mathcal{I}(A):=\{f \in K[\underline{X}] \mid f(\underline{a})=0 \quad \forall \underline{a} \in A\}$.
Proposition 2.5. Let $A \subseteq K^{n}$. Then
(1) $I(A)$ is an ideal called the ideal of vanishing polynomials on A.
(2) If $A=V$ is an algebraic set in K^{n}, then $\mathcal{Z}(\mathcal{I}(V))=V$
(3) the map $V \longmapsto I(V)$ is a 1-1 map from the set of algebraic sets in K^{n} into the set of ideals of $K[\underline{X}]$.

Remark 2.6. Note that for an ideal I of $K[\underline{X}]$, the inclusion $I \subseteq \mathcal{I}(\mathcal{Z}(I))$ is always true.
[Proof. Say (by Hilbert Basis Theorem) $I=<g_{1}, \ldots, g_{s}>, g_{i} \in K[\underline{X}]$. Then $\mathcal{Z}(I)=\left\{\underline{x} \in K^{n} \mid g_{i}(\underline{x})=0 \forall i=1, \ldots, s\right\}$,

$$
\mathcal{I}(\mathcal{Z}(I))=\{f \in K[\underline{X}] \mid f(\underline{x})=0 \quad \forall \underline{x} \in \mathcal{Z}(I)\} .
$$

Assume $f=h_{1} g_{1}+\ldots+h_{s} g_{s} \in I$, then $f(\underline{x})=0 \forall \underline{x} \in \mathcal{Z}(I)$
[since by definition $\underline{x} \in \mathcal{Z}(I) \Rightarrow g_{i}(\underline{x})=0 \forall i=1, \ldots, s$]
$\Rightarrow f \in \mathcal{I}(\mathcal{Z}(I))$.
But in general it is false that $\mathcal{I}(\mathcal{Z}(I))=I$. Hilbert's Nullstellensatz studies necessary and sufficient conditions on K and I so that this identity holds.
then

- $\sigma_{0} \not \equiv 0 \Rightarrow \operatorname{deg}\left(\sigma_{0}\right)$ is even.
- $\sigma_{1} \not \equiv 0 \Rightarrow \operatorname{deg}\left(\sigma_{1}\right)$ is even.
- $\sigma_{0} \equiv 0 \Rightarrow \operatorname{deg}(t)$ is odd and ≥ 3.
- $\sigma_{1} \equiv 0 \Rightarrow \operatorname{deg}(t)$ is even.
- $\sigma_{0} \not \equiv 0, \sigma_{1} \not \equiv 0$, then

$$
\text { [even }=] \operatorname{deg}\left(\sigma_{0}\right) \neq \operatorname{deg}\left(\sigma_{1} x^{3}\right) \quad[=\text { odd }]
$$

So, $\operatorname{deg}(t)=\max \left\{\operatorname{deg}\left(\sigma_{0}\right), \operatorname{deg}\left(\sigma_{1} x^{3}\right)\right\}$ is even or odd ≥ 3.
This proves that $X \notin T_{S}$ and hence $T_{S} \subsetneq \operatorname{Psd}\left(K_{S}\right)$.
Example 2.4.(2) $S=\phi, n=2 \Rightarrow K_{S}=\mathbb{R}^{2}$ and $T_{S}=M_{S}=\sum \mathbb{R}[X, Y]^{2}$.
We see that $T_{S} \subsetneq \operatorname{Psd}\left(K_{S}\right)$
For example: $m(X, Y):=X^{2} Y^{4}+X^{4} Y^{2}-3 X^{2} Y^{2}+1 \in \operatorname{Psd}\left(\mathbb{R}^{2}\right)$, but $\notin T_{S}=$ $\sum \mathbb{R}[X, Y]^{2}$.

3. POSITIVSTELLENSATZ (Geometric Version)

Theorem 3.1. (Positivstellensatz: Geometric Version) Let $A=\mathbb{R}[\underline{X}]$. Let $S=$ $\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[\underline{X}], K_{S}, T_{S}$ as defined above, $f \in \mathbb{R}[\underline{X}]$. Then
(1) $f>0$ on $K_{S} \Leftrightarrow \exists p, q \in T_{S}$ s.t. $p f=1+q$
(2) $f \geq 0$ on $K_{S} \Leftrightarrow \exists m \in \mathbb{Z}_{+}, \exists p, q \in T_{S}$ s.t. $p f=f^{2 m}+q$
(3) $f=0$ on $K_{S} \Leftrightarrow \exists m \in \mathbb{Z}_{+}$s.t. $-f^{2 m} \in T_{S}$
(4) $K_{S}=\phi \Leftrightarrow-1 \in T_{S}$.

Important corollaries to the PSS are:
(i) The real Nullstellensatz
(ii) Hilbert's $17^{\text {th }}$ problem
(iii) Abstract Positivstellensatz

The proof of the PSS consists of two parts:
-Step I: prove that $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(1)$
-Step II: prove (4) [using Tarski Transfer]

We shall start the proof with step II:
Clearly $K_{S} \neq \phi \Rightarrow-1 \notin T_{S}$ (since $-1 \in T_{S} \Rightarrow K_{S}=\phi$), so it only remains to prove the following proposition:

Proposition 3.2. If $-1 \notin T_{S}$ (i.e. if T_{S} is a proper preordering), then $K_{S} \neq \phi$.
For proving this we need to recall some definitions and results:
Definition 3.3.1. Let A be a commutative ring with 1 , a preordering $P \subseteq A$ is said to be an ordering on A if $P \cup-P=A$ and $\mathfrak{p}:=P \cap-P$ is a prime (hence proper) ideal of A.

Definition 3.3.2. Let P be an ordering in A, then $\operatorname{Support} P:=\mathfrak{p}$ (the prime ideal $P \cap-P)$.

Lemma 3.4.1. Let A be a commutative ring with 1. Let P be a maximal proper preordering in A. Then P is an ordering.

Lemma 3.4.2. Let A be a commutative ring with 1 and $P \subseteq A$ an ordering. Then P induces uniquely an ordering on $F:=f f(A / \mathfrak{p})$ defined by:

$$
\forall a, b \in A, \frac{\bar{a}}{\bar{b}} \geq_{P} 0(\text { in } F) \Leftrightarrow a b \in P \text {, where } \bar{a}=a+\mathfrak{p} \text {. }
$$

POSITIVE POLYNOMIALS LECTURE NOTES

(04: 22/04/10)

SALMA KUHLMANN

Contents

1. Exkurs in commutative algebra (continued) 1
2. Radical ideals and Real ideals 2
3. The Real Spectrum 5

1. EXKURS IN COMMUTATIVE ALGEBRA

Recall 1.1. Let K be a field and I an ideal of $K[\underline{X}]$, then the inclusion $I \subseteq I(\mathcal{Z}(I))$ is always true.

But in general it is false that

$$
\begin{equation*}
\mathcal{I}(\mathcal{Z}(I))=I \tag{1}
\end{equation*}
$$

Note 1.2. In other words we study the map

$$
\begin{aligned}
I:\left\{\text { algebraic sets in } K^{n}\right\} & \leadsto\{\text { Ideals of } K[\underline{X}]\} \\
V & \longmapsto \mathcal{I}(V)
\end{aligned}
$$

- Clearly this map is 1-1 (proposition 2.5 of last lecture).
- What is the image of I ?

Let I an ideal, $I=\mathcal{I}(V)$

$$
\Rightarrow \mathcal{Z}(I)=\underbrace{\mathcal{Z}(\mathcal{I}(V))=V}_{\text {(prop. } 2.5 \text { of last lecture) }}
$$

Thus an ideal I is in the image $\Leftrightarrow I=I(\mathcal{Z}(I))$
So studying the equality (1) amounts to studying (2).

2. RADICAL IDEALS AND REAL IDEALS

Remark 2.1. For an ideal $I \subseteq K[\underline{X}]$, answer to $I=\mathcal{I}(\mathcal{Z}(I))$ is known

- when K is algebraically closed (Hilbert's Nullstellensatz),
or
- when K is real closed (Real Nullstellensatz).

To formulate these two important theorems we need to introduce some terminology:

Definition 2.2. Let A be a commutative ring with $1, I \subseteq A, I$ an ideal of A. Define
(i) $\sqrt{I}:=\left\{a \in A \mid \exists m \in \mathbb{N}\right.$ s.t. $\left.a^{m} \in I\right\}$, the radical of I.
(ii) $\sqrt[R]{I}:=\left\{a \in A \mid \exists m \in \mathbb{N}\right.$ and $\sigma \in \Sigma A^{2}$ s.t. $\left.a^{2 m}+\sigma \in I\right\}$, the real radical of I.

Remark 2.3. It follows from the definition that $I \subseteq \sqrt{I} \subseteq \sqrt[R]{I}$.
Definition 2.4. Let I be an ideal of A. Then
(1) I is called radical ideal if $I=\sqrt{I}$, and
(2) I is called real radical ideal (or just real ideal) if $I=\sqrt[R]{I}$.

Remark 2.5. (i) Every prime ideal is radical, but the converse does not hold in general.
(ii) I real radical $\Rightarrow I$ radical (follows from Remark 2.3 and Definition 2.4).

Proposition 2.6. Let A be a commutative ring with $1, I \subseteq A$ an ideal. Then
(1) I is radical $\Leftrightarrow \forall a \in A: a^{2} \in I \Rightarrow a \in I$
(2) I is real radical \Leftrightarrow for $k \in \mathbb{N}, \forall a_{1}, \ldots, a_{k} \in A: \sum_{i=1}^{k} a_{i}^{2} \in I \Rightarrow a_{1} \in I$.

Proof. (1) (\Rightarrow) Trivially follows from definition.
(\Leftarrow) Let $a \in \sqrt{I}$, then $\exists m \geq 1$ s.t. $a^{m} \in I$.
Let k (big enough) s.t. $2^{k} \geq m$, then

$$
a^{2^{k}}=a^{m} a^{2^{k}-m} \in I
$$

Now we show by induction on k that:

$$
\left[a^{2} \in I \Rightarrow a \in I\right] \Rightarrow\left[a^{2^{k}} \in I \Rightarrow a \in I\right]
$$

For $k=1$, it is clear.
Assume it true for k and show it true for $k+1$, i.e. let $a^{2^{k+1}} \in I$, then

$$
a^{2^{k+1}}=\left(a^{2^{k}}\right)^{2} \in I \underbrace{\Rightarrow}_{\text {(by assumption) }} a^{2^{k}} \in I \underbrace{\Rightarrow}_{\text {(induction hypothesis) }} a \in I .
$$

$(2)(\Rightarrow)$ Trivially follows from definition.
(\Leftarrow) Let $a \in \sqrt[R]{I}$, then $\exists m \geq 1, \sigma=\Sigma a_{i}{ }^{2}\left(\in \Sigma A^{2}\right)$ s.t. $a^{2 m}+\sigma \in I$.

$$
\Rightarrow\left(a^{m}\right)^{2}+\sigma \in I \underbrace{\Rightarrow}_{\text {(by assumption) }} a^{m} \in I \underbrace{\Rightarrow}_{\text {(as above in (1)) }} a \in I .
$$

Remark 2.7. (i) Since real radical ideal \Rightarrow radical ideal, so in particular (2) \Rightarrow (1) in above proposition.
(ii) A prime ideal is always radical (as in Remark 2.5), but need not be real.

Proposition 2.8. Let $\mathfrak{p} \subseteq A$ be a prime ideal. Then \mathfrak{p} is real $\Leftrightarrow f f(A / \mathfrak{p})$ is a real field.

Proof. \mathfrak{p} is not real
$\Leftrightarrow \exists a, a_{1}, \ldots, a_{k} \in A ; a \notin \mathfrak{p}$ such that $a^{2}+\sum_{i=1}^{k} a_{i}^{2} \in \mathfrak{p}$
$\Leftrightarrow \bar{a}^{2}+\sum_{i=1}^{k} \bar{a}_{i}^{2}=0$ and $\bar{a} \neq 0($ in $A / \mathfrak{p})$
$\Leftrightarrow f f(A / \mathfrak{p})$ is not real.
Theorem 2.9. Let K be a field, $A=K[\underline{X}], I \subseteq A$ an ideal. Then
(1) (Hilbert's Nullstellensatz) Assume K is algebraically closed, then $\mathcal{I}(\mathcal{Z}(I))=\sqrt{I}$.
(Proved in B5)
(2) (Real Nullstellensatz) Assume K is real closed, then

$$
\begin{aligned}
& \quad \mathcal{I}(\mathcal{Z}(I))=\sqrt[R]{I} \\
& \text { (Will be deduced from Positivstellensatz) }
\end{aligned}
$$

Corollary 2.10. Consider the map:

$$
I:\left\{\text { algebraic sets in } K^{n}\right\} \longrightarrow\{\text { Ideals of } K[\underline{X}]\}
$$

(1) If K is algebraically closed, then

Image $I=\{I \mid I$ is a radical ideal $\}$
(2) If K is real closed, then

Image $I=\{I \mid I$ is real ideal $\}$
Now we want to deduce the Real Nullstellensatz [Theorem 2.9 (2)] from part (3) of the Positivstellensatz (PSS) [Theorem 1.1 of last lecture].

We need the following 2 (helping) lemmas:
Lemma 2.11. Let A be a commutative ring and M be a quadratic module, then:
(1) $M \cap(-M)$ is an ideal of A.
(2) The following are equivalent for $a \in A$:
(i) $a \in \sqrt{M \cap(-M)}$
(ii) $a^{2 m} \in M \cap(-M)$ for some $m \in \mathbb{N}, m \geq 1$
(iii) $-a^{2 m} \in M$ for some $m \in \mathbb{N}, m \geq 1$.

Lemma 2.12. Let A be a ring, $M\left(=M_{S}\right)$ a quadratic module (resp. preordering) of A generated by $S=\left\{g_{1}, \ldots, g_{s}\right\} ; g_{1}, \ldots, g_{s} \in A$. Let I be an ideal in A generated by h_{1}, \ldots, h_{t}, i.e. $I=\left(h_{1}, \ldots, h_{t}\right) ; h_{1}, \ldots, h_{t} \in A$. Then $M+I$ is the quadratic module (resp. the preordering) generated by $S \cup\left\{ \pm h_{i} ; i=1, \ldots, t\right\}$.

Recall 2.13. $[(3)$ of PSS $]$ Let $A=\mathbb{R}[\underline{X}], S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[\underline{X}], f \in \mathbb{R}[\underline{X}]$. Then $f=0$ on $K_{S} \Leftrightarrow \exists m \in \mathbb{Z}_{+}$s.t. $-f^{2 m} \in T_{S}$.

Corollary 2.14. (to Recall 2.13 and Lemma 2.11) Let $K=K_{S} \subseteq \mathbb{R}^{n}, T=T_{S} \subseteq$ $\mathbb{R}[\underline{X}]$ (as in PSS), then

$$
\mathcal{I}\left(K_{S}\right)=\sqrt{T_{S} \cap\left(-T_{S}\right)} .
$$

Proof. $f=0$ on $K_{S} \quad \underbrace{\Leftrightarrow} \quad-f^{2 m} \in T_{S}$ for some $m \in \mathbb{Z}_{+}$

$$
\underbrace{\Leftrightarrow \Leftrightarrow}_{\text {(by lemma 2.11) }} f \in \sqrt{T_{S} \cap\left(-T_{S}\right)}
$$

Corollary 2.15. (to Lemma 2.11 and 2.12) Let A be a commutative ring with 1. Let I be an ideal of A. Consider the preordering $T:=\Sigma A^{2}+I$, then

$$
\sqrt[R]{I}=\sqrt{T \cap(-T)}
$$

Now Corollary 2.14 and Corollary 2.15 give the proof of the Real Nullstellensatz (RNSS) as follows:

Proof of RNSS [Theorem 2.9 (2)]. Let I be an ideal of $\mathbb{R}[\underline{X}]$
We show that: $I(\mathcal{Z}(I))=\sqrt[R]{I}$
$\mathbb{R}[\underline{X}]$ Noetherian $\Rightarrow I=\left(h_{1}, \ldots, h_{t}\right)$ (by Hilbert Basis Theorem) .
Consider $S:=\left\{ \pm h_{i} ; i=1, \ldots, t\right\}$
Then $K_{S}=\mathcal{Z}(I)$ [clearly]
Now by Lemma 2.12, we have:

$$
T=T_{S}=\Sigma \mathbb{R}[\underline{X}]^{2}+I
$$

So we get,
$\mathcal{I}(\mathcal{Z}(I))=\mathcal{I}\left(K_{S}\right) \underbrace{=}_{\text {(Cor 2.14) }} \sqrt{T \cap(-T)} \underbrace{=}_{(\text {Cor 2.15) }} \sqrt[R]{I}$

3. THE REAL SPECTRUM

Definition 3.1. Let A be a commutative ring with 1 . Then:
$\operatorname{Spec}(A):=\{\mathfrak{p} \mid \mathfrak{p}$ is prime ideal of $A\}$ is called the Spectrum of A.
$\operatorname{Sper}(A)=\operatorname{Spec}_{r}(A):=\{(\mathfrak{p}, \leq) \mid \mathfrak{p}$ is a prime ideal of A and \leq is an ordering on the (formally real) field $f f(A / p)\}$ is called the Real Spectrum of A.

Remark 3.2. (i) Several orderings may be defined on $f f(A / \mathfrak{p})$,

$$
\left(\mathfrak{p}, \leq_{1}\right) \neq\left(\mathfrak{p}, \leq_{2}\right) .
$$

(ii) $(\mathfrak{p}, \leq) \in \operatorname{Sper}(A) \Rightarrow \mathfrak{p}$ is real radical ideal. [see Proposition 2.8 and Remark 2.5 (i).]

Note 3.3. $\operatorname{Sper}(A):=\{\alpha=(\mathfrak{p}, \leq) \mid \mathfrak{p}$ is a real prime and \leq an ordering on $f f(A / \mathfrak{p})\}$.

POSITIVE POLYNOMIALS LECTURE NOTES

 (05: 27/04/10)SALMA KUHLMANN

Contents

1. The Real Spectrum1
2. Topologies on $\operatorname{Sper}(A)$ 2
3. Abstract Positivstellensatz 3

1. THE REAL SPECTRUM

Definition 1.1. Let A be a commutative ring with 1 . We set:
$\operatorname{Sper}(A):=\{\alpha=(\mathfrak{p}, \leq) \mid \mathfrak{p}$ is a prime ideal of A and \leq is an ordering on $f f(A / \mathfrak{p})\}$.
Note 1.2. $\operatorname{Sper}(A):=\{\alpha=(\mathfrak{p}, \leq) \mid \mathfrak{p}$ is a real prime and \leq an ordering on $f f(A / \mathfrak{p})\}$.
Definition 1.3. Let $\alpha=(\mathfrak{p}, \leq) \in \operatorname{Sper}(A)$, then $\mathfrak{p}=\operatorname{Supp}(\alpha)$, the Support of α.
Recall 1.4. An ordering $P \subseteq A$ is a preordering with $P \cup-P=A$ and $\mathfrak{p}:=P \cap-P$ prime ideal of A.

Definition 1.5. Alternatively, the Real Spectrum of $A, \operatorname{Sper}(A)$ can be defined as:

$$
\operatorname{Sper}(A):=\{P \mid P \subseteq A, P \text { is an ordering of } A\} .
$$

Remark 1.6. The two definitions of $\operatorname{Sper}(A)$ are equivalent in the following sense:
The map

$$
\begin{aligned}
\varphi:\{\text { Orderings in } A\} & \leadsto\{(\mathfrak{p}, \leq), \mathfrak{p} \text { real prime }, \leq \text { ordering on } f f(A / \mathfrak{p})\} \\
P & \longmapsto \mathfrak{p}:=P \cap-P, \leq_{P} \text { on } f f(A / \mathfrak{p})
\end{aligned}
$$

$$
\left(\text { where } \frac{\bar{a}}{\bar{b}} \geq_{P} 0 \Leftrightarrow a b \in P \text { with } \bar{a}=a+\mathfrak{p}\right)
$$

is bijective [where $\varphi^{-1}(\mathfrak{p}, \leq)$ is $\left.P:=\{a \in A \mid \bar{a} \geq 0\}\right]$.

2. TOPOLOGIES ON $\operatorname{Sper}(A)$

Definition 2.1. The Spectral Topology on $\operatorname{Sper}(A)$:
$\operatorname{Sper}(A)$ as a topological space, subbasis of open sets is:
$\mathcal{U}(a):=\{P \in \operatorname{Sper}(A) \mid a \notin P\}, a \in A$.
(So a basis of open sets consists of finite intersection, i.e. of sets

$$
\left.\mathcal{U}\left(a_{1}, \ldots, a_{n}\right):=\left\{P \in \operatorname{Sper}(A) \mid a_{1}, \ldots, a_{n} \notin P\right\}\right)
$$

Then close by arbitrary unions to get all open sets.
This is called Spectral Topology.
Definition 2.2. The Constructible (or Patch) Topology on $\operatorname{Sper}(A)$ is the topology that is generated by the open sets $\mathcal{U}(a)$ and there complements $\operatorname{Sper}(A) \backslash \mathcal{U}(a)$, for $a \in A$.
(Subbasis for constructible topology is $\mathcal{U}(a), \operatorname{Sper}(A) \backslash \mathcal{U}(a)$, for $a \in A$.)
Remark 2.3. The constructible topology is finer than the Spectral Topology (i.e. more open sets).

Special case: $A=\mathbb{R}[\underline{X}]$
Proposition 2.4. There is a natural embedding

$$
\mathcal{P}: \mathbb{R}^{n} \longrightarrow \operatorname{Sper}(\mathbb{R}[\underline{X}])
$$

given by

$$
\underline{x} \longmapsto P_{\underline{x}}:=\{f \in \mathbb{R}[\underline{x}] \mid f(\underline{x}) \geq 0\} .
$$

Proof. The map \mathcal{P} is well defined.
Verify that $P_{\underline{x}}$ is indeed an ordering of A.
Clearly it is a preordering, $P_{\underline{x}} \cup-P_{\underline{x}}=\mathbb{R}[\underline{X}]$.
$\mathfrak{p}:=P_{\underline{x}} \cap-P_{\underline{x}}=\{f \in \mathbb{R}[\underline{X}] \mid f(\underline{x})=0\}$ is actually a maximal ideal of $\mathbb{R}[\underline{X}]$,
since $\mathfrak{p}=\operatorname{Ker}\left(e v_{\underline{x}}\right)$, the kernel of the evaluation map

$$
\begin{aligned}
e v_{\underline{x}}: \mathbb{R}[\underline{X}] & \longrightarrow \mathbb{R} \\
f & \longmapsto f(\underline{x})
\end{aligned}
$$

so, $\frac{\mathbb{R}[\underline{X}]}{p} \simeq \underbrace{\mathbb{R}}_{\text {a field }}$ (by first isomorphism theorem)
$\Rightarrow \mathfrak{p}$ maximal $\Rightarrow \mathfrak{p}$ is prime ideal.
Theorem 2.5. $\mathcal{P}\left(\mathbb{R}^{n}\right)$, the image of \mathbb{R}^{n} in $\operatorname{Sper}(\mathbb{R}[\underline{X}])$ is dense in $(\operatorname{Sper}(\mathbb{R}[\underline{X}])$, Constructible Topology) and hence in $(\operatorname{Sper}(\mathbb{R}[\underline{X}])$, Spectral Topology). (i.e. \left.${\overline{\mathcal{P}}\left(\mathbb{R}^{n}\right)}^{\text {patch }}=\operatorname{Sper}(\mathbb{R}[\underline{X}])\right)$.

Proof. By definition, a basic open set in $\operatorname{Sper}(\mathbb{R}[\underline{X}])$ has the form
$\mathcal{U}=\left\{P \in \operatorname{Sper}(\mathbb{R}[\underline{X}]) \mid f_{i} \notin P, g_{j} \in P ; i=i, \ldots, s, j=1, \ldots, t\right\}$, for some $f_{i}, g_{j} \in \mathbb{R}[\underline{X}]$.
Let $P \in \mathcal{U}($ open neighbourhood of $P \in \operatorname{Sper}(\mathbb{R}[\underline{X}]))$
We want to show that: $\exists \underline{y} \in \mathbb{R}^{n}$ s.t. $P_{\underline{y}} \in \mathcal{U}$
Consider $F=f f(\mathbb{R}[\underline{X}] / \mathfrak{p}) ; \mathfrak{p}=\operatorname{Supp}(P)=P \cap-P$ and \leq ordering on F induced by P.
Then (F, \leq) is an ordered field extension of (\mathbb{R}, \leq).
Consider $\underline{x}=\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right) \in F^{n}$, where $\overline{x_{i}}=X_{i}+\mathfrak{p}$
Then by definition of \leq we have (as in the proof of PSS):
$f_{i}(\underline{x})<0$ and $g_{j}(\underline{x}) \geq 0 ; \forall i=i, \ldots, s, j=1, \ldots, t$.
By Tarski Transfer, $\exists \underline{y} \in \mathbb{R}^{n}$ s.t.

$$
\begin{aligned}
& f_{i}(\underline{y})<0\left(\Leftrightarrow f_{i} \notin P_{\underline{y}}\right) \text { and } g_{j}(\underline{y}) \geq 0\left(\Leftrightarrow g_{j} \in P_{\underline{y}}\right) ; i=i, \ldots, s, j=1, \ldots, t \\
& \Leftrightarrow P_{\underline{y}} \in \mathcal{U}
\end{aligned}
$$

3. ABSTRACT POSITIVSTELLENSATZ

Recall 3.1. T proper preordering $\Rightarrow \exists P$ an ordering of A s.t. $P \supseteq T$.
Definiton 3.2. Let P be an ordering of A, fix $a \in A$. We define Sign of a at P :

$$
a(P):=\left\{\begin{aligned}
1 & \text { if } a \notin-P \\
0 & \text { if } a \in P \cap-P \\
-1 & \text { if } a \notin P
\end{aligned}\right.
$$

(Note that this allows to consider $a \in A$ as a map on $\operatorname{Sper}(A)$).

Notation 3.3. We write: $a>0$ at P if $a(P)=1$
$a=0$ at P if $a(P)=0$
$a<0$ at P if $a(P)=-1$
Note that (in this notation) $a \geq 0$ at P iff $a \in P$.
Definition 3.4. Let $T \subseteq A$, then the Relative Spectrum of A with respect to T is

$$
\operatorname{Sper}_{T}(A)=\{P \mid P \supseteq T ; P \subseteq A \text { is an ordering of } A\} .
$$

Proposition 3.5. Let $T \subseteq A$ be a finitely generated preordering, say $T=T_{S}$; where $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq A$. Then

$$
\begin{aligned}
\operatorname{Sper}_{T}(A) & =\operatorname{Sper}_{S}(A)=\left\{P \in \operatorname{Sper}(A) \mid g_{i} \in P ; i=i, \ldots, s\right\} \\
& =\left\{P \in \operatorname{Sper}(A) \mid g_{i}(P) \geq 0 ; i=i, \ldots, s\right\}
\end{aligned}
$$

Remark 3.5. Let $T \subseteq A$

(i) $\operatorname{Sper}_{T}(A)$ inherits the relative spectral (respectively constructible) topology.
(ii) In case $T=T_{\left\{g_{1}, \ldots, g_{s}\right\}}$ is a finitely generated preordering, then the proof of Theorem 2.5 goes through to give the following relative version for Sper $_{T}$:

Theorem 3.6. (Relative version of Theorem 2.5) Let $T=T_{S}=$ finitely generated preordering; $S=\left\{g_{1}, \ldots, g_{s}\right\}$. Let $K=K_{S}=\left\{\underline{x} \in \mathbb{R}^{n} \mid g_{i}(\underline{x}) \geq 0\right\} \subseteq \mathbb{R}^{n}$, a basic closed semi-algebraic set. Consider (Sper $_{T}$, Constructible Topology). Then

$$
\mathcal{P}: K \leadsto \operatorname{Sper}_{T}(\mathbb{R}[\underline{X}])
$$

(defined as before)

$$
\underline{x} \longmapsto P_{\underline{x}}=\{f \in \mathbb{R}[\underline{x}] \mid f(\underline{x}) \geq 0\}
$$

is well defined (i.e. $P_{\underline{x}} \supseteq T \forall \underline{x} \in K$).
Moreover $\mathcal{P}(K)$ is dense in $\left(\operatorname{Sper}_{T}(\mathbb{R}[\underline{X}])\right.$, Constructible Topology $)$.
Proof. The proof is analogous to the proof of Theorem 2.5.
(Note the fact that T is finitely generated is crucial here to be able to apply Tarski Transfer.)

Theorem 3.7. (Abstract Positivstellensatz) Let A be a commutative ring, $T \subseteq A$ be a preordering of A (not necessarily finitely generated). Then for $a \in A$:

$$
\text { (1) } a>0 \text { on } \operatorname{Sper}_{T}(A) \Leftrightarrow \exists p, q \in T \text { s.t. } p a=1+q
$$

(2) $a \geq 0$ on $\operatorname{Sper}_{T}(A) \Leftrightarrow \exists p, q \in T, m \geq 0$ s.t. $p a=a^{2 m}+q$
(3) $a=0$ on $\operatorname{Sper}_{T}(A) \Leftrightarrow \exists m \geq 0$ s.t. $-a^{2 m} \in T$.

Proof. (1) Let $a>0$ on $\operatorname{Sper}_{T}(A)$. Suppose for a contradiction that there are no elements $p, q \in T$ s.t. $p a=1+q$ i.e. s.t. $-1=q-p a$
i.e. $-1 \neq q-p a \forall p, q \in T$

Thus $-1 \notin T^{\prime}:=T-T a$.
$\Rightarrow T^{\prime}$ is a proper preordering.
So (by recall 3.1) $\exists P$ an ordering of A with $T^{\prime} \subseteq P$.
Now observe that $T \subseteq P$ i.e. $P \in \operatorname{Sper}_{T}(A)$ but $-a \in P$ (i.e. $a(P) \leq 0$) i.e. $a \leq 0$ on P, a contradiction to the assumption.

Proposition 3.8. Abstract Positivstellensatz \Rightarrow Positivstellensatz.
Proof. $A=\mathbb{R}[\underline{X}], T=T_{S}=T_{\left\{g_{1}, \ldots, g_{s}\right\}}, K=K_{S}$.
It suffices to show (2) of PSS [Theorem 1.1 of lecture 03 on 20/04/10], i.e. $f \geq 0$ on $K_{S} \Leftrightarrow \exists m \in \mathbb{Z}_{+}, \exists p, q \in T_{S}$ s.t. $p f=f^{2 m}+q$.
Let $f \in \mathbb{R}[\underline{X}]$ and $f \geq 0$ on K_{S}.
It suffices [by (2) of Theorem 3.7] to show that $f \geq 0$ on $\operatorname{Sper}_{T}(\mathbb{R}[\underline{X}])$:
If not then $\exists P \in \operatorname{Sper}_{T}(\mathbb{R}[\underline{X}])$ s.t. $f \notin P$
So, $P \in \mathcal{U}_{T}(f)$
(open neighbourhood of $P \in \operatorname{Sper}_{T}(\mathbb{R}[\underline{X}])$)
Now by [Theorem 3.6 i.e.] relative density of $\mathcal{P}(K)$ in $\operatorname{Sper}_{T}(\mathbb{R}[\underline{X}])$:
$\exists \underline{x} \in K$ s.t. $P_{\underline{x}} \in \mathcal{U}_{T}(f)$
$\Rightarrow f \notin P_{\underline{x}} \Rightarrow f(\underline{x})<0$, a contradiction to the assumption.

POSITIVE POLYNOMIALS LECTURE NOTES

 (06: 29/04/10)SALMA KUHLMANN

Contents

1. Generalities about polynomials 1
2. PSD- and SOS- polynomials

2
3. Convex sets, cones and extremality 3

1. GENERALITIES ABOUT POLYNOMIALS

Definition 1.1. For a polynomial $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, we write

$$
p(\underline{X})=\sum_{i \in \underline{Z} \bar{Z}_{\downarrow}} c_{i} \underline{X^{i}} ; c_{i} \in \mathbb{R},
$$

where $\underline{X} \underline{\underline{i}}=X_{1}^{i_{1}} \ldots X_{n}^{i_{n}}$ is a monomial of degree $=|\underline{i}|=\sum_{k=1}^{n} i_{k}$ and $c_{i} \underline{X} \underline{X}$ is a term.
Definition 1.2. A polynomial $p(\underline{X}) \in \mathbb{R}[\underline{X}]$ is called homogeneous or form if all terms in p have the same degree.

Notation 1.3. $\mathcal{F}_{n, m}:=\left\{F \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right] \mid F\right.$ is a form and $\left.\operatorname{deg}(F)=m\right\}$, the set of all forms in n variables of degree m (also called set of n-ary m-ics forms), for $n, m \in \mathbb{N}$.
Convention: $0 \in \mathcal{F}_{n, m}$.
Definition 1.4. Let $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ of degree m. The homogenization of p w.r.t X_{n+1} is defined as

$$
p_{h}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right):=x_{n+1}^{m} p\left(\frac{x_{1}}{x_{n+1}}, \ldots, \frac{x_{n}}{x_{n+1}}\right)
$$

Note that p_{h} is a homogeneous polynomial of degree m and in $n+1$ variables i.e. $p_{h} \in \mathcal{F}_{n+1, m}$.

Proposition 1.5. (1) Let $p(\underline{X}) \in \mathbb{R}[\underline{X}], \operatorname{deg}(p)=m$, then

$$
\text { number of monomials of } p \leq\binom{ m+n}{n}
$$

(2) Let $F(\underline{X}) \in \mathcal{F}_{n, m}$, then

$$
\text { number of monomials of } F \leq N:=\binom{c+n-1}{n-1}
$$

Remark 1.6. $\mathcal{F}_{n, m}$ is a finite dimensional real vector space with $\mathcal{F}_{n, m} \simeq \mathbb{R}^{N}$.

2. PSD- AND SOS- POLYNOMIALS

Definition 2.1. (1) $p(\underline{x}) \in \mathbb{R}[\underline{X}]$ is positive semidefinite (psd) if

$$
p(\underline{x}) \geq 0 \forall \underline{x} \in \mathbb{R}^{n} .
$$

(2) $p(\underline{x}) \in \mathbb{R}[\underline{X}]$ is sum of squares (SOS) if $\exists p_{i} \in \mathbb{R}[\underline{X}]$ s.t.

$$
p(\underline{x})=\sum_{i} p_{i}(\underline{x})^{2} .
$$

Notation 2.2. $\mathcal{P}_{n, m}:=$ set of all forms $F \in \mathcal{F}_{n, m}$ which are psd, and $\sum_{n, m}:=$ set of all forms $F \in \mathcal{F}_{n, m}$ which are sos.

Lemma 2.3. If a polynomial p is psd then p has even degree.
Remark 2.4. From now on (using lemma 2.3) we will often write $\mathcal{P}_{n, 2 d}$ and $\sum_{n, 2 d}$.
Lemma 2.5. Let p be a homogeneous polynomial of degree 2 d , and p sos. Then every sos representation of p consists of homogeneous polynomials only, i.e.
$p(\underline{x})=\sum_{i} p_{i}(\underline{x})^{2} \Rightarrow p_{i}(\underline{x})$ homogenous of degree d, i.e. $p_{i} \in \mathcal{F}_{n, d}$.
Remark 2.6. The properties of psd-ness and sos-ness are preserved under homogenization (see the following lemma).

Lemma 2.7. Let $p(\underline{x})$ be a polynomial of degree m . Then
(1) p is psd iff p_{h} is psd,
(2) p is sos iff p_{h} is sos.

So we can focus our investigation of psdness of polynomials versus sosness of polynomials to those of forms, i.e. study and compare $\sum_{n, m} \subseteq \mathcal{P}_{n, m}$.

Theorem 2.8. (Hilbert) $\sum_{n, m}=\mathcal{P}_{n, m}$ iff
(i) $n=2$ [i.e. binary forms] or
(ii) $m=2$ [i.e. quadratic forms] or
(iii) $(n, m)=(3,4)$ [i.e. ternary quartics].

For the ternary quartics case $\left(\mathcal{F}_{3,4}\right)$, we shall study the convex cones $\mathcal{P}_{n, m}$ and $\sum_{n, m}$.

3. CONVEX SETS, CONES AND EXTREMALITY

Definition 3.1. A subset C of \mathbb{R}^{n} is convex set if $\underline{a}, \underline{b} \in C \Rightarrow \lambda \underline{a}+(1-\lambda) \underline{b} \in C$, for all $0<\lambda<1$.

Proposition 3.2. The intersection of an arbitrary collection of convex sets is convex.

Notation 3.3. $\mathbb{R}_{+}:=\{x \in \mathbb{R} \mid x \geq 0\}$.
Definition 3.4. Let $\underline{c}_{1}, \ldots, \underline{c}_{k} \in \mathbb{R}^{n}$. A convex combination of $\underline{c}_{1}, \ldots, \underline{c}_{k}$ is any vector sum

$$
\alpha_{1} \underline{c}_{1}+\ldots+\alpha_{k} \underline{c}_{k} \text {, with } \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}_{+} \text {and } \sum_{i=1}^{k} \alpha_{i}=1
$$

Theorem 3.5. A subset $C \subseteq \mathbb{R}^{n}$ is convex if and only if it contains all the convex combinations of its elements.

Proof. (\Leftarrow) clear
(\Rightarrow) Let $C \subseteq \mathbb{R}^{n}$ be a convex set. By definition C is closed under taking convex combinations with two summands. We show that it is also closed under finitely many summands.
Let $k>2$. By Induction on k, assuming it true for fewer than k.
Given a convex combination $\underline{c}=\alpha_{1} \underline{c}_{1}+\ldots+\alpha_{k} \underline{c}_{k}$, with $\underline{c}_{1}, \ldots, \underline{c}_{k} \in C$
Note that we may assume $0<\alpha_{i}<1$ for $i=i, \ldots, k$; otherwise we have fewer than k summands and we are done.
Consider $\underline{d}=\frac{\alpha_{2}}{1-\alpha_{1}} \underline{c}_{2}+\ldots+\frac{\alpha_{k}}{1-\alpha_{1}} \underline{c}_{k}$
we have $\frac{\alpha_{2}}{1-\alpha_{1}}, \ldots, \frac{\alpha_{k}}{1-\alpha_{1}}>0$ and $\frac{\alpha_{2}}{1-\alpha_{1}}+\ldots+\frac{\alpha_{k}}{1-\alpha_{1}}=1$
Thus \underline{d} is a convex combination of $k-1$ elements of C and $\underline{d} \in C$ by induction.
Since $\underline{c}=\alpha_{1} \underline{c}_{1}+\left(1-\alpha_{1}\right) \underline{d}$, it follows that $\underline{c} \in C$.

Definition 3.6. The intersection of all convex sets containing a given subset $S \subseteq$ \mathbb{R}^{n} is called the convex hull of S and is denoted by $\mathbf{c v x}(S)$.

Remark 3.7. The convex hull of $S \subseteq \mathbb{R}^{n}$ is a convex set and is the uniquely defined smallest convex set containing S.

Theorem 3.8. For any $S \subseteq \mathbb{R}^{n}$, $\operatorname{cvx}(S)=$ the set of all convex combinations of the elements of S.

Proof. (〇) The elements of S belong to $\mathrm{cvx}(S)$, so all their convex combinations belong to $\operatorname{cvx}(S)$ by Theorem 3.5.
(\subseteq) On the other hand we observe that the set of convex combinations of elements of S is itself a convex set:
let $\underline{c}=\alpha_{1} \underline{c}_{1}+\ldots+\alpha_{k} \underline{c}_{k}$ and $\underline{d}=\beta_{1} \underline{d}_{1}+\ldots+\beta_{l} \underline{d}_{l}$, where $\underline{c}_{i}, \underline{d}_{i} \in S$, then
$\lambda \underline{c}+(1-\lambda) \underline{d}=\lambda \alpha_{1} \underline{c}_{1}+\ldots+\lambda \alpha_{k} \underline{c}_{k}+(1-\lambda) \beta_{1} \underline{d}_{1}+\ldots+(1-\lambda) \beta_{l} \underline{d}_{l}, 0 \leq \lambda \leq 1$ is just another convex combination of elements of S.
So by minimality property of $\operatorname{cvx}(S)$, it follows that $\operatorname{cvx}(S) \subseteq$ the set of all convex combinations of the elements of S.

Corollary 3.9. The convex hull of a finite subset $\left\{\underline{s}_{1}, \ldots, \underline{s}_{k}\right\} \subseteq \mathbb{R}^{n}$ consists of all the vectors of the form $\alpha_{1} \underline{s}_{1}+\ldots+\alpha_{k} \underline{s}_{k}$ with $\alpha_{1}, \ldots, \alpha_{k} \geq 0$ and $\sum_{i} \alpha_{i}=1$.
Definitions 3.10. (1) A set which is the convex hull of a finite subset of \mathbb{R}^{n} is called a convex polytope, i.e. $C \subseteq \mathbb{R}^{n}$ is a convex polytope if $C=\operatorname{cvx}(S)$ for some finite $S \subseteq \mathbb{R}^{n}$.
(2) A point in a polytope is called a vertex if it is not on the line segment joining any other two distinct points of the polytope.

Remark 3.11. (1) Convex polytope is necessarily closed and bounded, i.e. compact.
(2) A convex polytope is always the convex hull of its vertices.

More general version for compact sets is the Krein Milman theorem:
Theorem 3.12. (Krein-Milman) Let $C \subseteq \mathbb{R}^{n}$ be a compact and convex set. Then C is the convex hull of its extreme points.
Definitions 3.13. $\underline{x} \in C$ is extreme if $C \backslash\{\underline{x}\}$ is convex.

POSITIVE POLYNOMIALS LECTURE NOTES

 (07: 04/05/10)SALMA KUHLMANN

This lecture was held by Dr. Annalisa Conversano.

Contents

1. Convex Cones and generalization of Krein Milman theorem 1
2. The cones $\mathcal{P}_{n, 2 d}$ and $\sum_{2,2 d} \quad 3$
3. Proof of $\mathcal{P}_{3,4}=\sum_{3,4}, 4$

1. CONVEX CONES AND GENERALIZATION OF KREIN MILMAN THEOREM

We want to prove: $\mathcal{P}_{3,4}=\sum_{3,4}$
(i.e each positive semidefinite form in 3 variables of degree 4 is a sum of squares.)

To do it , we need several notions and intermediate results.
Definition 1.1. $C \subseteq \mathbb{R}^{k}$ is a convex cone if

$$
\begin{aligned}
& \underline{x}, \underline{y} \in C \Rightarrow \underline{x}+\underline{y} \in C, \text { and } \\
& \underline{x} \in C, \lambda \in \mathbb{R}_{+} \Rightarrow \lambda \underline{x} \in C
\end{aligned}
$$

(i.e if it is closed under addition and under multiplication by non-negative scalars.)

Fact 1.2. $C \subseteq \mathbb{R}^{k}$ is a convex cone if and only if it is closed under non-negative linear combinations of its elements, i.e.
$\forall n \in \mathbb{N}, \forall \underline{x}_{1}, \ldots, \underline{x}_{n} \in C, \forall \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}_{+}: \lambda_{1} \underline{x}_{1}+\ldots+\lambda_{n} \underline{x}_{n} \in C$.
Definition 1.3. Let $S \subseteq \mathbb{R}^{k}$. Then
Cone (S) := \{non-negative linear combinations of elements from S \} is the convex cone generated by S .

Fact 1.4. For every $S \subseteq \mathbb{R}^{k}$, $\operatorname{Cone}(S)$ is the smallest convex cone which includes S.

Fact 1.5. If $S \subseteq \mathbb{R}^{k}$ is convex, then

$$
\operatorname{Cone}(S):=\left\{\lambda \underline{x} \mid \lambda \in \mathbb{R}_{+}, \underline{x} \in S\right\} .
$$

Definition 1.6. $R \subseteq \mathbb{R}^{k}$ is a ray if $\exists \underline{x} \in \mathbb{R}^{k}, \underline{x} \neq 0$ s.t.

$$
R=\left\{\lambda \underline{x} \mid \lambda \in \mathbb{R}_{+}\right\}:=\underline{x}^{+}
$$

(A ray R is a half-line.)
Definition 1.7. Let $C \subseteq \mathbb{R}^{k}$ be a convex set:
(1) a point $\underline{c} \in C$ is an extreme point if $C \backslash\{\underline{\{ }\}$ is convex.
(2) a ray $R \subseteq C$ is an extreme ray if $C \backslash R$ is convex.

Notation 1.8. Let $C \subseteq \mathbb{R}^{k}$ convex.
(1) $\operatorname{ext}(C):=$ set of all extreme points in C
(2) $\operatorname{rext}(C):=$ set of all extreme rays in C

Definition 1.9. (1) A straight line $L \subseteq \mathbb{R}^{k}$ is a translate of a 1-dimensional subspace, i.e. $L=\{\underline{x}+\lambda \underline{y} \mid \lambda \in \mathbb{R}\}$, for some $\underline{x}, \underline{y} \in \mathbb{R}^{k}, \underline{y} \neq 0$.
(2) $C \subseteq \mathbb{R}^{k}$ is line free if C contains no straight lines.

Theorem 1.10. (Klee) Let $C \subseteq \mathbb{R}^{k}$ be a closed line free convex set. Then

$$
C=\operatorname{cvx}(\operatorname{ext}(C) \cup \operatorname{rext}(C))
$$

Remark 1.11. (a) Let $C \subseteq \mathbb{R}^{k}$ be a convex cone and $\underline{x} \in C, \underline{x} \neq 0$. Then \underline{x} is not extreme.
Also $\underline{x}^{+} \subset C$.
(b) Let $C \subseteq \mathbb{R}^{k}$ be a line free convex cone. Then $\operatorname{ext}(C)=\{0\}$.

Proof. If not, then $C \backslash\{0\}$ is not convex, so
$\exists \underline{x}, \underline{y} \in C \backslash\{0\}, \exists 0<\lambda<1$ s.t. $\lambda \underline{x}+(1-\lambda) \underline{y} \notin C \backslash\{0\}$.
But C is convex, so

$$
\lambda \underline{x}+(1-\lambda) \underline{y}=\underline{0} .
$$

That means that $\underline{x}^{+} \cup \underline{y}^{+}$is a straight line in C, a contradiction.

Corollary 1.12. (Generalization of Krein-Milman to closed line free convex cone) Let $C \subseteq \mathbb{R}^{k}$ be a closed line free convex cone. Then

$$
C=\operatorname{cvx}(\operatorname{rext}(C))
$$

Proof. By Remark 1.11, $\operatorname{ext}(C)=\{0\}$.
Applying Theorem 1.10, we get $C=\operatorname{cvx}(\operatorname{rext}(C))$.
Remark 1.13. Let C be a line free convex cone
(1) $0 \neq \underline{x} \in C$ belongs to an extreme ray (equivalently, the ray $\left\{\lambda \underline{x} \mid \lambda \in \mathbb{R}_{+}\right\}$ generated by \underline{x} is extreme) if and only if whenever $\underline{x}=\underline{x}_{1}+\underline{x}_{2}$, with $\underline{x}_{1}, \underline{x}_{2} \in C$, then $\underline{x}_{i}=\lambda_{i} \underline{x} ; \lambda_{i} \in \mathbb{R}_{+}, \lambda_{1}+\lambda_{2}=1$ (i.e.
$\underline{x}_{1}, \underline{x}_{2}$ belong to the ray generated by \underline{x}.
(2) The set of convex linear combinations of points in extremal rays $=$ the set of sum of points in extremal rays.

2. THE CONES $\mathcal{P}_{n, 2 d}$ and $\sum_{2,2 d}$

Lemma 2.1. $\mathcal{P}_{n, 2 d}$ is a closed convex cone.
Proof. It is trivial that $\mathcal{P}_{n, 2 d}$ is a convex cone.
Next we prove that $\mathcal{P}_{n, 2 d}$ is closed:
Let $\left(P_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{n, 2 d}$ converging to P. Then for all $x \in \mathbb{R}^{n}, P_{k}(x) \rightarrow$ $P(x)$.
We want (to show that) $P \in \mathcal{P}_{n, 2 d}$,
otherwise $\exists x_{0} \in \mathbb{R}^{n}$, s.t. $P\left(x_{0}\right)=-\epsilon, \epsilon>0$.
And since $P_{k}\left(x_{0}\right) \rightarrow P\left(x_{0}\right)$ in $\mathbb{R}^{n}, \forall \epsilon>0, \exists m \in \mathbb{N}$ s.t $\forall k>m:\left|P_{k}\left(x_{0}\right)-P\left(x_{0}\right)\right|<\epsilon$, thus (taking the same ϵ as above): $\left|P_{k}\left(x_{0}\right)+\epsilon\right|<\epsilon \Rightarrow P_{k}\left(x_{0}\right)<0$, a contradiction (since $P_{k} \in \mathcal{P}_{n, 2 d} \forall k$). So, $P \in \mathcal{P}_{n, 2 d}$ and hence $\mathcal{P}_{n, 2 d}$ is closed.

Lemma 2.2. The cone $\mathcal{P}_{n, 2 d}$ is line free.
Proof. Suppose not, then there exists a straight line L in $\mathcal{P}_{n, 2 d}$.
Write $L=\{F+\lambda G \mid \lambda \in \mathbb{R}\} ; F, G \in \mathcal{P}_{n, 2 d}, G \neq 0$.
Since $-G \notin \mathcal{P}_{n, 2 d}$, take x_{0} s.t. $-G\left(x_{0}\right)<0$.
Then for (large enough λ i.e.) $\lambda \rightarrow-\infty$ we have $F\left(x_{0}\right)+\lambda G\left(x_{0}\right)<0$
$\Rightarrow L \nsubseteq \mathcal{P}_{n, 2 d}$.
Hence $\mathcal{P}_{n, 2 d}$ is line free.
Corollary 2.3. $\mathcal{P}_{n, 2 d}$ is the convex hull of its extremal rays.
Proof. By Lemma 2.1 and Lemma 2.2, $\mathcal{P}_{n, 2 d}$ is a line free closed convex cone. And therefore by the generalization of Krein-Milmann (Corollary 1.12) it is the convex hull of its extremal rays.

Definition 2.4. A form $F \in \mathcal{P}_{n, 2 d}$ is extremal in $\mathcal{P}_{n, 2 d}$ if
$F=F_{1}+F_{2}, F_{1}, F_{2} \in \mathcal{P}_{n, 2 d} \Rightarrow F_{i}=\lambda_{i} F ; i=1,2$ for $\lambda_{i} \in \mathbb{R}_{+}$satisfying $\lambda_{1}+\lambda_{2}=1$.
Similar definition for $\sum_{n, 2 d}$.
Note 2.5. By Remark 1.13 this just means that the ray generated by F is extremal.
Remark 2.6. (1) $F \in \sum_{n, 2 d}$ extremal $\Rightarrow F=G^{2}$ for some $G \in \mathcal{F}_{n, d}$.
(2) The converse of (1) is not true in general.

For example: $\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}$ is not extremal in $\sum_{2,4}$.
(3) G^{2} is extremal in $\sum_{n, 2 d} \nRightarrow G^{2}$ is extremal in $\mathcal{P}_{n, 2 d}$.

For instance Choi et al showed that
$p:=f^{2}$, where $f(x, y, z)=x^{4} y^{2}+y^{4} z^{2}+z^{4} x^{2}-3 x^{2} y^{2} z^{2}+\left(x^{2} y+y^{2} z-z^{2} x-x y z\right)^{2}$ is extremal in $\sum_{3,12}$ but not in $\mathcal{P}_{3,12}$.

Notation 2.7. We denote by $\mathcal{E}\left(\mathcal{P}_{n, 2 d}\right)$ the set of all extremal forms in $\mathcal{P}_{n, 2 d}$.
Lemme 2.8. Let $E \in \mathcal{P}_{n, 2 d}$. Then
$E \in \mathcal{E}\left(\mathcal{P}_{n, 2 d}\right)$ if and only if $\forall F \in \mathcal{P}_{n, 2 d}$ with $E \geq F \exists \alpha \in \mathbb{R}_{+}$such that $F=\alpha E$.
Proof. (\Rightarrow) Let $E \in \mathcal{E}\left(\mathcal{P}_{n, 2 d}\right), F \in \mathcal{P}_{n, 2 d}$ s.t $E \geq F$, then
$G:=E-F \in \mathcal{P}_{n, 2 d}$, so $E=F+G$.
Since E is extremal $\exists \alpha, \beta \geq 0, \alpha+\beta=1$ such that $F=\alpha E$ and $G=\beta E$.
(\Leftarrow) Let $F_{1}, F_{2} \in \mathcal{P}_{n, 2 d}$ so that $E=F_{1}+F_{2}$, then $E \geq F_{1}$, so $\exists \alpha \geq 0$ such that $F_{1}=\alpha E$. Therefore $F_{2}=E-F_{1}=(1-\alpha) E$ with $1-\alpha \geq 0$ (since $E, F_{2} \in \mathcal{P}_{n, 2 d}$).
Thus E is extremal.

Corollary 2.9. Every $F \in \mathcal{P}_{n, 2 d}$ is a finite sum of forms in $\mathcal{E}\left(\mathcal{P}_{n, 2 d}\right)$.
Proof. By Corollary 2.3 and Remark 1.13 (2).
3. PROOF OF $\mathcal{P}_{3,4}=\sum_{3,4}$

Corollary 2.9 is the first main item in the proof of Hilbert's Theorem (Theorem 2.8 of lecture 6) for the ternary quartic case. The second main item is the following lemma (which will be proved in the next lecture):

Lemma 3.1. Let $T(x, y, z) \in \mathcal{P}_{3,4}$. Then \exists a quadratic form $q(x, y, z) \neq 0$ s.t. $T \geq q^{2}$, i.e. $T-q^{2}$ is psd.

Theorem 3.2. $\mathcal{P}_{3,4}=\sum_{3,4}$
Proof. Let $F \in \mathcal{P}_{3,4}$. By Corollary 2.9, $F=E_{1}+\ldots+E_{k}$, where E_{i} is extremal in $\mathcal{P}_{3,4}$ for $i=1, \ldots, k$.
Applying Lemma 3.1 to each E_{i} we get
$E_{i} \geq q_{i}^{2}$, for some quadratic form $q_{i} \neq 0$
Since E_{i} is extremal, by Lemma 2.8, we get
$q_{i}^{2}=\alpha_{i} E_{i} ;$ for some $\alpha_{i}>0, \forall i=1, \ldots, k$
and so $E_{i}=\left(\frac{1}{\sqrt{\alpha_{i}}} q_{i}\right)^{2}$ and hence $F \in \sum_{3,4}$.

POSITIVE POLYNOMIALS LECTURE NOTES (08: 06/05/10)

SALMA KUHLMANN

This lecture was held by Dr. Mickael Matusinski.

Contents

1. Proof of Hilbert's theorem

1. PROOF OF HILBERT'S THEOREM (Continued)

Theorem 1.1. (Recall Theorem 2.8 of lecture 6) (Hilbert) $\sum_{n, m}=\mathcal{P}_{n, m}$ iff
(i) $n=2$ or
(ii) $m=2$ or
(iii) $(n, m)=(3,4)$.

In lecture 7 (Theorem 3.2) we showed the proof of (Hilbert's) Theorem 1.1 part (iii), i.e. for ternary quartic forms: $\mathcal{P}_{3,4}=\sum_{3,4}$ using generalization of KreinMilman theorem (applied to our context), plus the following lemma:

Lemma 1.2. (3.1 of lecture 7) Let $T(x, y, z) \in \mathcal{P}_{3,4}$. Then \exists a quadratic form $q(x, y, z) \neq 0$ s.t. $T \geq q^{2}$, i.e. $T-q^{2}$ is psd.

Proof. Consider three cases concerning the zero set of T.
Case 1. $T>0$, i.e. T has no non trivial zeros.
Let

$$
\phi(x, y, z):=\frac{T(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}, \forall(x, y, z) \neq 0 .
$$

Let $\mu:=\inf _{\mathbb{S}^{2}} \phi \geq 0$, where \mathbb{S}^{2} is the unit sphere.
Since \mathbb{S}^{2} is compact and ϕ is continous, $\exists(a, b, c) \in \mathbb{S}^{2}$ s.t. $\mu=\phi(a, b, c)>0$
Therefore $\forall(x, y, z) \in \mathbb{S}^{2}: T(x, y, z) \geq \mu\left(x^{2}+y^{2}+z^{2}\right)^{2}$.

Claim: $T(x, y, z) \geq \mu\left(x^{2}+y^{2}+z^{2}\right)^{2}$ for all $(x, y, z) \in \mathbb{R}^{3}$.
Indeed, it is trivially true at the point $(0,0,0)$, and
for $(x, y, z) \in \mathbb{R}^{3} \backslash\{0\}$ denote $N:=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\left(\frac{x}{N}, \frac{y}{N}, \frac{z}{N}\right) \in \mathbb{S}^{2}$, which implies that

$$
T\left(\frac{x}{N}, \frac{y}{N}, \frac{z}{N}\right) \geq \mu\left(\left(\frac{x}{N}\right)^{2}+\left(\frac{y}{N}\right)^{2}+\left(\frac{z}{N}\right)^{2}\right)^{2}
$$

So, by homogeneity we get

$$
T(x, y, z) \geq \mu\left(x^{2}+y^{2}+z^{2}\right)^{2}=\left(\sqrt{\mu}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}, \text { as claimed. }
$$

\square (Case1)

Case 2. T has exactly one (nontrivial) zero.
By changing coordinates, we may assume w.l.o.g. that zero to be $(1,0,0)$, i.e. $T(1,0,0)=0$.
Writing T as a polynomial in x one gets

$$
T(x, y, z)=a x^{4}+\left(b_{1} y+b_{2} z\right) x^{3}+f(y, z) x^{2}+2 g(y, z) x+h(y, z)
$$

where f, g and h are binary quadratic, cubic and quartic forms respectively.
Reducing T : Since $T(1,0,0)=0$ we get $a=0$.
Further, suppose $\left(b_{1}, b_{2}\right) \neq(0,0)$, it $\Rightarrow \exists\left(y_{0}, z_{0}\right) \in \mathbb{R}^{2}$ s.t $b_{1} y_{0}+b_{2} z_{0}<0$, then taking x big enough $\Rightarrow T\left(x_{0}, y_{0}, z_{0}\right)<0$, a contradiction to $T \geq 0$. Thus $b_{1}=$ $b_{2}=0$ and therefore

$$
\begin{equation*}
T(x, y, z)=f(y, z) x^{2}+2 g(y, z) x+h(y, z) \tag{1}
\end{equation*}
$$

Next, clearly $h(y, z) \geq 0$ [since otherwise $T\left(0, y_{0}, z_{0}\right)=h\left(y_{0}, z_{0}\right)<0$ for some $\left(y_{0}, z_{0}\right) \in \mathbb{R}^{2}$, a contradiction].
Also $f(y, z) \geq 0$, if not, say $f\left(y_{0}, z_{0}\right)<0$ for some $\left(y_{0}, z_{0}\right)$, then taking x big enough we get $T\left(x, y_{0}, z_{0}\right)<0$, a contradiction.
Thus $f, h \geq 0$.
From (1) we can write:

$$
\begin{equation*}
f T(x, y, z)=(x f+g)^{2}+\left(f h-g^{2}\right) \tag{2}
\end{equation*}
$$

Claim: $f h-g^{2} \geq 0$
If not, say $\left(f h-g^{2}\right)\left(y_{0}, z_{0}\right)<0$ for some $\left(y_{0}, z_{0}\right)$. Then there are two cases to be considered here:
Case (i): $f\left(y_{0}, z_{0}\right)=0$. In this case we claim $g\left(y_{0}, z_{0}\right)=0$ because if not then $T\left(x, y_{0}, z_{0}\right)=2 g\left(y_{0}, z_{0}\right) x+h\left(y_{0}, z_{0}\right)<0$ and we take $\left|x_{0}\right|$ large enough so that $2 g\left(y_{0}, z_{0}\right) x_{0}+h\left(y_{0}, z_{0}\right)<0$, a contradiction.

Case (ii): $f\left(y_{0}, z_{0}\right)>0$, we take $\left|x_{0}\right|$ such that $x_{0} f\left(y_{0}, z_{0}\right)+g\left(y_{0}, z_{0}\right)=0$, then $f T\left(x_{0}, y_{0}, z_{0}\right)=\left(f h-g^{2}\right)\left(y_{0}, z_{0}\right)<0$, a contradiction.
So our claim is established and $f h-g^{2} \geq 0$.
Now the polynomial f is a psd binary form, thus by Lemma 1.3 below f is sum of two squares. Let us consider the two subcases:
Case 2.1. f is a perfect square. Then $f=f_{1}^{2}$, with $f_{1}=b y+c z$ for some $b, c \in \mathbb{R}$. Up to multiplication by a constant $(-c, b)$ is the unique zero of f_{1} and so of f. Thus

$$
\left(f h-g^{2}\right)(-c, b)=-(g(-c, b))^{2} \leq 0
$$

which is a contradiction unless $g(-c, b)=0$ which means ${ }^{1}$ that $f_{1} \mid g$, i.e. $g(y, z)=$ $f_{1}(y, z) g_{1}(y, z)$. Then from (2) we get

$$
\begin{aligned}
f T & \geq(x f+g)^{2} \\
& =\left(x f_{1}^{2}+f_{1} g_{1}\right)^{2} \\
& =f_{1}^{2}\left(x f_{1}+g_{1}\right)^{2} \\
& =f\left(x f_{1}+g_{1}\right)^{2} .
\end{aligned}
$$

Hence $T \geq\left(x f_{1}+g_{1}\right)^{2}$ as required.
Case 2.2. $f=f_{1}^{2}+f_{2}^{2}$, with f_{1}, f_{2} linear in y, z.
Now $f_{1} \not \equiv \lambda f_{2}$ [otherwise we are in Case 2.1]
i.e. f_{1}, f_{2} don't have same non-trivial zeroes, otherwise they would be multiples of each other and f would be a perfect square. Hence $f>0$.
Claim 1: $f h-g^{2}>0$
If not, i.e. if $\exists\left(y_{0}, z_{0}\right) \neq(0,0)$ s.t. $\left(f h-g^{2}\right)\left(y_{0}, z_{0}\right)=0$, then $\left(y_{0}, z_{0}\right)$ could be completed to a zero $\left(-\frac{g\left(y_{0}, z_{0}\right)}{f\left(y_{0}, z_{0}\right)}, y_{0}, z_{0}\right)$ of T, which contradicts our hypothesis that T has only 1 zero $(1,0,0)$. Thus $f h-g^{2}>0$.
Claim 2: $\frac{f h-g^{2}}{f^{3}}$ has a minimum $\mu>0$ on the unit circle \mathbb{S}^{1}. (clear)
So, just as in Case 1,
$f h-g^{2} \geq \mu f^{3} \forall(y, z) \in \mathbb{R}^{2}$.
$\Rightarrow f T \geq f h-g^{2} \geq \mu f^{3}$, by (2)
$\Rightarrow T \geq \mu f^{2} \geq(\sqrt{\mu} f)^{2}$, as claimed.

[^0]Case 3. T has more than one zero.
Without loss of generality, assume $(1,0,0)$ and $(0,1,0)$ are two of the zeros of T. As in case 2 , reduction $\Rightarrow T$ is of degree at most 2 in x as well as in y and so we can write:

$$
T(x, y, z)=f(y, z) x^{2}+2 g(y, z) z x+z^{2} h(y, z),
$$

where f, g, h are quadratic forms and $f, h \geq 0$.
And so

$$
\begin{equation*}
f T=(x f+z g)^{2}+z^{2}\left(f h-g^{2}\right), \tag{3}
\end{equation*}
$$

with $f h-g^{2} \geq 0$ [Indeed, if $\left(f h-g^{2}\right)\left(y_{0}, z_{0}\right)<0$ for some $\left(y_{0}, z_{0}\right)$, then we must have case distinction as on bottom of page 2 i.e. $f\left(y_{0}, z_{0}\right)=0$ or $f\left(y_{0}, z_{0}\right)>0$].
Using Lemma 1.3 if f or h is a perfect square, then we get the desired result as in the Case 2.1. Hence we suppose f and h to be sum of two squares and again as before (as in Case 2.2) $f, h>0$. We consider the following two possible subcases on $f h-g^{2}$:
Case 3.1. Suppose $f h-g^{2}$ has a zero $\left(y_{0}, z_{0}\right) \neq(0,0)$.
Set $x_{0}=-\frac{g\left(y_{0}, z_{0}\right)}{f\left(y_{0}, z_{0}\right)}$ and

$$
\begin{equation*}
T_{1}:=T\left(x+x_{0} z, y, z\right)=x^{2} f+2 x z\left(g+x_{0} f\right)+z^{2}\left(h+2 x_{0} g+x_{0}^{2} f\right) \tag{4}
\end{equation*}
$$

Evaluating (3) at $\left(x+x_{0} z, y, z\right)$, we get

$$
\begin{equation*}
f T_{1}=f T\left(x+x_{0} z, y, z\right)=\left(\left(x+x_{0}\right) f+z g\right)^{2}+z^{2}\left(f h-g^{2}\right), \tag{3}
\end{equation*}
$$

Multyplying (4) by f, we get

$$
\begin{equation*}
f T_{1}=f T\left(x+x_{0} z, y, z\right)=x^{2} f^{2}+2 x z f\left(g+x_{0} f\right)+z^{2} f\left(h+2 x_{0} g+x_{0}^{2} f\right) \tag{4}
\end{equation*}
$$

Now compare the coefficients of z^{2} in (3)' and (4) to get

$$
\left(x_{0} f+g\right)^{2}+\left(f h-g^{2}\right)=f\left(h+2 x_{0} g+x_{0}^{2} f\right),
$$

i.e. $h+2 x_{0} g+x_{0}^{2} f=\frac{\left(f h-g^{2}\right)+\left(x_{0} f+g\right)^{2}}{f} \forall(y, z) \neq(0,0)$

In particular, $h+2 x_{0} g+x_{0}^{2} f$ is psd and has a zero, namely $\left(y_{0}, z_{0}\right) \neq(0,0)$.
Thus $\left(h+2 x_{0} g+x_{0}^{2} f\right)$, being a psd quadratic in y, z, which has a nontrivial zero $\left(y_{0}, z_{0}\right)$, is a perfect square [since by the arguments similar to Case 2.2, it cannot be a sum of two (or more) squares].
Say $\left(h+2 x_{0} g+x_{0}^{2} f\right)=h_{1}^{2}$, with $h_{1}(y, z)$ linear and $h_{1}\left(y_{0}, z_{0}\right)=0$
Now $\left(g+x_{0} f\right)\left(y_{0}, z_{0}\right)=g\left(y_{0}, z_{0}\right)+x_{0} f\left(y_{0}, z_{0}\right)=0$. So, $g+x_{0} f$ vanishes at every zero of the linear form h_{1}. Therefore, we have $g+x_{0} f=g_{1} h_{1}$ for some g_{1}.

$$
\begin{aligned}
& \text { So (from (4)), } \begin{aligned}
& T_{1}=f x^{2}+2 x z g_{1} h_{1}+z^{2} h_{1}^{2} \\
&=\left(z h_{1}+x g_{1}\right)^{2}+x^{2}\left(f-g_{1}^{2}\right) \\
& \Rightarrow h_{1}^{2} T_{1}=h_{1}^{2}\left(z h_{1}+x g_{1}\right)^{2}+x^{2}\left(h_{1}^{2} f-\left(h_{1} g_{1}\right)^{2}\right) \\
&=h_{1}^{2}\left(z h_{1}+x g_{1}\right)^{2}+x^{2} \underbrace{\left(h f-g^{2}\right)}_{\geq 0} \\
& \Rightarrow h_{1}^{2} T_{1} \geq h_{1}^{2}\left(z h_{1}+x g_{1}\right)^{2} \\
& \Rightarrow T\left(x+x_{0} z, y, z\right)=: T_{1} \geq\left(z h_{1}+x g_{1}\right)^{2}
\end{aligned}
\end{aligned}
$$

By change of variables ($x \rightarrow x-x_{0} z$), we get $T \geq$ a square of a quadratic form, as desired.

Case 3.2. Suppose $f h-g^{2}>0$ (i.e. $f h-g^{2}$ has no zero).
Then (as in Case 2.2), $\exists \mu>0$ s.t $\frac{f h-g^{2}}{\left(y^{2}+z^{2}\right) f} \geq \mu$ on \mathbb{S}^{1}
and so $f h-g^{2} \geq \mu\left(y^{2}+z^{2}\right) f \forall(y, z) \in \mathbb{R}^{2}$.
Hence, by (\dagger)

$$
\begin{aligned}
f T & =(x f+z g)^{2}+z^{2} \underbrace{\left(f h-g^{2}\right)}_{>0} \\
& \geq z^{2}\left(f h-g^{2}\right) \\
& \geq \mu z^{2}\left(y^{2}+z^{2}\right) f,
\end{aligned}
$$

giving as required

$$
\begin{aligned}
& T \geq(\sqrt{\mu} z y)^{2}+\left(\sqrt{\mu} z^{2}\right)^{2} \\
\Rightarrow & T \geq\left(\sqrt{\mu} z^{2}\right)^{2}
\end{aligned}
$$

This completes the proof of the Lemma 1.2.
Next we prove Theorem 1.1 part (i), i.e. for binary forms. This was also used as a helping lemma in the proof of above lemma:

Lemma 1.3. If f is a binary psd form of degree m, then f is a sum of squares of binary forms of degree $m / 2$, that is, $\mathcal{P}_{2, m}=\sum_{2, m}$. In fact, f is sum of two squares.

Proof. If f is a binary form of degree m, we can write

$$
f(x, y)=\sum_{k=0}^{m} c_{k} x^{k} y^{m-k} ; c_{k} \in \mathbb{R}
$$

$$
=y^{m} \sum_{k=0}^{m} c_{k}\left(\frac{x}{y}\right)^{k}
$$

where m is an even number and $c_{m} \neq 0$, since f is psd.
Without loss of generality let $c_{m}=1$.
Put $g(t)=\sum_{k=0}^{m} c_{k} t^{k}$.
Over $\mathbb{C}, g(t)=\prod_{k=1}^{m / 2}\left(t-z_{k}\right)\left(t-\bar{z}_{k}\right) ; \quad z_{k}=a_{k}+i b_{k}, a_{k}, b_{k} \in \mathbb{R}$

$$
=\prod_{k=1}^{m / 2}\left(\left(t-a_{k}\right)^{2}+b_{k}^{2}\right)
$$

$\Rightarrow f(x, y)=y^{m} g\left(\frac{x}{y}\right)=\prod_{k=1}^{m / 2}\left(\left(x-a_{k} y\right)^{2}+b_{k}^{2} y^{2}\right)$
Then using iteratively the identity

$$
\left(X^{2}+Y^{2}\right)\left(Z^{2}+W^{2}\right)=(X Z-Y W)^{2}+(Y Z+X W)^{2}
$$

we obtain that $f(x, y)$ is a sum of two squares.
Example 1.4. Using the ideas in the proof of above lemma, we write the binary form

$$
f(x, y)=2 x^{6}+y^{6}-3 x^{4} y^{2}
$$

as a sum of two squares:
Consider f written in the form

$$
f(x, y)=y^{6}\left(2\left(\frac{x}{y}\right)^{6}+1-3\left(\frac{x}{y}\right)^{4}\right)
$$

So, the polynomial $g(t)=2 t^{6}-3 t^{4}+1$. This polynomial has double roots 1 and -1 and complex roots $\pm \frac{1}{\sqrt{2}} i$.
Thus

$$
g(t)=2(t-1)^{2}(t+1)^{2}\left(t^{2}+\frac{1}{2}\right)=\left(t^{2}-1\right)^{2}\left(2 t^{2}+1\right) .
$$

Therefore we have

$$
f(x, y)=y^{6} g\left(\frac{x}{y}\right)=\left(x^{2}-y^{2}\right)^{2}\left(2 x^{2}+y^{2}\right)=2 x^{2}\left(x^{2}-y^{2}\right)^{2}+y^{2}\left(x^{2}-y^{2}\right)^{2}
$$

written as a sum of two squares.

Next we prove Theorem 1.1 part (ii), i.e. for quadratic forms:
Lemma 1.5. If $f\left(x_{1}, \ldots, x_{n}\right)$ is a psd quadratic form, then $f\left(x_{1}, \ldots, x_{n}\right)$ is sos of linear forms, that is, $\mathcal{P}_{n, 2}=\sum_{n, 2}$.

Proof. If $f\left(x_{1}, \ldots, x_{n}\right)$ is a quadratic form, then we can write

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j=1}^{n} x_{i} a_{i j} x_{j} \text {, where } A=\left[a_{i j}\right] \text { is a symmetric matrix with } a_{i j} \in \mathbb{R} .
$$

We have $f=X^{T} A X$, where $X^{T}=\left[x_{1}, \ldots x_{n}\right]$.
By the spectral theorem for Hermitian matrices, there exists a real orthogonal matrix S and a diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ such that $D=S^{T} A S$. Then

$$
f=X^{T} S S^{T} A S S^{T} X=\left(S^{T} X\right)^{T} S^{T} A S\left(S^{T} X\right)
$$

Putting $Y=\left[y_{1}, \ldots, y_{n}\right]^{T}=S^{T} X$, we get

$$
f=Y^{T} S^{T} A S Y=Y^{T} D Y=\sum_{i=1}^{n} d_{i} y_{i}^{2}, d_{i} \in \mathbb{R}
$$

Since f is psd, we have $d_{i} \geq 0 \forall i$, and so

$$
f=\sum_{i=1}^{n}\left(\sqrt{d_{i}} y_{i}\right)^{2},
$$

Thus

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left(\sqrt{d_{i}}\left(s_{1, i} x_{1}+\ldots, s_{n, i} x_{n}\right)\right)^{2}
$$

that is, f is sos of linear forms.

POSITIVE POLYNOMIALS LECTURE NOTES (09: 10/05/10)

SALMA KUHLMANN

Contents

1. Proof of Hilbert's Theorem (continued) 1
2. The Motzkin Form 2
3. Robinson Method (1970) 3
4. The Robinson Form 4

1. PROOF OF HILBERT'S THEOREM (Continued)

Theorem 1.1. (Recall) (Hilbert) $\sum_{n, m}=\mathcal{P}_{n, m}$ iff
(i) $n=2$ or
(ii) $m=2$ or
(iii) $(n, m)=(3,4)$.

And in all other cases $\sum_{n, m} \subsetneq \mathcal{P}_{n, m}$.
Note that here m is necessarily even because a psd polynomial must have even degree (see Lemma 2.3 in lecture 6).

We have shown one direction (\Leftarrow) of Hilbert's Theorem (1.1 above), i.e. if $n=2$ or $m=2$ or $(n, m)=(3,4)$, then $\sum_{n, m}=\mathcal{P}_{n, m}$. To prove the other direction we have to show that:
$\sum_{n, m} \subsetneq \mathcal{P}_{n, m}$ for all pairs (n, m) s.t. $n \geq 3, m \geq 4$ (m even) with $(n, m) \neq(3,4)$.

Hilbert showed (using algebraic geometry) that $\sum_{3,6} \subsetneq \mathcal{P}_{3,6}$ and $\sum_{4,4} \subsetneq \mathcal{P}_{4,4}$. This is a reduction of the general problem (1), indeed we have:

Lemma 1.2. If $\sum_{3,6} \subsetneq \mathcal{P}_{3,6}$ and $\sum_{4,4} \subsetneq \mathcal{P}_{4,4}$, then

$$
\sum_{n, m} \subsetneq \mathcal{P}_{n, m} \text { for all } n \geq 3, m \geq 4 \text { and }(n, m) \neq(3,4),(m \text { even }) .
$$

Proof. Clearly, given $F \in \mathcal{P}_{n, m}-\sum_{n, m}$, then $F \in \mathcal{P}_{n+j, m}-\sum_{n+j, m}$ for all $j \geq 0$.
Moreover, we claim: $F \in \mathcal{P}_{n, m}-\sum_{n, m} \Rightarrow x_{1}^{2 i} F \in \mathcal{P}_{n, m+2 i}-\sum_{n, m+2 i} \forall i \geq 0$
Proof of claim: Assume for a contradiction that
for $i=1 \quad x_{1}^{2} F\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{k} f_{j}^{2}\left(x_{1}, \ldots, x_{n}\right)$,
then L.H.S vanishes at $x_{1}=0$, so R.H.S also vanishes at $x_{1}=0$.
So $x_{1} \mid f_{j} \forall j$, so $x_{1}^{2} \mid f_{j}^{2} \forall i$. So, R.H.S is divisible by x_{1}^{2}. Dividing both sides by x_{1}^{2} we get a sos representation of F, a contradiction since $F \notin \sum_{n, m}$.

So we just need to show that: $\sum_{3,6} \subsetneq \mathcal{P}_{3,6}$, and $\sum_{4,4} \subsetneq \mathcal{P}_{4,4}$.
Hilbert described a method (non constructive) to produce counter examples in the 2 crucial cases, but no explicit examples appeared in literature for next 80 years.
In 1967 Motzkin presented a specific example of a ternary sextic form that is positive semidefinite but not a sum of squares.

2. THE MOTZKIN FORM

Proposition 2.1. The Motzkin form

$$
M(x, y, z)=z^{6}+x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2} z^{2} \in \mathcal{P}_{3,6}-\sum_{3,6} .
$$

Proof. Using the arithmetic geometric inequality (Lemma 2.2 below) with $a_{1}=$ $z^{6}, a_{2}=x^{4} y^{2}, a_{3}=x^{2} y^{4}$ and $\alpha_{1}=\alpha_{2}=\alpha_{3}=\frac{1}{3}$, clearly gives $M \geq 0$.
Degree arguments and exercise 3 of ÜB 6 from Real Algebraic Geometry course (WS 2009-10) gives M is not a sum of squares

Lemma 2.2. (Arithmetic-geometric inequality I) Let $a_{1}, a_{2}, \ldots, a_{n} \geq 0 ; n \geq 1$. Then

$$
\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq\left(a_{1} a_{2} \ldots a_{n}\right)^{\frac{1}{n}}
$$

Lemma 2.3. (Arithmetic-geometric inequality II) Let $\alpha_{i} \geq 0, a_{i} \geq 0 ; i=$ $1, \ldots, n$ with $\sum_{i=1}^{n} \alpha_{i}=1$.Then

$$
\alpha_{1} a_{1}+\ldots+\alpha_{n} a_{n}-a_{1}^{\alpha_{1}} \ldots a_{n}^{\alpha_{n}} \geq 0
$$

(with equality iff all the x_{i} are equal).
Proof. Exercise 2 in ÜB 5.

3. ROBINSON'S METHOD (1970)

In 1970's R. M. Robinson gave a ternary sextic based on the method described by Hilbert, but after drastically simplifying Hilbert's original ideas. He used it to construct examples of forms in $\mathcal{P}_{4,4}-\sum_{4,4}$ as well as forms in $\mathcal{P}_{3,6}-\sum_{3,6}$.
This method is based on the following lemma:

Lemma 3.1. A polynomial $P(x, y)$ of degree at most 3 which vanishes at eight of the nine points $(x, y) \in\{-1,0,1\} \times\{-1,0,1\}$ must also vanish at the ninth point.

Proof. Assign weights to the following nine points:

$$
w(x, y)= \begin{cases}1, & \text { if } x, y= \pm 1 \\ -2, & \text { if }(x= \pm 1, y=0) \text { or }(x=0, y= \pm 1) \\ 4, & \text { if } x, y=0\end{cases}
$$

Define the weight of a monomial as:

$$
w\left(x^{k} y^{l}\right):=\sum_{i=1}^{9} w\left(q_{i}\right) x^{k} y^{l}\left(q_{i}\right), \text { for } q_{i} \in\{-1,0,1\} \times\{-1,0,1\}
$$

Define the weight of a polynomial $P(x, y)=\sum_{k, l} c_{k, l} x^{k} y^{l}$ as:

$$
w(P):=\sum_{k, l} c_{k, l} w\left(x^{k} y^{l}\right)
$$

Claim 1: $w\left(x^{k} y^{l}\right)=0$ unless k and l are both strictly positive and even.
Proof of claim 1: Let us compute the monomial weights

- if $k=0, l \geq 0$: then we have

$$
w\left(x^{k} y^{l}\right)=1+(-1)^{l}+1+(-1)^{l}+(-2)+(-2)(-1)^{l}=0
$$

- if $l=0, k \geq 0$: then similarly we have $w\left(x^{k} y^{l}\right)=0$, and
- if $k, l>0$: then we have

$$
w\left(x^{k} y^{l}\right)=1+(-1)^{l}+(-1)^{k}+(-1)^{k+l}=\left\{\begin{array}{l}
0, \text { if either } k \text { or } l \text { is odd } \\
4, \text { otherwise }
\end{array}\right.
$$

Claim 2: $w(P)=\sum_{i=1}^{9} w\left(q_{i}\right) P\left(q_{i}\right)$
Proof of claim 2: $w(P):=\sum_{k, l} c_{k, l} w\left(x^{k} y^{l}\right)=\sum_{k, l} c_{k, l} \sum_{i=1}^{9} w\left(q_{i}\right) x^{k} y^{l}\left(q_{i}\right)$

$$
\begin{equation*}
=\sum_{i=1}^{9} w\left(q_{i}\right) \sum_{k, l} c_{k, l} x^{k} y^{l}\left(q_{i}\right)=\sum_{i=1}^{9} w\left(q_{i}\right) P\left(q_{i}\right) \tag{claim2}
\end{equation*}
$$

Now, claim 1 and definition of $w(P) \Rightarrow$ if $\operatorname{deg}(P(x, y)) \leq 3$ then $w(P)=0$.
Also, from claim 2 we get:

$$
\begin{aligned}
& P(1,1)+P(1,-1)+P(-1,1)+P(-1,-1)+(-2) P(1,0)+(-2) P(-1,0)+(-2) P(0,1)+ \\
& (-2) P(0,-1)+4 P(0,0)=0
\end{aligned}
$$

Now verify that if $P(x, y)=0$ for any eight (of the nine) points, then we are left with $\alpha P(x, y)=0$ (for some $\alpha \neq 0, \alpha= \pm 1, \pm 2)$ at the ninth point.

4. THE ROBINSON FORM

Theorem 4.1. Robinsons form $R(x, y, z)=x^{6}+y^{6}+z^{6}-\left(x^{4} y^{2}+x^{4} z^{2}+y^{4} x^{2}+y^{4} z^{2}+\right.$ $\left.z^{4} x^{2}+z^{4} y^{2}\right)+3 x^{2} y^{2} z^{2}$ is psd but not a sos, i.e. $R \in \mathcal{P}_{3,6}-\sum_{3,6}$.

Proof. Consider the polynomial

$$
\begin{equation*}
P(x, y)=\left(x^{2}+y^{2}-1\right)\left(x^{2}-y^{2}\right)^{2}+\left(x^{2}-1\right)\left(y^{2}-1\right) \tag{2}
\end{equation*}
$$

Note that $R(x, y, z)=P_{h}(x, y, z)=z^{6} P(x / z, y / z)$.
By our observation: P_{h} is psd iff P psd; P_{h} is sos iff P is sos,

We shall show that $P(x, y)$ is psd but not sos.
Multiplying both sides of (2) by ($x^{2}+y^{2}-1$) and adding to (2) we get:

$$
\begin{equation*}
\left(x^{2}+y^{2}\right) P(x, y)=x^{2}\left(x^{2}-1\right)^{2}+y^{2}\left(y^{2}-1\right)^{2}+\left(x^{2}+y^{2}-1\right)^{2}\left(x^{2}-y^{2}\right)^{2} \tag{3}
\end{equation*}
$$

From (3) we see that $P(x, y) \geq 0$, i.e. $P(x, y)$ is psd.
Assume $P(x, y)=\sum_{j} P_{j}(x, y)^{2}$ is sos
$\operatorname{deg} P(x, y)=6$, so $\operatorname{deg} P_{j} \leq 3 \forall j$.
By (2) it is easy to see that $P(0,0)=1$ and $P(x, y)=0$ for all other eight points $(x, y) \in\{-1,0,1\}^{2} \backslash\{(0,0)\}$, therefore every $P_{j}(x, y)$ must also vanish at these eight points.
Hence by Lemma 3.1 (above) it follows that: $P_{j}(0,0)=0 \forall j$.
So $P(0,0)=0$, which is a contradiction.
Proposition 4.2. The quarternary quartic $Q(x, y, z, w)=w^{4}+x^{2} y^{2}+y^{2} z^{2}+x^{2} z^{2}-$ $4 x y z w$ is psd, but not sos, i.e., $Q \in \mathcal{P}_{4,4}-\sum_{4,4}$.

Proof. The arithmetic-geometric inequality (Lemma 2.3) clearly implies $Q \geq 0$.
Assume now that $Q=\sum_{j} q_{j}^{2}, q_{j} \in \mathcal{F}_{4,2}$.
Forms in $\mathcal{F}_{4,2}$ can only have the following monomials:
$x^{2}, y^{2}, z^{2}, w^{2}, x y, x z, x w, y z, y w, z w$
If x^{2} occurs in some of the q_{j}, then x^{4} occurs in q_{j}^{2} with positive coefficient and hence in $\sum q_{j}^{2}$ with positive coefficient too, but this is not the case.
Similarly q_{j} does not contain y^{2} and z^{2}.
The only way to write $x^{2} w^{2}$ as a product of allowed monomials is $x^{2} w^{2}=(x w)^{2}$.
Similarly for $y^{2} w^{2}$ and $z^{2} w^{2}$.
Thus each q_{j} involves only the monomials $x y, x z, y z$ and w^{2}.
But now there is no way to get the monomial $x y z w$ from $\sum_{j} q_{j}^{2}$, hence a contradiction.

Proposition 4.3. The ternary sextic $S(x, y, z)=x^{4} y^{2}+y^{4} z^{2}+z^{4} x^{2}-3 x^{2} y^{2} z^{2}$ is psd, but not a sos, i.e., $S \in \mathcal{P}_{3,6}-\Sigma_{3,6}$.

Proof. Exercise 3 of ÜB 5.

POSITIVE POLYNOMIALS LECTURE NOTES (10: 18/05/10)

SALMA KUHLMANN

Contents

1. Ring of formal power series 1
2. Algebraic independence

1. RING OF FORMAL POWER SERIES

Definition 1.1. (Recall) Let $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, then
$\mathbf{K}_{\mathbf{S}}:=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0 \forall i=1, \ldots, s\right\}$,
$\mathbf{T}_{\mathbf{S}}:=\left\{\sum_{e_{1}, \ldots, e_{s} \in[0,1\}} \sigma_{e} g_{1}^{e_{1}} \ldots g_{s}^{e_{s}} \mid \sigma_{e} \in \Sigma \mathbb{R}[\underline{X}]^{2}, e=\left(e_{1}, \ldots, e_{s}\right)\right\}$ is the preordering generated by S.

Proposition 1.2. Let $n \geq 3$. Let S be a finite subset of $\mathbb{R}[\underline{x}]$ such that $K_{S} \subseteq \mathbb{R}^{n}$ has non empty interior. Then $\exists f \in \mathbb{R}[\underline{x}]$ such that $f \geq 0$ on \mathbb{R}^{n} and $f \notin T_{S}$.

To prove proposition 1.2 we need to learn a few facts about formal power series rings:

Definition 1.3. $\mathbb{R} \llbracket \underline{x} \rrbracket:=\mathbb{R} \llbracket x_{1}, \ldots, x_{n} \rrbracket$ ring of formal power series in $\underline{x}=$ $\left(x_{1}, \ldots, x_{n}\right)$ with coefficients in \mathbb{R}, i.e., $f \in \mathbb{R} \llbracket \underline{x} \rrbracket$ is expressible uniquely in the form

$$
f=f_{0}+f_{1}+\ldots,
$$

where f_{i} is a homogenous polynomial of degree i in the variables x_{1}, \ldots, x_{n}. Here:

- Addition is defined point wise, and
- multiplication is defined using distributive law:

$$
\left(\sum_{i=0}^{\infty} f_{i}\right)\left(\sum_{i=0}^{\infty} g_{i}\right)=\left(f_{0} g_{0}\right)+\left(f_{0} g_{1}+f_{1} g_{0}\right)+\left(f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0}\right)+\ldots=\sum_{k=0}^{\infty}\left(\sum_{i+j=k}\left(f_{i} g_{j}\right)\right)
$$

So, both addition and multiplication are well defined and $\mathbb{R} \llbracket \underline{x} \rrbracket$ is an integral domain and $\mathbb{R}[\underline{x}] \subseteq \mathbb{R} \llbracket \underline{x} \rrbracket$.

Notation 1.4. Fraction field of $\mathbb{R} \llbracket \underline{x} \rrbracket$ is denoted by

$$
f f(\mathbb{R} \llbracket \underline{x} \rrbracket:=\mathbb{R}((\underline{x})) .
$$

The valuation $v: \mathbb{R} \llbracket \underline{x} \rrbracket \rightarrow \mathbb{Z} \cup\{\infty\}$ defined by:

$$
v(f)= \begin{cases}\text { least } i \text { s.t. } f_{i} \neq 0 & , \text { if } f \neq 0 \\ \infty & \text { if } f=0\end{cases}
$$

extends to $\mathbb{R}((\underline{x}))$ via

$$
v\left(\frac{f}{g}\right):=v(f)-v(g) .
$$

Lemma 1.5. Let $f \in \mathbb{R} \llbracket \underline{x} \rrbracket ; f=f_{k}+f_{k+1}+\ldots$, where f_{i} homogeneous of degree $i, f_{k} \neq 0$. Assume that f is a sos in $\mathbb{R} \llbracket \underline{x} \rrbracket$.
Then k is even and f_{k} is a sum of squares of forms of degree $\frac{k}{2}$.
Proof. $f=g_{1}^{2}+\ldots+g_{l}^{2}$, and

$$
g_{i}=g_{i j}+g_{i, j+1}+\ldots, \text { with } j=\min \left\{v\left(g_{i}\right) ; i=1, \ldots, l\right\}
$$

Then $f_{0}=\ldots=f_{2 j-1}=0$ and $f_{2 j}=\sum_{i=1}^{k} g_{i j}^{2} \neq 0$
So, $k=2 j$.
1.6. Units in $\mathbb{R} \llbracket \underline{x} \rrbracket:$ Let $f=f_{0}+f_{1}+\ldots$, with $v(f)=0$ i.e. $f_{0} \neq 0$. Then f factors as

$$
f=a(1+t) ; \text { where }
$$

$a \in R, a \neq 0, t \in \mathbb{R} \llbracket \underline{\chi} \rrbracket$ and $v(t) \geq 1$ with $a:=f_{0} \in \mathbb{R} \backslash\{0\} ; t:=\frac{1}{f_{0}}\left(f_{1}+f_{2}+\ldots\right)$.
Lemma 1.7. $f \in \mathbb{R} \llbracket \underline{x} \rrbracket$ is a unit of $\mathbb{R} \llbracket \underline{x} \rrbracket$ if and only if $f_{0} \neq 0$ (i.e. $v(f)=0$).
Proof: $\frac{1}{1+t}=1-t+t^{2}-\ldots$, for $t \in \mathbb{R} \llbracket \underline{x} \rrbracket ; v(t) \geq 1$
is a well defined element of $\mathbb{R} \llbracket \underline{x} \rrbracket$.
So, if $v(f)=0$, then $f=a(1+t)$ with $a \in R, a \neq 0$ gives

$$
f^{-1}=\frac{1}{a} \frac{1}{(1+t)} \in \mathbb{R} \llbracket \underline{x} \rrbracket .
$$

Corollary 1.8. It follows that $\mathbb{R} \llbracket \underline{x} \rrbracket$ is a local ring because $I=\{f \mid v(f) \geq 1\}$ is a maximal ideal (quotient is a field $\overline{\mathbb{R}}$).

Lemma 1.9. Let $f \in \mathbb{R} \llbracket \underline{x} \rrbracket$ a positive unit, i.e. $f_{0}>0$. Then f is a square in $\mathbb{R} \llbracket \underline{x} \rrbracket$.
Proof. $f=a(1+t) ; a>0, v(t) \geq 1$

$$
\sqrt{f}=\sqrt{a} \sqrt{1+t}
$$

where $\sqrt{1+t}:=(1+t)^{1 / 2}=1+\frac{1}{2} t-\frac{1}{8} t^{2}+\ldots$ is a well defined element of $\mathbb{R} \llbracket \underline{x} \rrbracket$

Lemma 1.10. Suppose $n \geq 3$. Then $\exists f \in \mathbb{R}[\underline{x}]$ such that $f \geq 0$ on \mathbb{R}^{n} and f is not a sum of squares in $\mathbb{R} \llbracket \underline{x} \rrbracket$.

Proof. Let $f \in \mathbb{R}[\underline{x}]$ be any homogeneous polynomial which is ≥ 0 on \mathbb{R}^{n} but is not a sum of squares in $\mathbb{R}[\underline{x}]$ (by Hilbert's Theorem such a polynomial exists).
Now by lemma 1.5 it follows that f is not sos in $\mathbb{R} \llbracket \underline{x} \rrbracket$.
Now we prove Proposition 1.2:
Proof of Proposition 1.2. Let $S=\left\{g_{1}, \ldots, g_{s}\right\}$

- W.1.o.g. assume $g_{i} \not \equiv 0$, for each $i=1, \ldots, s$. So $g:=\prod_{i=1}^{s} g_{i} \not \equiv 0$
$\operatorname{int}\left(K_{S}\right) \neq \emptyset \Rightarrow \exists \underline{p}:=\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{int}\left(K_{S}\right)$ with $\prod_{i=1}^{s} g_{i}(\underline{p}) \neq 0$.
Thus $g_{i}(\underline{p})>0 \forall i=i, \ldots, s$.
- W.l.o.g. assume $p=\underline{0}$ the origin
(by making a variable change $Y_{i}:=X_{i}-p_{i}$, and noting that

$$
\left.\mathbb{R}\left[Y_{1}, \ldots, Y_{n}\right]=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]\right)
$$

So $g_{i}(0, \ldots, 0)>0$ for each $i=i, \ldots, s$ (i.e. has positive constant term), that means $g_{i} \in \mathbb{R} \llbracket \underline{X} \rrbracket$ is a positive unit in $\mathbb{R} \llbracket \underline{X} \rrbracket \forall i=1, \ldots, s$.
By Lemma 1.9 (on positive units in power series): $g_{i} \in \mathbb{R} \llbracket \underline{X} \rrbracket^{2} \forall i=i, \ldots, s$.

So the preordering $T_{S}{ }^{A}$ generated by $S=\left\{g_{1}, \ldots, g_{s}\right\}$ in the ring $A:=\mathbb{R} \llbracket \underline{X} \rrbracket$ is just $\Sigma \mathbb{R}[\underline{X}]^{2}$.
Now using Lemma 1.10: $\exists f \in \mathbb{R}[\underline{X}], f \geq 0$ on \mathbb{R}^{n} but f is not a sum of squares in $\mathbb{R} \llbracket \underline{X} \rrbracket$ (i.e. $\left.f \notin \Sigma \mathbb{R}[\underline{X}]^{2}=T_{S} \mathbb{R}^{\mathbb{R} \underline{\underline{X}}}\right)$.
So clearly $f \notin T_{S}$. \quad (Proposition 1.2)
Proposition 1.2 that we just proved is just a special case of the following result due to Scheiderer:

Theorem 1.11. Let S be a finite subset of $\mathbb{R}[\underline{X}]$ such that K_{S} has dimension ≥ 3. Then $\exists f \in \mathbb{R}[\underline{X}] ; f \geq 0$ on \mathbb{R}^{n} and $f \notin T_{S}$.

To prove this result we need:
(1) a reminder about dimension of semi algebraic sets, and
(2) more facts about non singular zeros.

2. ALGEBRAIC INDEPENDENCE

Let E / F be a field extension:
Definition 2.1. (1) $a \in E$ is algebraic over F if it is a root of some non zero polynomial $f(x) \in F[x]$, otherwise a is a transcedental over F.
(2) $A=\left\{a_{1}, \ldots, a_{n}\right\} \subseteq E$ is called algebraically independent over F if there is no nonzero polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$ s.t. $f\left(a_{1}, \ldots, a_{n}\right)=0$.
In general $A \subseteq E$ is algebraically independent over F if every finite subset of A is algebraic independent over F.
(3) A transcendence base of E / F is a maximal subset (w.r.t. inclusion) of E which is algebraically independent over F.

POSITIVE POLYNOMIALS LECTURE NOTES
 (11: 20/05/10)

SALMA KUHLMANN

Contents

1. Algebraic independence and transcendence degree 1
2. Krull Dimension of a ring 2
3. Low Dimension 3

1. ALGEBRAIC INDEPENDENCE AND TRANSCENDENCE DEGREE

Definition 1.1. (Recall) Let E / F be a field extension:
(1) $A \subseteq E$ is called algebraically independent over F if $\forall a_{1}, \ldots, a_{n} \in A$ there exists no nonzero polynomial $f \in F\left[x_{1}, \ldots, x_{n}\right]$ s.t. $f\left(a_{1}, \ldots, a_{n}\right)=0$.
(2) $A \subseteq E$ is called a transcendence basis of E / F if A is a maximal subset (w.r.t. inclusion) of E which is algebraically independent over F.

Lemma 1.2. Let E / F be a field extension.
(1) (Steinitz exchange) $S \subseteq E$ is algebraically independent over F iff $\forall s \in S: s$ is transcendental over $F(S-\{s\})$ (the subfield of E generated by $S-\{s\}$).
(2) $S \subseteq E$ is a transcendence base for E / F iff S is algebraically independent over F and E is algebraic over $F(S)$.

Proof. Exercise 1 of ÜB 6.
Theorem 1.3. The extension E / F has a transcendence base and any two transcendence bases of E / F have the same cardinality.

Proof. The existence follows by Zorn's lemma and the second statement uses the Steinitz exchange lemma (above).

Definition 1.4. The cardinality of a transcendence base of E / F is called the transcendence degree of E / F, denoted by $\operatorname{trdeg}(E)$ over F.

2. KRULL DIMENSION OF A RING

Definition 2.1 Let A be a commutative ring with 1 .
(1) A chain of prime ideals of A is of the form
$\{0\} \subseteq \wp_{0} \subsetneq \wp_{1} \subsetneq \ldots \subsetneq \wp_{k} \subsetneq \ldots \subsetneq A$, where \wp_{i} are prime ideals of A.
(2) The Krull dimension of A, denoted by $\operatorname{dim}(A)$ is defined to be the maximum k such that there is a chain of prime ideals of length k in A, i.e. $\wp_{0} \subsetneq \wp_{1} \subsetneq \ldots \subsetneq \wp_{k}$ [$\operatorname{dim}(A)$ can be infinite if arbitrary long chains].

Theorem 2.2. Let F be a field and I be any prime ideal in $F[\underline{X}]$. Then

$$
\operatorname{dim}\left(\frac{F[\underline{X}]}{I}\right)=\operatorname{trdeg}\left(f f\left(\frac{F[\underline{X}]}{I}\right)\right) .
$$

Recall 2.3. For $S \subseteq F^{n}$

$$
\mathcal{I}(S)=\{f \in F[\underline{X}] \mid f(\underline{x})=0, \forall \underline{x} \in S\}
$$

is the ideal of polynomials vanishing on S.
Definition 2.4. Dimension of semi-algebraic sets $\subseteq \mathbb{R}^{n}:$ Let $K \subseteq \mathbb{R}^{n}$ be a semialgebraic set. Then

$$
\operatorname{dim}(K):=\operatorname{dim}\left(\frac{\mathbb{R}[X]}{\bar{I}(K)}\right)
$$

In the lecture 10 (Proposition 1.2) we have proved the following proposition:
Proposition 2.5. Suppose $n \geq 3$. Let $S=\left\{g_{1}, \ldots, g_{s}\right\}$ be a finite subset of $\mathbb{R}[\underline{X}]$ such that $K_{S} \subseteq \mathbb{R}^{n}$ and $\operatorname{int}\left(K_{S}\right) \neq \emptyset$. Then there exists $f \in \mathbb{R}[\underline{X}]$ such that $f \geq 0$ on \mathbb{R}^{n} and $f \notin T_{S}$.

This is just a special case of the following result due to Scheiderer:
Theorem 2.6. (Scheiderer) (Theorem 1.11 of lecture 10) Let S be a finite subset of $\mathbb{R}[\underline{X}]$ and $K_{S} \subseteq \mathbb{R}^{n}$ s.t. $\operatorname{dim} K_{S} \geq 3$. Then there exists $f \in \mathbb{R}[\underline{X}] ; f \geq 0$ on \mathbb{R}^{n} and $f \notin T_{S}$.

To deduce Proposition 2.5 using Theorem 2.6 it suffices to prove the following lemma:

Lemma 2.7. Let $K \subseteq \mathbb{R}^{n}$ be a semi algebraic subset. Then

$$
\operatorname{int}(K) \neq \phi \Rightarrow \operatorname{dim}(K)=\mathrm{n}
$$

Proof. We have $\operatorname{dim}(K)=\operatorname{dim}\left(\frac{\mathbb{R}[\underline{X}]}{\mathcal{I}(K)}\right)$, and
we claim that $\mathcal{I}(K)=\{0\}$:
$f \in \mathcal{I}(K) \Rightarrow f=0$ on $K \Rightarrow f=0$ on $\underbrace{\operatorname{int}(K)}_{(\neq \phi)} \Rightarrow f$ vanishes on a nonempty open set $\Rightarrow f \equiv 0$ (by Remark 2.2 of lecture 2).
So, $\operatorname{dim}(K)=\operatorname{dim}(\mathbb{R}[\underline{X}])=\operatorname{trdeg}(\mathbb{R}(\underline{X}))$ over \mathbb{R}

$$
=n
$$

3. LOW DIMENSIONS

Proposition 3.1. Let $n=2, K_{S} \subseteq \mathbb{R}^{2}$ and K_{S} contains a 2-dimensional affine cone. Then $\exists f \in \mathbb{R}[X, Y] ; f \geq 0$ on $\mathbb{R}^{2} ; f \notin T_{S}$.

Definition 3.2. (For $n=1$) Let K be a basic closed semi algebraic subset of \mathbb{R}. Then K is a finite union of intervals.
The natural description S of K as basic closed semi algebraic subset is defined as

1. if $a \in \mathbb{R}$ is the smallest element of K, then take the polynomial $X-a \in S$
2. if $a \in \mathbb{R}$ is the greatest element of K, then take the polynomial $a-X \in S$
3. if $a, b \in K, a<b,(a, b) \cap K=\phi$, then take the polynomial $(X-a)(X-b) \in S$
4. no other polynomial should be in S.

Proposition 3.3. Let $K \subseteq \mathbb{R}$ be a basic closed semi algebraic subset and S is the natural description of K. Then $\forall f \in \mathbb{R}[X]$:

$$
f \geq 0 \text { on } K \Rightarrow f \in T_{S},
$$

i.e. for every basic semi algebraic subset K of \mathbb{R}, there exists a description S (namely the natural) so that T_{S} is saturated.

Proposition 3.4. Let $K \subseteq \mathbb{R}$ be a non-compact basic semi algebraic subset and S^{\prime} be a description of K. Then

$$
T_{S^{\prime}} \text { is saturated } \Leftrightarrow S^{\prime} \supseteq S \text { (up to a scalar multiple factor). }
$$

Remark 3.5. Summarizing:
(1) $\operatorname{dim}\left(K_{S}\right) \geq 3 \Rightarrow T_{S}$ is not saturated.
(2) $\operatorname{dim}\left(K_{S}\right)=2 \Rightarrow T_{S}$ can be or cannot be saturated (depending on the geometry of K and S).
(3) $\operatorname{dim}\left(K_{S}\right)=1 \Rightarrow T_{S}$ can be or cannot be saturated [but depends on K and description S of K, if $n \geq 2$).

After all this discussion about positive polynomials, strictly positive polynomials, we now want to show Schmüdgen's Positivstellensatz:

Theorem 3.6. (Schmüdgen's Positivstellensatz) Let $S=\left\{g_{1}, \ldots, g_{s}\right\}$ be a finite subset of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ and $K_{S} \subseteq \mathbb{R}^{n}$ be a compact basic closed semi algebraic set. And let $f \in \mathbb{R}[\underline{X}]$ s.t. $f>0$ on K_{S}. Then $f \in T_{S}$.
Note that this holds for every finite description S of K.
To prove this we first need Representation Theorem (Stone-Krivine, KadisonDubois), which will be proved in the next lecture.

POSITIVE POLYNOMIALS LECTURE NOTES

(12: 25/05/10)

SALMA KUHLMANN

Contents

1. Schmüdgen's Positivstellensatz 1
2. Representation theorem (Stone-Krivine, Kadison-Dubois) 1
3. Preprimes, modules and semi-ordering in rings 3

1. SCHMÜDGEN'S POSITIVSTELLENSATZ

Theorem 1.1. (Recall 3.6 of lecture 11) Let $S=\left\{g_{1}, \ldots, g_{s}\right\}$ be a finite subset of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ and $K_{S} \subseteq \mathbb{R}^{n}$ be a compact basic closed semi algebraic set. And let $f \in \mathbb{R}[\underline{X}]$ s.t. $f>0$ on K_{S}. Then $f \in T_{S}$.

To prove this we first need Representation Theorem (Stone-Krivine, KadisonDubois):

2. REPRESENTATION THEOREM (STONE-KRIVINE, KADISON-DUBOIS)

Let A be a commutative ring with 1 . Let

$$
\chi:=\operatorname{Hom}(A, \mathbb{R})=\{\alpha \mid \alpha: A \rightarrow \mathbb{R}, \alpha \text { ring homomorphism }\}
$$

Notation 2.1. If $M \subseteq A$ denote

$$
\chi_{M}=\left\{\alpha \in \chi \mid \alpha(M) \subseteq \mathbb{R}_{+}\right\} .
$$

Notation 2.2. For $a \in A$ define a map

$$
\begin{aligned}
& \hat{a}: \chi \rightarrow \mathbb{R} \quad \text { by } \\
& \hat{a}(\alpha):=\alpha(a)
\end{aligned}
$$

Remark 2.3. (i) Let $M \subseteq A$, with notations 2.1 and 2.2 we see that

$$
\begin{aligned}
\chi_{M} & :=\left\{\alpha \in \chi \mid \alpha(M) \subseteq \mathbb{R}_{+}\right\} \\
& =\{\alpha \in \chi \mid \alpha(a) \geq 0, \forall a \in M\} \\
& =\{\alpha \in \chi \mid \hat{a}(\alpha) \geq 0, \forall a \in M\}
\end{aligned}
$$

So, χ_{M} is "the nonnegativity set" of M in χ.
Observation 2.4. $a \in M \Rightarrow \hat{a} \geq 0$ on χ_{M}, because if $\alpha \in \chi_{M}$, then $\hat{a}(\alpha) \geq 0$ (by definition).
Conversely, answer the question: for $a \in A$, if $\hat{a}>0$ on $\chi_{M} \Rightarrow a \in M$?
Exkurs 2.5. One can view $\chi=\operatorname{Hom}(A, \mathbb{R})$ as a topological subspace of (Sper A, spectral topology) as follows:

1. Embedding of $\operatorname{Hom}(A, \mathbb{R})$ in $\operatorname{Sper} A$:

Consider the map defined by

$$
\begin{aligned}
& \operatorname{Hom}(A, \mathbb{R}) \rightarrow \text { Sper } A \\
& \quad \alpha \mapsto P_{\alpha}:=\alpha^{-1}\left(\mathbb{R}_{+}\right),
\end{aligned}
$$

where (recall that) $\operatorname{Sper}(A):=\{P ; P$ is an ordering of $A\}$.
Then
(i) this map is well defined i.e. $P_{\alpha} \subseteq A$ is an ordering.
(ii) this map is injective : $\alpha \neq \beta \Rightarrow P_{\alpha} \neq P_{\beta}$.
(iii) $\operatorname{support}\left(P_{\alpha}\right)=\operatorname{ker} \alpha$.
2. Topology on χ :

Endow χ with a topology : for $a \in A$

$$
\{u(\hat{a})=\{\alpha \in \chi \mid \hat{a}(\alpha)>0\} ; a \in A\}
$$

is a sub-basis of open sets. Then
(iv) for $a \in A$, the map $\hat{a}: \chi \rightarrow \mathbb{R}$ is continuos in this topology.
(v) in fact this topology on χ is the weakest topology on χ for which \hat{a} is continuous for all $a \in A$,
i.e. if τ is any other topology on χ which makes all these maps \hat{a} (for $a \in A$) continuous then τ has more open sets than this weakest topology (i.e. $u(\hat{a})$ lies in τ).
(vi) this topology is also the topology induced on χ via the embedding $\alpha \mapsto P_{\alpha}$ giving Sper A the spectral topology [just use the fact that $\hat{a}(\alpha)>0 \Leftrightarrow a \notin-P_{\alpha} \Leftrightarrow a>_{P_{\alpha}} 0$. Spectral topology: $u(a)=\{P ; a \notin$ $\left.-P\}=\left\{P \mid a>_{P} 0\right\}\right]$.

Now we are back to the question (in Observation 2.4): for $a \in A$, does $\hat{a}>0$ on $\chi_{M} \Rightarrow a \in M$?
Yes under additional assumptions on the subset M that we shall now study:

3. PREPRIMES, MODULES AND SEMI-ORDERINGS IN RINGS

Let A be a commutative ring with 1 and $\mathbb{Q} \subseteq A$. Concept of preordering generalizes in two directions:
(i) Preprimes
(ii) Modules (special case: quadratic modules)

Definitions 3.1. (1) A preprime is a subset T of A such that

$$
T+T \subseteq T ; \quad T T \subseteq T ; \quad \mathbb{Q}_{+} \subseteq T
$$

(2) Let T be a preprime of $A . M \subseteq A$ is a T-module if

$$
M+M \subseteq M ; \quad T M \subseteq M ; \quad 1 \in M \text { (i.e. } T \subseteq M)
$$

[Note that in particular, a preprime T is a T-module.]
(3) A preprime T of A is said to be generating if $T-T=A$.
[Note that if T is any preprime then $T-T$ is already a subring of A because

$$
\begin{aligned}
& \left(t_{1}-t_{2}\right)+\left(t_{3}-t_{4}\right)=\left(t_{1}+t_{3}\right)-\left(t_{2}+t_{4}\right) \\
& \left.\left(t_{1}-t_{2}\right)\left(t_{3}-t_{4}\right)=\left(t_{1} t_{3}+t_{2} t_{4}\right)-\left(t_{1} t_{4}+t_{2} t_{3}\right) .\right]
\end{aligned}
$$

Proposition 3.2. Every preordering T of A is a generating preprime.
Proof. (i) For $\frac{m}{n} \in \mathbb{Q}: \frac{m}{n}=\left(\frac{1}{n}\right)^{2} m n=\underbrace{\frac{1}{n^{2}}+\ldots+\frac{1}{n^{2}}}_{\text {(mn-times) }}$ so $\mathbb{Q}_{+} \subset T$.
(ii) For $a \in A, a=\left(\frac{1+a}{2}\right)^{2}-\left(\frac{1-a}{2}\right)^{2}$. So $A=T-T$.

Definitions 3.3. (1) A quadratic module is a T-module over the preprime $T=$ $\sum A^{2}$.
(2) A T-module M is proper if $(-1) \notin M$.
(3) A semi-ordering M is a quadratic module such that moreover

$$
M \cup(-M)=A ; \quad M \cap(-M)=\mathfrak{p} \text { is a prime ideal in } A .
$$

Proposition 3.4.

(a) Suppose T is a generating preprime and M is a maximal proper T-module, then $M \cup(-M)=A$.
(b) Suppose T is a preordering and M a maximal proper T-module then $\mathfrak{p}=$ $M \cap(-M)$ is a prime ideal.
(c) Therefore: if T is a preordering and M is a maximal proper T-module then M is a semi-ordering.

Proof. Similar to proof in the preordering case
(a) Let $a \in A, a \notin M \cup(-M)$.

By maximality of M, we have:

$$
-1 \in(M+a T) \text { and }-1 \in(M-a T)
$$

Therefore, $-1=s_{1}+a t_{1}$ and $-1=s_{2}-a t_{2}$; for some $s_{1}, s_{2} \in M$ and $t_{1}, t_{2} \in T$.
This implies $-a t_{1}=1+s_{1}$ and $a t_{2}=1+s_{2}$.
So $-a t_{1} t_{2}=t_{2}+s_{1} t_{2}$ and $a t_{2} t_{1}=t_{1}+s_{2} t_{1}$.
So $0=t_{2}+t_{1}+s_{1} t_{2}+t_{1} s_{2}$.
So $-t_{1}=t_{2}+s_{1} t_{2}+t_{1} s_{2} \in M$.
Now since T is generating, so pick $t_{3}, t_{4} \in T$ such that $a=t_{3}-t_{4}$, then
$-1=s_{1}+a t_{1}=s_{1}+\left(t_{3}-t_{4}\right) t_{1}=s_{1}+t_{1} t_{3}+t_{4}\left(-t_{1}\right) \in M$. This is a contradiction.
(b) $\mathfrak{p}=M \cap-M$.

Clearly $\mathfrak{p}+\mathfrak{p} \subseteq \mathfrak{p},-\mathfrak{p}=\mathfrak{p}, 0 \in \mathfrak{p}, T \mathfrak{p} \subseteq \mathfrak{p}$.
Since $A=T-T \Rightarrow A \mathfrak{p} \subseteq \mathfrak{p}$. Thus \mathfrak{p} is an ideal clearly.
So far we have only used that T is a generating preprime, to show that \mathfrak{p} is a prime ideal we need that T is preordering:

Suppose $a b \in \mathfrak{p}, a \notin \mathfrak{p}$. Without loss of generality assume $a \notin M$.
Now this implies: $-1 \in M+a T$, so $-1=s+a t ; s \in M, t \in T$
$\Rightarrow-b^{2}=s b^{2}+a b^{2} t \in M+\mathfrak{p} \subseteq M$.
Now since $b^{2} \in T \subseteq M$, this implies $b^{2} \in M \cap-M=\mathfrak{p}$.
So we are reduced to showing: $b^{2} \in \mathfrak{p} \Rightarrow b \in \mathfrak{p}$.
Suppose $b^{2} \in \mathfrak{p}, b \notin \mathfrak{p}$. Without loss of generality $b \notin M$.
Thus $-1=s+b t$, for some $s \in M$ and $t \in T$.
So $1+2 s+s^{2}=(1+s)^{2}=(-b t)^{2}=b^{2} t^{2} \in \mathfrak{p}=M \cap-M$.
Thus $-1=2 s+s^{2}+\underbrace{\left(-b^{2} t^{2}\right)}_{(\in M)} \in M$, a contradiction since $-1 \notin M$.
(c) Clear.

Our next aim is to show that under the additional assumption: " M is archimedian", then a maximal proper module M over a preordering is an ordering not just a semi-ordering. This is crucial in proof of Kadison-Dubois.

POSITIVE POLYNOMIALS LECTURE NOTES

(13: 27/05/10)

SALMA KUHLMANN

Contents

1. Archimedean modules 1
2. Representation Theorem (Stone-Krivine, Kadison-Dubois)

1. ARCHIMEDEAN MODULES

Let A be a commutative ring, $Q \subseteq A, T$ a preprime.
Definition 1.1. Let M a T-module. M is archimedean if:

$$
\forall a \in A, \exists N \geq 1, N \in \mathbb{Z}_{+} \text {s.t. } N+a, N-a \in M .
$$

Proposition 1.2. Let T be a generating preprime, M a maximal proper T-module.
Assume that M is archimedean. Then \exists a uniquely determined $\alpha \in \operatorname{Hom}(A, \mathbb{R})$ s.t. $M=\alpha^{-1}\left(\mathbb{R}_{+}\right)=P_{\alpha}$.
(In particular, M is an ordering, not just a semi-ordering.)
Proof. Let $a \in A$, define:
$\operatorname{cut}(a)=\{r \in \mathbb{Q} \mid r-a \in M\}$, this is an upper cut in \mathbb{Q} (i.e. final segment of \mathbb{Q}).
Claim 1: $\operatorname{cut}(a) \neq \emptyset$ and $\mathbb{Q} \backslash(\operatorname{cut}(a)):=\mathrm{L}(a) \neq \emptyset$, where $\mathrm{L}(a)$ is a lower cut in \mathbb{Q}.
Proof of claim 1. Since M is archimedean $\exists n \geq 1$ s.t. $n-a \in M$, so $\operatorname{cut}(a) \neq \emptyset$.
Also $\exists m \geq 1$ s.t. $(m+a) \in M$.
If $-(m+1)-a \in M$, then adding we get $-1 \in M$, a contradiction (since M is proper). So we have $-(m+1)-a \notin M$, which $\Rightarrow-(m+1) \in Q \backslash(\operatorname{cut}(a))=\mathrm{L}(a)$.

Now define a map $\alpha: A \longrightarrow \mathbb{R}$ by

$$
\alpha(a):=\inf (\operatorname{cut}(a))
$$

α is well-defined.
Claim 2: $\alpha(1)=1, \alpha(M) \subseteq \mathbb{R}_{+} ; \alpha(a \pm b)=\alpha(a) \pm \alpha(b) \forall a, b \in A$ and $\alpha(t b)=\alpha(t) \alpha(b) \forall t \in T, b \in A$.
This is left as an exercise.
Claim 3: $\alpha(a b)=\alpha(a) \alpha(b) \forall a, b \in A$
Proof of claim 3. T generating $\Rightarrow a=t_{1}-t_{2}, t_{1}, t_{2} \in T$
so, $\alpha(a b)=\alpha\left(t_{1} b-t_{2} b\right)=\alpha\left(t_{1} a\right)-\alpha\left(t_{2} b\right)$

$$
\begin{aligned}
& =\alpha\left(t_{1}\right) \alpha(b)-\alpha\left(t_{2}\right) \alpha(b) \text { [by claim 2] } \\
& =\left(\alpha\left(t_{1}\right)-\alpha\left(t_{2}\right)\right) \alpha(b)=\alpha\left(t_{1}-t_{2}\right) \alpha(b)=\alpha(a) \alpha(b) .
\end{aligned}
$$

\square (claim 3)
Claim 4: $\alpha^{-1}\left(\mathbb{R}_{+}\right)=M$
Proof of claim 4. By Claim 2, $M \subseteq \alpha^{-1}\left(\mathbb{R}_{+}\right)$
so, by maximality of M and since $P_{\alpha}=\alpha^{-1}\left(\mathbb{R}_{+}\right)$is an ordering it follows that
$M=\alpha^{-1}\left(\mathbb{R}_{+}\right)$.

Corollary 1.3. Let A be a commutative ring with $1, T$ an archimedean preprime, M a T-module, $-1 \notin M$ (i.e. M proper T-module). Then $\chi_{M} \neq \emptyset$.

Proof. Since T is archimedean, T is generating (because $a=(n+a)-n$, for $a \in A$) and M is a proper archimedean module (archimedean module because for an archimedean preprime T, every T-module is also archimedean). By Zorn's lemma extend M to a maximal proper archimedean module Q. Apply Proposition 1.2 to Q to get $\alpha \in \operatorname{Hom}(A, \mathbb{R})$ such that $Q=\alpha^{-1}\left(\mathbb{R}_{+}\right)$. This implies $M \subseteq \alpha^{-1}\left(\mathbb{R}_{+}\right)$. So, $\alpha \in \chi_{M}$, which implies $\Rightarrow \chi_{M} \neq \emptyset$.

2. REPRESENTATION THEOREM (STONE-KRIVINE, KADISON-DUBOIS)

The following corollary (to Proposition 1.2 and Corollary 1.3) answers the question raised in 2.4 of lecture 12:

Corollary 2.1. (Stone-Krivine, Kadison-Dubois) Let A be a commutative ring, T an archimedean preprime in A, M a proper T-module. Let $a \in A$ and

$$
\begin{aligned}
& \hat{a}: \chi \rightarrow \mathbb{R} \quad \text { defined by } \\
& \hat{a}(\alpha):=\alpha(a)
\end{aligned}
$$

If $\hat{a}>0$ on χ_{M}, then $a \in M$.

Proof. Assume $\hat{a}>0$ on χ_{M}, i.e. $\hat{a}(\alpha)>0 \forall \alpha \in \chi_{M}$.
To show: $a \in M$

- Consider $M_{1}:=M=a T$

Since $\alpha(a)>0 \forall \alpha \in \chi_{M}$, we have $\chi_{M_{1}}=\emptyset$ [because if $\alpha \in \chi_{M_{1}}$, then $\alpha\left(M_{1}\right) \subseteq \mathbb{R}_{+}$. So, $\alpha(-a)=-\alpha(a) \geq 0$. So, $\alpha(a) \leq 0$, but $\alpha \in \chi_{M}$ so $\alpha(a)>0$, a contradiction].
So (since M_{1} is an archimedean T-module), we can apply Corollary 1.3 to M_{1} to deduce that $-1 \in M_{1}$.
Write $-1=s-a t, s \in M, t \in T$
$\Rightarrow a t-1=s \in M$

- Consider $\sum:=\{r \in \mathbb{Q} \mid r+a \in M\}$

We claim that: $\exists \rho \in \Sigma ; \rho<0$
Once the claim is established we are done (with the proof of corollary) because
$a=\underbrace{(a+\rho)}_{\in M}+\underbrace{(-\rho)}_{\in M} \in M$.
$\underline{\text { Proof of the claim: First observe that } \sum \neq \emptyset \text { (since } \exists n \geq 1 \text { s.t } n+a \in T \subseteq}$ M, so $n \in \Sigma$).

Now fix $r \in \sum, r \geq 0$ and fix an integer $k \geq 1$ s.t $(k-t) \in T$
Write: $k r-1+k a=\underbrace{(k-t)}_{\in T} \underbrace{(r+a)}_{\in M}+\underbrace{(a t-1)}_{\in M}+\underbrace{r t}_{\in M} \in M$
Multiplying by $\frac{1}{k}$, we get
$\left(r-\frac{1}{k}\right)+a \in M$, i.e. $\left(r-\frac{1}{k}\right) \in \Sigma$
Repeating we eventually find $\rho \in \Sigma, \rho<0$.

Note 2.2. For a quadratic module $M \subseteq \mathbb{R}[\underline{X}]$, set

$$
K_{M}:=\left\{x \in \mathbb{R}^{n} \mid g(x) \geq 0 \forall g \in M\right\} .
$$

Note that if $M=M_{S}$ with $S=\left\{g_{1}, \ldots, g_{s}\right\}$, then $K_{S}=K_{M}$.
We have the following corollaries to Corollary 2.1. (Stone-Krivine, KadisonDubois):

Corollary 2.3. (Putinar's Archimedean Positivstellensatz) Let $M \subseteq \mathbb{R}[\underline{X}]$ be an archimedean quadratic module. Then for each $f \in \mathbb{R}[\underline{X}]$:

$$
f>0 \text { on } K_{M} \Rightarrow f \in M
$$

Corollary 2.4. Let $A=\mathbb{R}[\underline{X}]$ and $S=\left\{g_{1}, \ldots, g_{s}\right\}$. Assume that the finitely generated preordering T_{S} is archimedean. Then for all $f \in A$:

$$
f>0 \text { on } K_{S} \Rightarrow f \in T_{S}
$$

Remark 2.5.

1. To apply the corollary we need a criterion to determine when a preordering (quadratic module) is archimedean.
2. T_{S} is archimedean \Rightarrow for $f=\sum X_{i}^{2}: \exists N$ s.t. $N-f=N-\sum X_{i}^{2} \in T_{S}$
$\Rightarrow N-\sum X_{i}^{2} \geq 0$ on K_{S}.
$\Rightarrow K_{S}$ is bounded. Also K_{S} is closed.
So T_{S} is archimedean implies K_{S} is compact.

POSITIVE POLYNOMIALS LECTURE NOTES (14: 01/06/10)

SALMA KUHLMANN

Contents

1. Rings of bounded elements 1
2. Schmüdgen's Positivstellensatz

1. RINGS OF BOUNDED ELEMENTS

Let A be a commutative ring with $1, \mathbb{Q} \subseteq A$ and M be a quadratic module $\subseteq A$.

Definition 1.1. Consider

$$
B_{M}=\{a \in A \mid \exists n \in \mathbb{N} \text { s.t. } n+a \text { and } n-a \in M\},
$$

B_{M} is called the ring of bounded elements, which are bounded by M.

Proposition 1.2.

(1) M is an archimedean module of A iff $B_{M}=A$.
(2) B_{M} is a subring of A.
(3) $\forall a \in A, a^{2} \in B_{M} \Rightarrow a \in B_{M}$.
(4) More generally, $\forall a_{1}, \ldots, a_{k} \in A, \sum_{i=1}^{k} a_{i}^{2} \in B_{M} \Rightarrow a_{i} \in B_{M} \forall i=1, \ldots, k$.

Proof. (1) Clear.
(2) Clearly $\mathbb{Q} \subseteq B_{M}$ and B_{M} is an additive subgroup of A.

To show: $a, b \in B_{M} \Rightarrow a b \in B_{M}$
Using the identity

$$
a b=\frac{1}{4}\left[(a+b)^{2}-(a-b)^{2}\right],
$$

we see that in order to show that B_{M} is closed under multiplication it is sufficient to show that: $\forall a \in A: a \in B_{M} \Rightarrow a^{2} \in B_{M}$.
Let $a \in B_{M}$. Then $n \pm a \in M$ for some $n \in \mathbb{N}$. Now $n^{2}+a^{2} \in M$.
Also $2 n\left(n^{2}-a^{2}\right)=\left(n^{2}-a^{2}\right)[(n+a)+(n-a)]$
So, $\left(n^{2}-a^{2}\right)=\frac{1}{2 n}\left[(n+a)\left(n^{2}-a^{2}\right)+(n-a)\left(n^{2}-a^{2}\right)\right]$

$$
\begin{equation*}
=\frac{1}{2 n}\left[(n+a)^{2}(n-a)+(n-a)^{2}(n+a)\right] \in M . \tag{2}
\end{equation*}
$$

So $\left(n^{2}+a^{2}\right)$ and $\left(n^{2}-a^{2}\right)$ both $\in M$. So by definition $a^{2} \in B_{M}$.
(3) Assume $a^{2} \in B_{M}$. Say $n-a^{2} \in M$, for $n \geq 1, n \in \mathbb{N}$, then use the identity:

$$
\begin{equation*}
(n \pm a)=\frac{1}{2}\left[(n-1)+\left(n-a^{2}\right)+(a \pm 1)^{2}\right] \in M . \tag{3}
\end{equation*}
$$

So, $a \in B_{M}$.
(4) If $\sum a_{i}^{2} \in B_{M}$. Say $\left(n-\sum a_{i}^{2}\right) \in M$, then

$$
\begin{equation*}
\left(n-a_{i}^{2}\right)=\left(n-\sum a_{i}^{2}\right)+\sum_{j \neq i} a_{j}^{2} \in M . \tag{4}
\end{equation*}
$$

So, $a_{i}^{2} \in B_{M}$ and so by (3), $a_{i} \in B_{M}$.

Corollary 1.3. Let M be a quadratic module of $\mathbb{R}[\underline{X}]$. Then M is archimedean iff there exists $N \in \mathbb{N}$ such that

$$
N-\sum_{i=1}^{n} X_{i}^{2} \in M
$$

Proof. (\Rightarrow) Clear.
(\Leftarrow) First note that $\mathbb{R}_{+} \subseteq M$ so, $\mathbb{R} \subseteq B_{M}$ (B_{M} subring).
Also $N-\sum_{i=1}^{n} X_{i}^{2}$ and $N+\sum_{i=1}^{n} X_{i}^{2} \in M$. Therefore by definition $\sum_{i=1}^{n} X_{i}^{2} \in B_{M}$.
So (by Proposition 1.2) $X_{1}, \ldots, X_{n} \in B_{M}$. This implies $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right] \subseteq B_{M}$ and so M is archimedean.

2. SCHMÜDGEN'S POSITIVSTELLENSATZ

Theorem 2.1. Let $S=\left\{g_{1}, \ldots g_{s}\right\} \subseteq \mathbb{R}[\underline{X}]$. Assume that $K=K_{S}=\left\{\underline{x} \mid g_{i}(\underline{x}) \geq 0\right\}$ is compact. Then there exists $N \in \mathbb{N}$ such that

$$
N-\sum_{i=1}^{n} X_{i}^{2} \in T_{S}=T
$$

In particular T_{S} is an archimedean preordering (by Corollary 1.3) and thus $\forall f \in$ $\mathbb{R}[\underline{X}]: f>0$ on $K_{S} \Rightarrow f \in T_{S}$.

Proof. [Reference: Dissertation, Thorsten Wörmann]

- K compact $\Rightarrow K$ bounded $\Rightarrow \exists k \in \mathbb{N}$ such that $\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)>0$ on K.
- By applying the Positivstellensatz to above we get: $\exists p, q \in T_{S}$ such that $p\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)=1+q$. So, $p\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)^{2}=(1+q)\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)$. So, $(1+q)\left(k-\sum_{i=1}^{n} X_{i}^{2}\right) \in T_{S}$.
- Set $T^{\prime}=T+\left(k-\sum_{i=1}^{n} X_{i}^{2}\right) T$. By Corollary $1.3, T^{\prime}$ is an archimedean preordering. Therefore $\exists m \in \mathbb{N}$ such that $(m-q) \in T^{\prime} ;$ say: $m-q=t_{1}+t_{2}\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)$ for some $t_{1}, t_{2} \in T$.
- $\operatorname{So},(m-q)(1+q)=t_{1}(1+q)+t_{2}\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)(1+q) \in T_{S} . \operatorname{So}(m-q)(1+q) \in T_{S}$.
- Adding

$$
\begin{align*}
(m-q)(1+q) & =m q-q^{2}+m-q \in T_{S}, \tag{1}\\
\left(\frac{m}{2}-q\right)^{2} & =\frac{m^{2}}{4}+q^{2}-m q \in T_{S} . \tag{2}
\end{align*}
$$

yields

$$
\begin{equation*}
\left(m+\frac{m^{2}}{4}-q\right) \in T_{S} \tag{3}
\end{equation*}
$$

- Multiplying L.H.S. of (3) by $k \in T_{S}$, and adding $\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)(1+q) \in T_{S}$ and $q\left(\sum_{i=1}^{n} X_{i}^{2}\right) \in T_{S}$, yields

$$
k\left(m+\frac{m^{2}}{4}-q\right)+\left(k-\sum_{i=1}^{n} X_{i}^{2}\right)(1+q)+q\left(\sum_{i=1}^{n} X_{i}^{2}\right) \in T_{S}
$$

i.e. $k m+k \frac{m^{2}}{4}+k-\sum_{i=1}^{n} X_{i}^{2} \in T_{S}$
i.e. $k\left(\frac{m}{2}+1\right)^{2}-\sum_{i=1}^{n} X_{i}^{2} \in T_{S}$

Set $N:=k\left(\frac{m}{2}+1\right)^{2}$.

2.2. Final Remarks on Schmüdgen's Positivstellensatz (SPSS):

1. Corollary (Schmüdgen's Nichtnegativstellensatz):
$f \geq 0$ on $K_{S} \Rightarrow \forall \epsilon$ real, $\epsilon>0: f+\epsilon \in T_{S}$.
2. SPSS fails in general if we drop the assumption that " K is compact".

For example:
(i) Consider $n=1, S=\left\{X^{3}\right\}$, then $K_{S}=[0, \infty)$ (noncompact). Take $f=X+1$. Then $f>0$ on K_{S}. Claim: $f \notin T_{S}$, indeed elements of T_{S} have the form $t_{0}+t_{1} X^{3}$, where $t_{0}, t_{1} \in \sum \mathbb{R}[X]^{2}$. We have shown before at the beginning of this course (in 2.4 of lecture 2) that non zero elements of this preordering either have even degree or odd degree ≥ 3.
(ii) Consider $n \geq 2, S=\emptyset$, then $K_{S}=\mathbb{R}^{n}$. Take strictly positive versions of the Motzkin polynomial

$$
m\left(X_{1}, X_{2}\right):=1-X_{1}^{2} X_{2}^{2}+X_{1}^{2} X_{2}^{4}+X_{1}^{4} X_{2}^{2}
$$

i.e. $m_{\epsilon}:=m\left(X_{1}, X_{2}\right)+\epsilon ; \epsilon \in \mathbb{R}_{+}$. Then $m_{\epsilon}>0$ on $K_{S}=\mathbb{R}^{2}$, and it is easy to show that $m_{\epsilon} \notin T_{S}=\sum \mathbb{R}[\underline{X}]^{2} \forall \epsilon \in \mathbb{R}_{+}$.
3. SPSS fails in general for a quadratic module instead of a preordering. [Mihai Putinar's question answered by Jacobi + Prestel in Dissertation of T. Jacobi (Konstanz)]
4. SPSS fails in general if the condition " $f>0$ on K_{S} " is replaced by " $f \geq 0$ on K_{S} ".
Example (Stengle): Consider $n=1, S=\left\{\left(1-X^{2}\right)^{3}\right\}, K_{S}=[-1,1]$ compact. Take $f:=1-X^{2} \geq 0$ on K_{S} but $1-X^{2} \notin T_{S}$. (This example has already been considered at the beginning of this course in 2.4 of lecture 2).
5. PSS holds for any real closed field but not SPSS:

Example: Let R be a non archimedean real closed field. Take $n=1, S=$ $\left\{\left(1-X^{2}\right)^{3}\right\}$, then $K_{S}=[-1,1]_{R}=\{x \in R \mid-1 \leq x \leq 1\}$. Take $f=1+t-X^{2}$, where $t \in R^{>0}$ is an infinitesimal element (i.e. $0<t<\epsilon$, for every positive rational ϵ). Then $f>0$ on K_{S}. We claim that $f \notin T_{S}$:
Let v be the natural valuation on R. So $v(t)>0$ for $t>0$. Now suppose for a contradiction that $f \in T_{S}$. Then

$$
\begin{equation*}
1+t-X^{2}=f=t_{0}+t_{1}\left(1-X^{2}\right)^{3} ; t_{0}, t_{1} \in \sum R[X]^{2} \tag{1}
\end{equation*}
$$

Let $t_{i}=\sum f_{i j}^{2} ;$ for $i=0,1$ and $f_{i j} \in R[X]$.
Let $s \in R$ be the coefficient of the lowest value appearing in the $f_{i j}$, i.e. $v(s)=\min \left\{v(a) \mid a\right.$ is coefficient of some $\left.f_{i j}\right\}$.
Case I. if $v(s) \geq 0$, then applying the residue map $\left(\theta_{v} \longrightarrow \bar{R}:=\frac{\overline{\theta_{v}}}{\mathcal{I}_{v}}\right.$; defined by $x \longmapsto \bar{x}$, where θ_{v} is the valuation ring) to (1), we obtain

$$
1-X^{2}=\overline{t_{0}}+\overline{t_{1}}\left(1-X^{2}\right)^{3}
$$

and since $\overline{t_{i}}=\sum{\overline{f_{i j}}}^{2} \in \sum \mathbb{R}[X]^{2} ; i=0,1$; we get a contradiction to Example 2.4 (ii) of Lecture 2.

Case II. if $v(s)<0$. Dividing f by s^{2} and applying the residue map we obtain

$$
0=\frac{\overline{t_{0}}}{s^{2}}+\overline{\frac{t_{1}}{s^{2}}}\left(1-X^{2}\right)^{3}
$$

(Note that $v\left(s^{2}\right)=2 v(s)$ is $\min \{v(a)\} ; a$ is coefficient of some $f_{i j}^{2}$, i.e. $v\left(s^{2}\right) \leq v(a)$ for any coefficient a, so $\frac{f_{i j}^{2}}{s^{2}}$ has coefficients with value ≥ 0.) So we obtain

$$
0=t_{0}^{\prime}+t_{1}^{\prime}\left(1-X^{2}\right)^{3} \text {, with } t_{0}^{\prime}, t_{1}^{\prime} \in \sum \mathbb{R}[X]^{2} \text { not both zero. }
$$

Since $t_{0}^{\prime}, t_{1}^{\prime}$ have only finitely many common roots in \mathbb{R} and $1-X^{2}>0$ on the finite set $(-1,1)$, this is impossible.
-(claim)
6. SPSS holds over archimedean real closed fields.

POSITIVE POLYNOMIALS LECTURE NOTES (15: 08/06/10)

SALMA KUHLMANN

Contents

1. Schmüdgen's Nichtnegativstellensatz 1
2. Application of Schmüdgen's Positivstellensatz to the moment problem

1. SCHMÜDGEN'S NICHTNEGATIVSTELLENSATZ

1.1. Schmüdgen's Nichtnegativstellensatz (Recall 2.2 .1 of lecture 14): Let K_{S} be a compact basic closed semi algebraic set and $f \in \mathbb{R}[\underline{X}]$. Then

$$
f \geq 0 \text { on } K_{S} \Rightarrow \forall \epsilon \text { real, } \epsilon>0: f+\epsilon \in T_{S} .
$$

Corollary 1.2. Let $K=K_{S}$ be a compact basic closed semi algebraic set and $L \neq 0$ be a linear functional $L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ with $L(r)=r \forall r \in \mathbb{R}$. Then

$$
\underbrace{L\left(T_{S}\right) \geq 0}_{\text {(i.e. } \left.L(f) \geq 0 \forall f \in T_{S}\right)} \Rightarrow \underbrace{L\left(\operatorname{Psd}\left(K_{S}\right)\right) \geq 0}_{\text {(i.e. } \left.L(f) \geq 0 \forall f \geq 0 \text { on } K_{S}\right) .}
$$

Proof. W.l.o.g. $L(1)=1, L \neq 0$. Let $f \in \operatorname{Psd}\left(K_{S}\right)$ and assume $L\left(T_{S}\right) \geq 0$, To show: $L(f) \geq 0$
By 1.1, $\forall \epsilon>0: f+\epsilon \in T_{S}$
So, $L(f+\epsilon) \geq 0$ i.e. $L(f) \geq-\epsilon \forall \epsilon>0$ real
$\Rightarrow L(f) \geq 0$.
We shall now relate this to the problem of representation of linear functionals via integration along measures (i.e. $\int d \mu$).

2. APPLICATION OF SPSS TO THE MOMENT PROBLEM

Let \mathcal{X} be a Hausdorff topological space.
Definition 2.1. \mathcal{X} is locally compact if $\forall x \in \mathcal{X} \exists$ open \mathcal{U} in \mathcal{X} s.t. $x \in \mathcal{U}$ and $\overline{\mathcal{U}}$ (closure) is compact.

Notation 2.2. $\mathcal{B}^{\delta}(\mathcal{X}):=$ set of Borel measurable sets in \mathcal{X}
$=$ the smallest family of subsets of \mathcal{X} containing all compact subsets of \mathcal{X}, closed under finite \cup, set theoretic difference $A \backslash B$ and countable \cap.

Definition 2.3. A Borel measure μ on \mathcal{X} is a positive measure on \mathcal{X} s.t. every set in $\mathcal{B}^{\delta}(\mathcal{X})$ is measurable. We also require our measure to be regular i.e. $\forall B \in$ $\mathcal{B}^{\delta}(\mathcal{X})$ and $\forall \epsilon>0 \exists K, \mathcal{U} \in \mathcal{B}^{\delta}(\mathcal{X}), K$ compact, \mathcal{U} open s.t. $K \subseteq B \subseteq \mathcal{U}$ and $\mu(K)+\epsilon \geq \mu(B) \geq \mu(\mathcal{U})-\epsilon$.
2.4. Moment problem is the following:

Given a closed set $K \subseteq \mathbb{R}^{n}$ and a linear functional $L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$
Question:
when does \exists a Borel measure μ on K s.t. $\forall f \in \mathbb{R}[\underline{X}]: L(f)=\int f d \mu$?
Necessary condition for (1): $\forall f \in \mathbb{R}[\underline{X}], f \geq 0$ on $K \Rightarrow L(f) \geq 0$
in other words: $L(\operatorname{Psd}(K)) \geq 0$
Is this necessary condition also sufficient?
The answer is YES.
Theorem 2.5. (Haviland) Given $K \subseteq \mathbb{R}^{n}$ closed and $L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ a linear functional with $L(1)>0$:

$$
\exists \mu \text { as in (1) iff } \forall f \in \mathbb{R}[\underline{X}]: L(f) \geq 0 \text { if } f \geq 0 \text { on } K,
$$

i.e. $(1) \Leftrightarrow(2) \Leftrightarrow(3)$.

We shall prove Haviland's Theorem later. For now we shall deduce a corollary to SPSS.

Corollary 2.6. Let $K_{S}=\left\{\underline{x} \mid g_{i}(\underline{x}) \geq 0 ; i=1, \ldots, s\right\} \subseteq \mathbb{R}^{n}$ be a basic closed semialgebraic set and compact, $L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ a linear functional with $L(1)>0$. If $L\left(T_{S}\right) \geq 0$, then $\exists \mu$ positive Borel measure on K s.t. $L(f)=\int_{K_{S}} f d \mu \forall f \in \mathbb{R}[\underline{X}]$.

Remark 2.7. Let $S=\left\{g_{1}, \ldots, g_{s}\right\}$.

1. $L\left(T_{S}\right) \geq 0$ can be written as

$$
L\left(h^{2} g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}\right) \geq 0 \forall h \in \mathbb{R}[\underline{X}], e_{1}, \ldots, e_{s} \in\{0,1\} .
$$

2. Compare Haviland to Schmüdgen's moment problem, for compact K_{S} : we do not need to check $L\left(\operatorname{Psd}\left(K_{S}\right)\right) \geq 0$ we only need to check $L\left(T_{S}\right) \geq 0$.
3. Reformulation of question (1) (in 2.4) in terms of moment sequences:

Let $L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$, with $L(1)=1$. Consider $\left\{\underline{X} \underline{\underline{\alpha}}=X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}} ; \underline{\alpha} \in \mathbb{N}^{n}\right\}$ a monomial basis for $\mathbb{R}[\underline{X}]$. So L is completely determined by the (multi) sequence of real numbers $\tau(\underline{\alpha}):=L\left(\underline{X}^{\underline{\alpha}}\right) ; \underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ (i.e. $\tau: \mathbb{N}^{n} \longrightarrow \mathbb{R}$ is a function) and conversely, every such sequence determines a linear functional L :

$$
L\left(\sum_{\underline{\alpha}} a_{\underline{\alpha}} \underline{X}^{\underline{\alpha}}\right):=\sum_{\underline{\alpha}} a_{\underline{\alpha}} L\left(\underline{X}^{\underline{\alpha}}\right) .
$$

So, (1) (in 2.4) can be reformulated as:
Given $K \subseteq \mathbb{R}^{n}$ closed, and a multisequence $\tau=\tau(\underline{\alpha})_{\underline{\alpha} \in \mathbb{N}^{n}}$ of real numbers, $\exists \mu$ positive borel measure on K s.t $\int \underline{X}^{\underline{\alpha}} d \mu=\tau_{\underline{\alpha}}$ for all $\underline{\alpha} \in \mathbb{N}^{n}$?

Definition 2.8. A function $\tau: \mathbb{N}^{n} \longrightarrow \mathbb{R}$ is a $K-$ moment sequence if $\exists \mu$ positive borel measure on K s.t $\tau(\underline{\alpha})=\int_{K} \underline{X}^{\underline{\alpha}} d \mu$ for all $\underline{\alpha} \in \mathbb{N}^{n}$

So (1) can be reformulated as: given K and a function $\tau: \mathbb{N}^{n} \longrightarrow \mathbb{R}$, when is τ a K-moment sequence?

Definition 2.9. A function $\tau:\left(\mathbb{Z}_{+}\right)^{n} \longrightarrow \mathbb{R}$ is called $\mathbf{p s d}$ if

$$
\sum_{i, j=1}^{m} \tau\left(\underline{k}_{i}+\underline{k}_{j}\right) c_{i} c_{j} \geq 0
$$

for $m \geq 1$, arbitrary distinct $\underline{k}_{1}, \ldots, \underline{k}_{m} \in\left(\mathbb{Z}_{+}\right)^{n} ; c_{1}, \ldots, c_{m} \in \mathbb{R}$.

Definition 2.10. Given $\tau:\left(\mathbb{Z}_{+}\right)^{n} \longrightarrow \mathbb{R}$ a function and a fixed polynomial $g(\underline{X})=\sum_{\underline{k} \in \mathbb{Z}_{+}^{n}} a_{\underline{k}} \underline{X}^{\underline{k}} \in \mathbb{R}[\underline{X}]$. Define a new function $g(E)_{\tau}:\left(\mathbb{Z}_{+}\right)^{n} \rightarrow \mathbb{R}$ by $g(E)_{\tau}(\underline{l}):=\sum_{\underline{k} \in \mathbb{Z}_{+}^{n}} a_{\underline{k}} \tau(\underline{k}+\underline{l}) ;$ for any $\underline{l} \in\left(\mathbb{Z}_{+}\right)^{n}$.

Lemma 2.11. Let $L: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R}$ be a linear functional and denote by

$$
\tau:\left(\mathbb{Z}_{+}\right)^{n} \rightarrow \mathbb{R}
$$

the corresponding multisequence (i.e. $\left.\tau(\underline{k}):=L\left(\underline{X}^{\underline{k}}\right) \forall \underline{k} \in\left(\mathbb{Z}_{+}\right)^{n}\right)$.
Fix $g \in \mathbb{R}[\underline{X}], g(\underline{X})=\sum_{\underline{k} \in \mathbb{Z}_{+}{ }^{n}} a_{\underline{k}} \underline{X^{\underline{k}}} \in \mathbb{R}[\underline{X}]$. Then $L\left(h^{2} g\right) \geq 0$ for all $h \in \mathbb{R}[\underline{X}]$ if and only if the multisequence $g(E)_{\tau}$ is psd.

POSITIVE POLYNOMIALS LECTURE NOTES (16: 10/06/10)

SALMA KUHLMANN

Contents

1. Application of Schmüdgen's Positivstellensatz to the moment problem 1
2. Schmüdgen's nichtnegativstellensatz and Hankel matrices 2
3. Finite solvability of the K-Moment Problem 3
4. Haviland's Theorem 5

1. APPLICATION OF SPSS TO THE MOMENT PROBLEM (continued)

Lemma 1.1. (Lemma 2.11 of last lecture) Let $L: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R}$ be a linear functional and denote by

$$
\tau:\left(\mathbb{Z}_{+}\right)^{n} \rightarrow \mathbb{R}
$$

the corresponding multisequence (i.e. $\left.\tau(\underline{k}):=L\left(\underline{X}^{\underline{k}}\right) \forall \underline{k} \in\left(\mathbb{Z}_{+}\right)^{n}\right)$.
Fix $g \in \mathbb{R}[\underline{X}], g(\underline{X})=\sum_{\underline{k} \in \mathbb{Z}_{+}{ }^{n}} a_{\underline{k}} \underline{X}^{\underline{k}} \in \mathbb{R}[\underline{X}]$. Then $L\left(h^{2} g\right) \geq 0$ for all $h \in \mathbb{R}[\underline{X}]$ if and only if the multisequence $g(E)_{\tau}$ is psd.

Proof. Compute:

1. $L\left(\underline{X}^{\underline{l}} g\right)=\sum_{\underline{k} \in \mathbb{Z}_{+}{ }^{n}} a_{\underline{k}} \tau(\underline{k}+\underline{l})=g(E)_{\tau}(\underline{l})$; for all $\underline{l} \in\left(\mathbb{Z}_{+}\right)^{n}$.

Thus if $h=\sum_{i} c_{i} \underline{X}^{\underline{k}_{i}} \in \mathbb{R}[\underline{X}]$ then $h^{2}=\sum_{i, j} c_{i} c_{j} \underline{X}^{\underline{k}_{i}+\underline{k}_{j}}$.
2. So, $L\left(h^{2} g\right)=L\left[\left(\sum_{i, j} c_{i} c_{j} \underline{X}^{k_{i}+\underline{k}_{j}}\right) g\right]=\sum_{i, j} c_{i} c_{j} L\left(\underline{X}^{k_{i}+\underline{k}_{j}} g\right)$

$$
\underbrace{=}_{\text {[by 1.] }} \sum_{i, j} g(E)_{\tau}\left(\underline{k}_{i}+\underline{k}_{j}\right) c_{i} c_{j} .
$$

Theorem 1.2. (Schmüdgen's NNSS) (Reformulation in terms of moment sequences) Let $K=K_{S}$ compact, $S=\left\{g_{1}, \ldots, g_{s}\right\}$ and $\tau:\left(\mathbb{Z}^{+}\right)^{n} \rightarrow \mathbb{R}$ be a given multisequence. Then τ is a K-moment sequence if and only if the multisequences $\left(g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}\right)(E)_{\tau}:\left(\mathbb{Z}^{+}\right)^{n} \rightarrow \mathbb{R}$ are all psd for all $\left(e_{1}, \ldots, e_{s}\right) \in\{0,1\}^{s}$.

Next we reformulate question (1) in 2.4 of Lecture 15 in terms of Hankel matrices:

2. SCHMÜDGEN'S NNSS AND HANKEL MATRICES

We want to understand $L\left(h^{2} g\right) \geq 0 ; h, g \in \mathbb{R}[\underline{X}]$ in terms of Hankel matrices.
Definition 2.1. A real symmetric $n \times n$ matrix A is psd if $\underline{x}^{T} A \underline{x} \geq 0 \forall \underline{x} \in \mathbb{R}^{n}$. An $\mathbb{N} \times \mathbb{N}$ symmetric matrix (say) A is psd if $\underline{x}^{T} A \underline{x} \geq 0 \forall \underline{x} \in \mathbb{R}^{n}$ and $\forall n \in \mathbb{N}$.

Definition 2.2. Let $L \neq 0 ; L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ be a given linear functional. Fix $g \in \mathbb{R}[\underline{X}]$. Consider symmetric bilinear form:

$$
\begin{aligned}
& \langle,\rangle_{g}: \mathbb{R}[\underline{X}] \times \mathbb{R}[\underline{X}] \rightarrow \mathbb{R} \\
& \quad\langle h, k\rangle_{g}:=L(h k g) ; h, k \in \mathbb{R}[\underline{X}]
\end{aligned}
$$

Denote by S_{g} the $\mathbb{N} \times \mathbb{N}$ symmetric matrix with $\alpha \beta$-entry $\left\langle\underline{X}^{\underline{\alpha}}, \underline{X}^{\beta}\right\rangle_{g} \forall \underline{\alpha}, \underline{\beta} \in \mathbb{N}^{n}$, i.e. the $\alpha \beta$-entry of S_{g} is $L\left(\underline{X}^{\underline{\alpha}+\underline{\beta}} g\right)$.

Example. Let $g=1$, then

$$
\left\langle\underline{X}^{\underline{\alpha}}, \underline{X}^{\underline{\beta}}\right\rangle_{1}=L\left(\underline{X}^{\underline{\alpha}+\underline{\beta}}\right):=S_{\underline{\alpha}+\underline{\beta}} .
$$

More generally, if $g=\sum a_{\underline{\gamma}} \underline{X}^{\underline{\gamma}}$ then

$$
\left\langle\underline{X}^{\underline{\alpha}}, \underline{X}^{\beta}\right\rangle_{g}=L\left(\sum_{\gamma} a_{\underline{\gamma}} \underline{X}^{\underline{\alpha}+\underline{\beta}+\underline{\gamma}}\right)=\sum_{\underline{\gamma}} a_{\underline{\gamma}} S_{\underline{\alpha}+\underline{\beta}+\underline{\gamma}} .
$$

Proposition 2.3. Let L, g be fixed as above. Then the following are equivalent:

1. $L(\sigma g) \geq 0 \forall \sigma \in \sum \mathbb{R}[\underline{X}]^{2}$.
2. $L\left(h^{2} g\right) \geq 0 \forall h \in \mathbb{R}[\underline{X}]$.
3. \langle,\rangle_{g} is psd.
4. S_{g} is psd.

Proof. (1) $\Leftrightarrow(2)$ is clear.
Since $\langle h, h\rangle_{g}=L\left(h^{2} g\right),(2) \Leftrightarrow(3)$ is clear.
(3) \Leftrightarrow (4) is also clear.
2.4. Example. (Hamburger) Let $n=1$. A linear functional $L: \mathbb{R}[X] \rightarrow \mathbb{R}$ comes from a Borel measure on \mathbb{R} if and only if $L(\sigma) \geq 0$ for every $\sigma \in \sum \mathbb{R}[X]^{2}$.

Proof. From Haviland we know L comes from a Borel measure iff $L(f) \geq 0$ for every $f(X) \in \mathbb{R}[X], f \geq 0$ on \mathbb{R}. But $\operatorname{Psd}(\mathbb{R})=\sum \mathbb{R}[X]^{2}$ (by exercise in Real Algebraic Geometry course in WS 2009-10). So the condition is clear.

Remark 2.5. We can express Hamburgers's Theorem via Hankel matrix S_{g} with $g=1$ the constant polynomial.
$n=1$, so (for $i, j \in \mathbb{N}$) the $i j^{\text {th }}$ coefficient of S_{1} is $s_{i+j}=L\left(X^{i+j}\right)$.
Hence, $S_{1}=\left(\begin{array}{cccc}s_{0} & s_{1} & s_{2} & \ldots \\ s_{1} & s_{2} & \ldots & \\ s_{2} & \ldots & \ddots & \\ \ldots & \cdots & \end{array}\right)$ is psd.

2.1. REFORMULATION OF SCHMÜDGEN'S SOLUTION TO THE MOMENT PROBLEM IN TERMS OF HANKEL MATRICES

2.6. Let $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[\underline{X}]$ and $K_{S} \subseteq \mathbb{R}^{n}$ is compact. A linear functional L on $\mathbb{R}[\underline{X}]$ is represented by a Borel measure on K iff the $2^{S} \mathbb{N} \times \mathbb{N}$ Hankel matrices $\left\{S_{g_{1}^{e_{1}} \ldots} \underline{g_{s}^{e_{s}}}\left(e_{1}, \ldots, e_{s}\right) \in\{0,1\}^{s}\right\}$ are psd, where $S_{g}:=\left[L\left(\underline{X}^{\underline{\alpha}} \underline{\underline{\beta}} g\right)\right]_{\underline{\alpha} \underline{\beta}} ; \underline{\alpha}, \underline{\beta} \in \mathbb{N}^{n}$.

3. FINITE SOLVABILITY OF THE K - MOMENT PROBLEM

Definition 3.1. Let K be a basic closed semi-algebraic subset of \mathbb{R}^{n}.

1. The K-moment problem (KMP) is finitely solvable if there exists S finite, $S \subseteq \mathbb{R}[\underline{X}]$ such that:
(i) $K=K_{S}$, and
(ii) \forall linear functional L on $\mathbb{R}[\underline{X}]$ we have: $L\left(T_{S}\right) \geq 0 \Rightarrow L(\operatorname{Psd}(K)) \geq 0$ (equivalently, (iii) $L\left(T_{S}\right) \geq 0 \Rightarrow \exists \mu: L=\int d \mu$).
2. We shall say S solves the KMP if (i) and (ii) (equivalently (i) and (iii)) hold.
3.2. Schmüdgen's solution to the KPM for K compact b.c.s.a. Let $K \subseteq \mathbb{R}^{n}$ be a compact basic closed semi-algebraic set. Then S solves the KMP for any finite description S of K (i.e. for all finite $S \subseteq \mathbb{R}[\underline{X}]$ with $K=K_{S}$).

One can restate the condition " S solves the K-Moment problem" via the equality of two preorderings. We shall adopt this approach throughout:

Definition 3.3. Let $T_{S} \subseteq \mathbb{R}[\underline{X}]$ be a preordering. Define the dual cone of T_{S} :

$$
T_{S}^{\mathrm{v}}:=\left\{L \mid L: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R} \text { is a linear functional; } L\left(T_{S}\right) \geq 0\right\}
$$

and the double dual cone:

$$
T_{S}^{\mathrm{vv}}:=\left\{f \mid f \in \mathbb{R}[\underline{X}] ; L(f) \geq 0 \forall L \in T_{S}^{\mathrm{v}}\right\} .
$$

Lemma 3.4. For $S \subseteq \mathbb{R}[\underline{X}]$, S finite:
(a) $T_{S} \subseteq T_{S}^{\mathrm{vv}}$
(b) $T_{S}^{\mathrm{vv}} \subseteq \operatorname{Psd}\left(K_{S}\right)$.

Proof. (a) Immediate by definition.
(b) Let $f \in T_{S}^{\mathrm{vv}}$. To show: $f(\underline{x}) \geq 0 \forall \underline{x} \in K_{S}$.

Now every $\underline{x} \in \mathbb{R}^{n}$ determines an \mathbb{R}-algebra homomorphism

$$
e_{v_{x}}:=L_{\underline{x}} \in \operatorname{Hom}(\mathbb{R}[\underline{X}], \mathbb{R}) ; L_{\underline{x}}(g)=e_{v_{x}}(g):=g(\underline{x}) \forall g \in \mathbb{R}[\underline{X}],
$$

this $L_{\underline{x}}$ is in particular a linear functional.
Moreover we claim that $L_{x}\left(T_{S}\right) \geq 0$ for $\underline{x} \in K_{S}$. Indeed if $g \in T_{S}$ then $L_{\underline{x}}(g)=g(\underline{x}) \geq 0$ for $\underline{x} \in K_{S}$.
So, by assumption on f we must also have $L_{\underline{x}}(f) \geq 0$ for $\underline{x} \in K_{S}$, i.e. $f(\underline{x}) \geq 0$ for all $\underline{x} \in K_{S}$ as required.

We summarize as follows:
Corollary 3.5. For finite $S \subseteq \mathbb{R}[\underline{X}]$:

$$
T_{S} \subseteq T_{S}^{\mathrm{vv}} \subseteq \operatorname{Psd}\left(K_{S}\right)
$$

Corollary 3.6. (Reformulation of finite solvability) Let $K \subseteq \mathbb{R}^{n}$ be a b.c.s.a. set and $S \subseteq \mathbb{R}[\underline{X}]$ be finite. Then S solves the KMP iff
(j) $K=K_{S}$, and
(jj) $T_{S}^{\mathrm{vv}}=\operatorname{Psd}(K)$.

Proof. Assume (ii) of definition 3.1, i.e. $\forall L: L\left(T_{S}\right) \geq 0 \Rightarrow L(\operatorname{Psd}(K)) \geq 0$, and show (jj) i.e. $T_{S}^{\mathrm{vv}}=\operatorname{Psd}(K)$:
Let $f \in \operatorname{Psd}(K)$. Show $f \in T_{S}^{\mathrm{vv}}$ i.e. show $L(f) \geq 0 \forall L \in T_{S}^{\mathrm{v}}$.
Assume $L\left(T_{S}\right) \geq 0$. Then by assumption $L(\operatorname{Psd}(K)) \geq 0$. So, $L(f) \geq 0$ as required.
Conversely, assume (jj) and show (ii):
Let $L\left(T_{S}\right) \geq 0$, i.e. $L \in T_{S}^{\mathrm{v}}$. $\underline{\text { Show }} L(\operatorname{Psd}(K)) \geq 0$, i.e show $L(f) \geq 0 \forall f \in \operatorname{Psd}(K)$. Now [by assumption (jj)] $f \in \operatorname{Psd}(K) \Rightarrow f \in T_{S}^{\mathrm{vv}} \Rightarrow L(f) \geq 0 \forall L \in T_{S}^{\mathrm{v}}$.

We shall come back later to T_{S}^{vv} and describe it as closure w.r.t. an appropriate topology.

4. HAVILAND'S THEOREM

For the proof of Haviland's theorem (2.5 of lecture 15), we will recall Riesz Representation Theorem.

Definition 4.1. A topological space is said to be Hausdorff (or seperated) if it satisfies
(H4): any two distinct points have disjoint neighbourhoods, or $\left(\mathrm{T}_{2}\right)$: two distinct points always lie in disjoint open sets.

Definition 4.2. A topological space χ is said to be locally compact if $\forall x \in \chi \exists$ an open neighbourhood $\mathcal{U} \ni x$ such that $\overline{\mathcal{U}}$ is compact.

Theorem 4.3. (Riesz Representation Theorem) Let χ be a locally compact Hausdorff space and $L: \operatorname{Cont}_{c}(\chi, \mathbb{R}) \rightarrow \mathbb{R}$ be a positive linear functional i.e. $L(f) \geq 0 \forall f \geq 0$ on χ. Then there exists a unique (positive regular) Borel measure μ on χ such that $L(f)=\int_{\chi} f d \mu \forall f \in \operatorname{Cont}_{c}(\chi, \mathbb{R})$, where $\operatorname{Cont}_{c}(\chi, \mathbb{R}):=$ the ring (\mathbb{R}-algebra) of all continuous functions $f: \chi \rightarrow \mathbb{R}$ (addition and multiplication defined pointwise) with compact support i.e. such that the set $\operatorname{supp}(f):=$ $\{x \in \chi: f(x) \neq 0\}$ is compact.

Definition 4.4. L positive means:

$$
L(f) \geq 0 \forall f \in \operatorname{Cont}_{\mathrm{C}}(\chi, \mathbb{R}) \text { with } f \geq 0 \text { on } \chi .
$$

POSITIVE POLYNOMIALS LECTURE NOTES

(17: 15/06/10)

SALMA KUHLMANN

Contents

1. Haviland's Theorem

1. HAVILAND'S THEOREM (continued)

Recall Theorem 4.3 of last lecture:

Theorem 1.1. Riesz Representation Theorem:

Let χ be a locally compact Hausdorff space and $L: \operatorname{Cont}_{c}(\chi, \mathbb{R}) \rightarrow \mathbb{R}$ be a positive linear functional i.e. $L(f) \geq 0 \forall f \geq 0$ on χ. Then there exists a unique (positive regular) Borel measure μ on χ such that $L(f)=\int_{\chi} f d \mu \forall f \in \operatorname{Cont}_{c}(\chi, \mathbb{R})$, where $\operatorname{Cont}_{c}(\chi, \mathbb{R}):=$ the ring $(\mathbb{R}$-algebra) of all continuous functions $f: \chi \rightarrow \mathbb{R}$ (addition and multiplication defined pointwise) with compact support i.e. such that the set $\operatorname{supp}(f):=\{x \in \chi: f(x) \neq 0\}$ is compact.

We shall use theorem 1.1 to prove the following general result. Haviland's theorem (2.5 of lecture 15) will follow as a special case.

Theorem 1.2. Let A be an \mathbb{R}-algebra, χ a Hausdorff space and ${ }^{\wedge}: A \rightarrow \operatorname{Cont}_{c}(\chi, \mathbb{R})$ an \mathbb{R} algebra homomorphism. Assume $\exists p \in A$ such that $\hat{p} \geq 0$ on χ and $\forall k \in \mathbb{N}: \chi_{k}:=\{\alpha \in \chi \mid \hat{p}(\alpha) \leq k\}$ is compact. Then for any linear functional $L: A \rightarrow \mathbb{R}$ satisfying $\forall a \in A: \hat{a} \geq 0$ on $\chi \Rightarrow L(a) \geq 0, \exists$ a Borel measure μ on χ such that $L(a)=\int_{\chi} \hat{a} d \mu \forall a \in A$.

1.3. Remarks before proof.

1. (\star) implies in particular that χ is locally compact (i.e. $\forall x \in \chi: \exists$ an open neighbourhood $\mathcal{U} \ni x$ such that $\overline{\mathcal{U}}$ is compact).

Proof. Let $x \in \chi$, fix $k \geq 1$ s.t. $\hat{p}(x)<k$
Set $\mathcal{U}_{k}:=\{y \in \chi \mid \hat{p}(y)<k\}$

$$
\subseteq\{y \in \chi \mid \hat{p}(y) \leq k\}=\chi_{k}
$$

\mathcal{U}_{k} is open , $x \in \mathcal{U}_{k} ; \overline{\mathcal{U}_{k}} \subseteq \chi_{k} ;$ so $\overline{\mathcal{U}_{k}}$ is compact.
$\left[\chi_{k}=\hat{p}^{-1}((-\infty, k])\right.$ being inverse image of closed set under continuous map is closed but not necessarily compact, and $\mathcal{U}_{k}=\hat{p}^{-1}((-\infty, k))$ being inverse image of open set under continuous map is open.]
2. Haviland's Theorem is a corollary (to Theorem 1.2) if we set $\chi=K$ closed subset of $\mathbb{R}^{n}, A=\mathbb{R}[\underline{X}]$, and

$$
\begin{aligned}
\wedge: \mathbb{R}[\underline{X}] & \rightarrow \operatorname{Cont}(K, \mathbb{R}) ; \\
f & \mapsto \hat{f}(\text { restriction of the polynomial function } \mathrm{f} \text { to } K) \\
\hat{p}(x)=\sum x_{i}^{2}=\|\underline{x}\|^{2}, \chi_{k} & \text { compact. }
\end{aligned}
$$

1.4. Proof of Theorem 1.2. Set $C(\chi)=\operatorname{Cont}(\chi, \mathbb{R})$ and $C_{c}(\chi)=\operatorname{Cont}_{c}(\chi, \mathbb{R})$.

Let $\hat{A}:=\{\hat{a} \mid a \in A\}$ (the image under the \mathbb{R}-algebra homomorphism ${ }^{\wedge}$ is a subalgebra).
Define $\mathcal{B}(\chi) \subseteq C(\chi)$ to be the following subalgebra of $C(\chi)$:

$$
\mathcal{B}(\chi):=\{f \in C(\chi)|\exists a \in A:|f| \leq|\hat{a}| \text { on } \chi\} .
$$

Observe that $\mathcal{B}(\chi)$ is a subalgebra of $C(\chi)$ and $\hat{A} \subseteq \mathcal{B}(\chi) \subseteq C(\chi)$.
Claim 1: $C_{c}(\chi) \subseteq \mathcal{B}(\chi)$
Proof of Claim 1. Let $f \in C_{c}(\chi), f$ continuous and $\overline{\{x \in \chi: f(x) \neq 0\}}$ compact subset. Then $|f| \leq k$, for some $k \in \mathbb{N} ; k \in A$, i.e. $|f| \leq \hat{k}$ on χ.
So $C_{c}(\chi) \subseteq \mathcal{B}(\chi)$ as claimed i.e. $C_{c}(\chi)$ is a subalgebra of $\mathcal{B}(\chi)$. \quad (Claim 1)
Let now as in the hypothesis of the theorem:
$L: A \rightarrow \mathbb{R}$ with $L(a) \geq 0$ if $\hat{a} \geq 0$ on $\chi, \forall a \in A$.
We define $\bar{L}: \hat{A} \rightarrow \mathbb{R}$, by $\bar{L}(\hat{a}):=L(a)$.
Claim 2: \bar{L} is a well defined linear function.
Proof of Claim 2. Since $\bar{L}(\hat{a}+\hat{b})=\bar{L}(\widehat{a+b})=L(a+b)$, so it is enough to prove that: $\hat{a}=0 \Rightarrow L(a)=0$
Now $\hat{a} \geq 0 \Rightarrow L(a) \geq 0$, and $-\hat{a} \geq 0 \Rightarrow-L(a)=L(-a) \geq 0$; (together) $\Rightarrow L(a)=0$.
\square (Claim 2)
Claim 3: \bar{L} extends to a linear map:

$$
\bar{L}: \mathcal{B}(\chi) \rightarrow \mathbb{R} \text { with } \bar{L}(f) \geq 0 \text { for } f \geq 0 \text { on } \chi .
$$

Proof of Claim 3. We use Zorn's lemma to prove this:
Consider the collection of all pairs (B, \bar{L}), where B is a \mathbb{R}-subspace of $\mathcal{B}(\chi)$ containing \hat{A} and \bar{L} is an extension of \bar{L} (on A) with the property:

$$
\forall f \in B: f \geq 0 \text { on } \chi \Rightarrow \bar{L}(f) \geq 0
$$

and consider a partial order: $\left(B_{1}, \bar{L}_{1}\right) \subseteq\left(B_{2}, \bar{L}_{2}\right): \Leftrightarrow B_{1} \subseteq B_{2}$ and $\left.\bar{L}_{2}\right|_{B_{1}}:=\bar{L}_{1}$.

- this collection is nonempty since (\hat{A}, \bar{L}) belongs to it : $\hat{a} \geq 0$ on $\chi \Rightarrow \bar{L}(\hat{a})=$ $L(a) \geq 0$ (by definition)
- every chain has an upper bound
- Let (B, \bar{L}) be a maximal element.

Subclaim: we claim that $B=\mathcal{B}(\chi)$
Otherwise let $g \in \mathcal{B}(\chi) \backslash B$.
If $f_{1}, f_{2} \in B$ s.t. $f_{1} \leq g$ and $g \leq f_{2}$ on χ, then $f_{1} \leq f_{2}$ on χ so $\bar{L}\left(f_{1}\right) \leq \bar{L}\left(f_{2}\right)$.
So we consider the following sets of reals
$\mathcal{U}:=\left\{\bar{L}\left(f_{1}\right) \mid f_{1} \in B, f_{1} \leq g\right.$ on $\left.\chi\right\} \leq\left\{\bar{L}\left(f_{2}\right) \mid f_{2} \in B, g \leq f_{2}\right.$ on $\left.\chi\right\}=: \theta$
Note that these sets \mathcal{U}, θ are nonempty, i.e. f_{1}, f_{2} exist.
[e.g. let $a \in A$ s.t. $|g| \leq|\hat{a}|$ on χ
now $(\hat{a} \pm 1)^{2} \geq 0$, so $|\hat{a}| \leq \frac{\hat{a}^{2}+1}{2} \in \hat{A}$
so take $\left.f_{1}:=-\frac{\hat{a}^{2}+1}{2} \in \hat{A} ; f_{2}:=\frac{\hat{a}^{2}+1}{2} \in \hat{A}\right]$
By completeness of \mathbb{R}, let $e \in \mathbb{R}$ s.t.
$\sup \left\{\bar{L}\left(f_{1}\right) \mid f_{1} \in B, f_{1} \leq g\right\} \leq e \leq \inf \left\{\bar{L}\left(f_{2}\right) \mid f_{2} \in B, g \leq f_{2}\right\}$.
Extend \bar{L} to $B+\mathbb{R} g \subseteq \mathcal{B}(\chi)$ by setting
$\bar{L}(g):=e$ and $\bar{L}(f+d g):=\bar{L}(f)+d e ; d \in \mathbb{R}$
To verify: $\forall f+d g \in B+\mathbb{R} g: f+d g \geq 0 \Rightarrow \bar{L}(f+d g) \geq 0$. (Exercise)
This will contradict the maximal choice of B and will complete subclaim that $B=\mathcal{B}(\chi)$, and so complete the proof of claim 3 .
\square (Claim 3)
Thus \bar{L} is defined on $\mathcal{B}(\chi)$ and satisfies:

$$
\forall f \in \mathcal{B}(\chi): f \geq 0 \text { on } \chi \Rightarrow \bar{L}(f) \geq 0
$$

In particular \bar{L} is defined on $C_{c}(\chi)$ and satisfies $(\dagger \dagger)$, i.e. \bar{L} is a positive linear functional on $C_{c}(\chi)$. So we can apply Riesz Representation Theorem (theorem 1.1) on \bar{L} :
$\exists \mu$ on χ such that $\bar{L}(f)=\int_{\chi} f d \mu \forall f \in C_{c}(\chi) \subseteq \mathcal{B}(\chi)$.

Main claim: $(\dagger \dagger \dagger)$ holds also $\forall f \in \mathcal{B}(\chi)$, i.e. $\bar{L}(f)=\int_{\chi} f d \mu \forall f \in \mathcal{B}(\chi)$.
In particular the proof of the theorem will be completed after proving this since $\hat{A} \subseteq \mathcal{B}(\chi)$, and so for $f=a \in \hat{A}: L(a) \underbrace{=}_{\text {(definition) }} \bar{L}(\hat{a})=\int_{\chi} \hat{a} d \mu$.
Proof of main claim. Let $f \in \mathcal{B}(\chi)$
Set $f_{+}:=\max \{f, 0\}, f_{-}:=-\min \{f, 0\} ; f=f_{+}-f_{-}$
So, w.l.o.g. we are reduced to the case $f \geq 0$ on $\chi, f \in \mathcal{B}(\chi)$.
Set $q:=f+\hat{p}$; for $q \in \mathcal{B}(\chi)$.
For each $k \geq 1$, consider $\chi_{k}^{\prime}:=\{\alpha \in \chi \mid q(\alpha) \leq k\}$

- $\forall k: \chi_{k}^{\prime} \subseteq \chi_{k}$ and χ_{k}^{\prime} is closed. So χ_{k}^{\prime} is compact.
- $\chi_{k}^{\prime} \subseteq \chi_{k+1}^{\prime}$ and $\chi=\bigcup_{k} \chi_{k}^{\prime}$.

Subclaim 1: For each $k \in \mathbb{N} \exists f_{k} \in C_{c}(\chi)$ such that $0 \leq f_{k} \leq f ; f_{k}=f$ on χ_{k}^{\prime} and $f_{k}=0$ outside χ_{k+1}^{\prime}.

Subclaim 2: $\bar{L}(f)=\lim _{k \rightarrow \infty} \bar{L}\left(f_{k}\right)$
Note that once they are proved we are done because:

$$
\int f d \mu=\lim _{k \rightarrow \infty} \int f_{k} d \mu=\lim _{k \rightarrow \infty} \bar{L}\left(f_{k}\right)=\bar{L}(f) .
$$

We will prove subclaim 1 and 2 in next lecture.

POSITIVE POLYNOMIALS LECTURE NOTES

(18: 17/06/10)

SALMA KUHLMANN

Contents

1. Haviland's Theorem 1
2. $\mathbb{R}[\underline{X}]$ as topological \mathbb{R}-vector space

1. HAVILAND'S THEOREM (continued)

We will continue the proof of the following theorem from last lecture. Havilands theorem will follow as a special case.

Theorem 1.1. (Recall 1.2 of last lecture) Let A be an \mathbb{R}-algebra, χ a Hausdorff space and ${ }^{\wedge}: A \rightarrow \operatorname{Cont}_{c}(\chi, \mathbb{R})$ an \mathbb{R} algebra homomorphism. Assume $\exists p \in A$ such that $\hat{p} \geq 0$ on χ and $\forall k \in \mathbb{N}: \chi_{k}:=\{\alpha \in \chi \mid \hat{p}(\alpha) \leq k\}$ is compact.
Then for any linear functional $L: A \rightarrow \mathbb{R}$ satisfying $\forall a \in A: \hat{a} \geq 0$ on $\chi \Rightarrow$ $L(a) \geq 0, \exists$ a Borel measure μ on χ such that $L(a)=\int_{\chi} \hat{a} d \mu \forall a \in A$.
Proof. We have $C_{c}(\chi) \subseteq \mathcal{B}(\chi):=\{f \in C(\chi)|\exists a \in A:|f| \leq|\hat{a}|$ on $\chi\} ; \hat{A} \subseteq \mathcal{B}(\chi)$; $\bar{L}: \hat{A} \rightarrow \mathbb{R}$, defined by $\bar{L}(\hat{a}):=L(a)$.
In particular we got (as in claim 3 in 1.4 of last lecture) \bar{L} is a positive linear functional on $C_{c}(\chi)$ s.t.

$$
\bar{L}(f)=\int_{\chi} f d \mu \forall f \in C_{c}(\chi) \subseteq \mathcal{B}(\chi) .
$$

We claim that this holds also $\forall f \in \mathcal{B}(\chi)$, i.e. $\bar{L}(f)=\int_{\chi} f d \mu \forall f \in \mathcal{B}(\chi)$.
[In particular the proof of the theorem will be completed after proving this since $\hat{A} \subseteq \mathcal{B}(\chi)$, and so for $f=a \in \hat{A}: L(a) \underbrace{=}_{\text {(definition) }} \bar{L}(\hat{a})=\int_{\chi} \hat{a} d \mu$.]
Let $f \in \mathcal{B}(\chi)$. Set $q:=f+\hat{p}$; for $q \in \mathcal{B}(\chi)$.
For each $k \geq 1$, consider $\chi_{k}^{\prime}:=\{\alpha \in \chi \mid q(\alpha) \leq k\}$

- $\forall k: \chi_{k}^{\prime} \subseteq \chi_{k}$ and χ_{k}^{\prime} is closed. So χ_{k}^{\prime} is compact.
- $\chi_{k}^{\prime} \subseteq \chi_{k+1}^{\prime}$ and $\chi=\bigcup_{k} \chi_{k}^{\prime}$.

Subclaim 1: For each $k \in \mathbb{N} \exists f_{k} \in C_{c}(\chi)$ such that $0 \leq f_{k} \leq f ; f_{k}=f$ on χ_{k}^{\prime} and $f_{k}=0$ outside χ_{k+1}^{\prime}.
Proof of subclaim 1. For this we need Urysohn's lemma, which states that
Let X be a topological space and $A, B \subseteq X$ be closed sets such that $A \cap B=\phi$. Then $\exists g \in C(\chi): g: X \rightarrow[0,1]$ such that $g(a)=0 \forall a \in A$ and $g(b)=1 \forall b \in B$.
Applying it with $X=\chi_{k+1}^{\prime}, A=Y_{k}^{\prime}=\left\{\alpha \in \chi_{k+1}^{\prime} \left\lvert\, k+\frac{1}{2} \leq q(\alpha) \leq k+1\right.\right\}$, and $B=\chi_{k}^{\prime}$, we get $g_{k}: \chi_{k+1}^{\prime} \rightarrow[0,1]$ continuous such that $g_{k}=0$ on Y_{k}^{\prime} and $g_{k}=1$ on χ_{k}^{\prime}.
Extend g_{k} to χ by setting $g_{k}=0$ on complement of χ_{k+1}^{\prime}. Set $f_{k}:=f g_{k}$
Then indeed $0 \leq f_{k} \leq f$ on $\chi, f_{k}=f$ on χ_{k}^{\prime} and $f_{k}=0$ off χ_{k+1}^{\prime}. In particular $\operatorname{Supp}(f) \subseteq \chi_{k+1}^{\prime}$ is compact (because closed subset of a compact set is compact), so indeed $f_{k} \in C_{c}(\chi)$.
\square (Subclaim 1)
Subclaim 2: $\bar{L}(f)=\lim _{k \rightarrow \infty} \bar{L}\left(f_{k}\right)$
Note that once the subclaim 2 is proved we are done because:

$$
\int f d \mu=\lim _{k \rightarrow \infty} \int f_{k} d \mu=\lim _{k \rightarrow \infty} \bar{L}\left(f_{k}\right)=\bar{L}(f)
$$

Proof of subclaim 2. Observe that the inequality

$$
\frac{q^{2}}{k} \geq f-f_{k} \geq 0 \text { on } \chi, \text { holds } \forall k \in \mathbb{N} \text {. }
$$

To see this first of all $f=f_{k}$ on χ_{k}^{\prime}, so clearly $\frac{q^{2}}{k} \geq f-f_{k} \geq 0$ on χ_{k}^{\prime}.
Now we consider the complement of χ_{k}^{\prime}, there $q(\alpha)>k$ for $\alpha \in$ complement of χ_{k}^{\prime}. So
$q^{2}(\alpha)>k q(\alpha)=k(f(\alpha)+\hat{p}(\alpha)) \geq k f(\alpha)$
$\geq k\left(f(\alpha)-f_{k}(\alpha)\right)$ [Since $\left.f_{k}(\alpha) \geq 0 \forall \alpha \in \chi\right]$
Hence $\frac{q^{2}(\alpha)}{k} \geq\left(f-f_{k}\right)(\alpha)$ for all $\alpha \in\left(\chi_{k}^{\prime}\right)^{\text {compliment }}$.
So,

$$
\frac{q^{2}}{k} \geq f-f_{k} \geq 0 \text { on } \chi \quad \forall k \in \mathbb{N}
$$

So,

$$
\bar{L}\left(\frac{q^{2}}{k}\right) \geq \bar{L}\left(f-f_{k}\right) \geq 0
$$

Now let $k \rightarrow \infty$ to get
$\lim _{k \rightarrow \infty} \bar{L}\left(\frac{q^{2}}{k}\right)=0 \Rightarrow \lim _{k \rightarrow \infty} \bar{L}\left(f_{k}\right)=\bar{L}(f)$.
\square (Subclaim 2)

2. $\mathbb{R}[\underline{X}]$ AS TOPOLOGICAL \mathbb{R}-VECTOR SPACE

Let $A=\mathbb{R}[\underline{X}]$ be a countable dimensional \mathbb{R}-algebra.
Every finite dimensional subspace has the Euclidean Topology (ET on \mathbb{R}^{N} : open balls are a basis. If W is a finite dimensional subspace, fix $B=\left\{w_{1}, \ldots, w_{N}\right\}$ basis and get an isomorphism $W \cong \mathbb{R}^{N}$; pullback the ET from \mathbb{R}^{N} to W. This topology on W is uniquely determined and does not depend on the choice of the basis because a change of basis results in a linear change of coordinates and linear transformations $\underline{x} \mapsto a \underline{x} ; \operatorname{det}(A) \neq 0$ are continuous).

Definition 2.1. Define a topology on $A:=\mathbb{R}[\underline{X}]$ as:
$U \subseteq A$ is open (respectively closed) iff $U \cap W$ is open (respectively closed) in W, for every finite dimensional subspace W of A.
This is called direct limit topology on A.
Equivalently, take $A_{d}=\{f \in A \mid \operatorname{deg} f \leq d\}, d \in \mathbb{Z}_{+}$. Then $A=\cup_{d \geq 1} A_{d}$, ask for: $U \subseteq A$ is open (respectively closed) iff $U \cap A_{d}$ is open (respectively closed) in A_{d} for all $d \geq 1$.

We now list the important properties of this topology. We first need to recall the following definitions:

Definition 2.2. (i) $C \subseteq A$ is called a cone if C is closed under addition and scalar multiplication by (nonnegetive) positive real numbers.
(ii) $C \subseteq A$ is convex if $\forall a, b \in C ; \forall \lambda \in[0,1]: \lambda a+(1-\lambda) b \in C$.

Note that a cone is automatically convex.
Theorem 2.3. 1. The open convex sets of A form a basis for the topology, i.e. A is with locally convex topology, i.e. $x \in U$ and U open subset of $A \Longrightarrow$ there is a convex neighbourhood U^{\prime} of x such that $U^{\prime} \subseteq U$.
2. This topology is the finest non-trivial locally convex topology on A.

Proof. Later (in next lecture as theorem 1.2).
Theorem 2.4. 1. A endowed with this topology is a topological \mathbb{R}-algebra, i.e. the topology is (Hausdorff) comparable with addition, scalar multiplication and multiplication, i.e.
$+: A \times A \rightarrow A$,
$\times: A \times A \rightarrow A$, and
. : $\mathbb{R} \times A \rightarrow A$
are all continuous.
2. Every linear functional is continuous in this finest locally convex topology.

Proof. Later (1.5 of Lecture 20).
Theorem 2.5. (Separation Theorem) Let $C \subseteq A$ be a closed cone in A and let $a_{0} \in A \backslash C$. Then there is a linear functional $L: A \rightarrow \mathbb{R}$ such that $L(C) \geq 0$ but $L\left(a_{0}\right)<0$.
(Equivalent statement: Let $C \subseteq A$ be a cone and $U \subseteq A$ be an open convex set such that $U \cap C=\phi ; U, C \neq \phi$. Then \exists a linear functional $L: A \rightarrow \mathbb{R}$ such that $L(U)<0$ and $L(C) \geq 0)$.

Proof. Later (1.8 of Lecture 20).
Corollary 2.6. For any cone $C \subseteq A$ with $C \neq \phi$, we have

$$
\begin{aligned}
\bar{C}=C^{\mathrm{vv}} & :=\{a \in A \mid L(a) \geq 0 \text { for any linear functional } L \text { such that } L(C) \geq 0\} \\
& =\left\{a \in A \mid L(a) \geq 0 \forall L \in C^{\mathrm{v}}\right\} .
\end{aligned}
$$

Proof. Clearly $\bar{C} \subseteq C^{\mathrm{vv}}$: since $C \subseteq C^{\mathrm{vv}}$ (from definition), and C^{vv} is closed (because $L \in C^{\mathrm{v}}$ is continuous), so $\bar{C} \subseteq C^{\mathrm{vv}}$.
Conversely apply separation theorem (theorem 2.5): if $a_{0} \notin \bar{C}$, there exists $L \in C^{\mathrm{v}}$ (i.e. $L(C) \geq 0$) with $L\left(a_{0}\right)<0$. So, $a_{0} \notin C^{\mathrm{vv}}$.

Corollary 2.7. Let $A=\mathbb{R}[\underline{X}], M \subseteq A$ be a quadratic module. Then $\bar{M}=M^{\mathrm{vv}}$ and \bar{M} is a quadratic module.

Proposition 2.8. (i) Every cone C is convex.
(ii) Every quadratic module M is a cone.
(iii) If C is a cone, then \bar{C} is a cone.

POSITIVE POLYNOMIALS LECTURE NOTES

(19: 22/06/10)

SALMA KUHLMANN

Contents

1. Topology on finite and countable dimensional \mathbb{R}-vectorspace

1. TOPOLOGY ON FINITE AND COUNTABLE DIMENSIONAL \mathbb{R}-VECTOR SPACE

1.1. Helping lemma I. Let V be a countable dimensional \mathbb{R}-vectorspace. Let W be a finite dimensional subspace. Fix a basis w_{1}, \ldots, w_{n} of W. The map

$$
\Phi: \sum r_{i} w_{i} \mapsto\left(r_{1}, \ldots r_{n}\right)
$$

defines a vector space isomorphism $W \cong \mathbb{R}^{n}$.
Let τ the pullback (induced by Φ) topology on W, i.e. a set in (W, τ) is open if it is of the form $\Phi^{-1}(U)$ with $U \subseteq \mathbb{R}^{n}$ open in the Euclidean topology.
(For simplicity we will write ET for Euclidean topology from now on.)

1. Note that the ET is convex because the open balls form a subbasis for the topology. So τ is locally convex.
2. τ does not depend on the choice of the basis (Hint: a basis change produces a linear change of coordinates i.e. a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which is continuous in the ET).
3. In particular if $W_{1} \subseteq W_{2}$ are finite dimensional subspace of V, the ET on W_{1} is the same as the topology induced by the topology on W_{2}, i.e. the same as the relative topology.
($U_{1} \subset W_{1}$ is open in the ET iff $U_{1} \subset W_{1}$ is open in the relative topology, i.e. U_{1} is of the form $U_{1}=W_{1} \cap U_{2}$ with U_{2} open in W_{2}.)
Now define the finite topology on V :
$U \subseteq V$ open iff $U \cap W$ in W is open for any finite dimensional subspace W.
4. Fix a basis $\left\{v_{1}, \ldots, v_{n} \ldots\right\}$, and set $V_{n}=\operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}$ a sequence of finite dimensional subspaces such that $V=\cup_{i} V_{i}$. We have $V_{1} \subseteq \ldots \subseteq V_{n} \subseteq \ldots$. Then:
$U \subseteq V$ is open in the finite topology iff $U \cap V_{i}$ is open in V_{i} for every i.
Proof. Clear (Hint: Use the fact that every finite dimensional subspace is contained in a V_{i} and use 3. in particular.)

Theorem 1.2. (Theorem 2.3 of last lecture) The open sets in V which are convex form a basis for the topology (i.e. the finite topology is locally convex).

Proof. If V is finite dimensional $\Rightarrow \mathrm{ET}$ is convex, so nothing to prove.
So assume without loss of generality V is infinite dimensional. Let $\left\{v_{1}, \ldots, v_{n}, \ldots\right\}$ be an \mathbb{R} basis for V.
Set $V_{n}=\operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}$. Now let $U \subset V$ be open and $x_{0} \in U$.
We show that there exists convex and open $U^{\prime} \subset U$ such that $x_{0} \in U^{\prime}$.
Since

$$
\begin{aligned}
T_{x_{0}}: V & \rightarrow V \\
& v \mapsto v-x_{0} \text { are continuous translations, }
\end{aligned}
$$

it suffices to find a convex neighbourhood $U^{\prime \prime}$ of 0 with $U^{\prime \prime} \subseteq U-x_{0}$. Then $U^{\prime}=U^{\prime \prime}+x_{0}$ is the required convex neighbourhood of x_{0}. In other words we are reduced to the case when $x_{0}=0$.
We proceed (by induction on $n \in \mathbb{N}$) to construct an increasing sequence $C_{n} \subseteq$ $U \cap V_{n}$ of convex subsets as follows:

- For $n=1: U \cap V_{1}$ is open in $V_{1}=\mathbb{R} v_{1}$ and $0 \in U \cap V_{1}$. So there exists $a_{1} \in \mathbb{R}, a_{1}>0$ such that $C_{1}:=\left\{y_{1} v_{1} \mid-a_{1} \leq y_{1} \leq a_{1}\right\}:=\left[-a_{1}, a_{1}\right] \subseteq U \cap V_{1}$.
- By induction on $n \in \mathbb{N}$: We assume we have found $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}$such that $C_{n}:=\left\{y_{1} v_{1}+\ldots+y_{n} v_{n} \mid-a_{i} \leq y_{i} \leq a_{i} ; i \in\{1, \ldots, n\}\right\}:=\prod_{i=1}^{n}\left[-a_{i}, a_{i}\right] \subseteq U \cap V_{n}$. Note that C_{n} is closed (in V_{n}, as well as) in $V_{n+1} ; C_{n} \subseteq U \cap V_{n+1}$ and $V_{n+1} \backslash U$ is closed in V_{n+1} (because $V_{n+1} \cap U$ is open in V_{n+1}).
- For $n+1$: We claim $\exists a_{n+1}>0, a_{n+1} \in \mathbb{R}$ such that
$C_{n+1}:=\left\{y_{1} v_{1}+\ldots+y_{n} v_{n}+y_{n+1} v_{n+1} \mid-a_{i} \leq y_{i} \leq a_{i} ; i \in\{1, \ldots, n+1\}\right\}$
$=\prod_{i=1}^{n+1}\left[-a_{i}, a_{i}\right] \subseteq U \cap V_{n+1}$.
Proof of claim by contradiction: If not, then $\forall N \exists x^{N} \in V_{n+1}$ such that
$x^{N}=y_{1} v_{1}+\ldots y_{n} v_{n}+y_{n+1} v_{n+1}$ with $-a_{i} \leq y_{i} \leq a_{i} ; i \in\{1, \ldots, n\}$ and $-\frac{1}{N} \leq y_{n+1} \leq \frac{1}{N} ;$ but $x^{N} \notin U$.
But x^{N} has form $x^{N}=\underbrace{y_{1} v_{1}+\ldots+y_{n} v_{n}}_{\in C_{n}}+y_{n+1} v_{n+1}$,
i.e. the sequence $\left\{x^{N}\right\}_{n \in \mathbb{N}} \subseteq V_{n+1} \backslash U$.

Now for each $i \in\{1, \ldots, n\}$, since x^{N} has form (\star):
the $i^{\text {th }}$ coordinates of $\left\{x^{N}\right\}$ are bounded $\forall N \in \mathbb{N}$, i.e. $\left\{x^{N}\right\}$ is a bounded sequence of reals.
So we can find a convergent sequence of $i^{\text {th }}$ coordinate $\forall i \in\{1, \ldots, n\}$, i.e. there is a subsequence $\left\{x^{N_{j}}\right\}_{j \in \mathbb{N}} \subseteq V_{n+1} \backslash U$ such that
(1) the first $i=1, \ldots, n$ coordinates sequences converge, and
(2) the $(n+1)^{\text {th }}$ coordinate sequence converges to 0 .

So $\left\{x^{N_{j}}\right\}$ converges (in V_{n+1}) as $j \rightarrow \infty$ to $x \in C_{n} \subseteq U$ (since C_{n} is closed in V_{n+1}). So the sequence $\left\{x^{N_{j}}\right\}_{j \in \mathbb{N}} \subseteq V_{n+1} \backslash U$ converges to $x \in U$. This contradicts the fact that $V_{n+1} \backslash U$ is closed in V_{n+1}. Hence the claim is established.
Now consider $D_{n}:=\prod_{i=1}^{n}\left(-a_{i}, a_{i}\right)=\left\{y_{1} v_{1}+\ldots+y_{n} v_{n} \mid-a_{i}<y_{i}<a_{i} ; i \in\{1, \ldots, n\}\right\}$, then $D_{n} \subset C_{n} \subseteq U \cap V_{n}$ is open convex in V_{n}. Set $U^{\prime}:=\cup_{n \in \mathbb{N}} D_{n}:=\prod_{n=1}^{\infty}\left(-a_{n}, a_{n}\right)$. Finally (verify that) $0 \in U^{\prime}$. Then U^{\prime} is open, convex and $U^{\prime} \subseteq U$.

Moreover, let V be a finite dimensional \mathbb{R} vector space, τ be a locally convex topology on V and Z open in this locally convex topology. Then Z is open in the finite topology.

Theorem 1.3. (Theorem 2.4 of last lecture) V is a topological vector space with finite topology τ. Moreover (V, τ) is a topological \mathbb{R}-algebra if V is a \mathbb{R}-algebra.
1.4. Helping lemma II. Let V and V^{\prime} be vector spaces of countable dimension each endowed with the corresponding locally convex (finite) topology. Then the finite topology on $V \times V^{\prime}$ coincides with the product topology, i.e. $\tau_{\text {fin }}\left(V \times V^{\prime}\right)=$ $\tau_{\text {fin }}(V) \times \tau_{\text {fin }}\left(V^{\prime}\right)$.

Proof. (\Leftarrow) First observe that if a set is open in the product topology on $V \times V^{\prime}$, then it is open in finite topology on $V \times V^{\prime}$:
Fix a basis $\left\{v_{1}, \ldots, v_{n}, \ldots\right\}$ of V and $\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}, \ldots\right\}$ of V^{\prime}. Set $V_{n}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ and $V_{n}^{\prime}=\operatorname{span}\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$. Then $V \times V^{\prime}=\cup_{n}\left(V_{n} \times V_{n}^{\prime}\right)$.

Let $U \times U^{\prime} \subseteq V \times V^{\prime}$ be open in the product topology, where U open in finite topology on V and U^{\prime} open in finite topology on V^{\prime}.
We show $U \times U^{\prime}$ is open in the finite topology on $V \times V^{\prime}$.
It is enough to verify that $\left(U \times U^{\prime}\right) \cap\left(V_{n} \times V_{n}^{\prime}\right)$ is open in ET on $V_{n} \times V_{n}^{\prime}$.
But $\left(U \times U^{\prime}\right) \cap\left(V_{n} \times V_{n}^{\prime}\right):=\left(U \cap V_{n}\right) \times\left(U^{\prime} \cap V_{n}^{\prime}\right)$, where $U \cap V_{n}$ is open in ET on V_{n} and $U^{\prime} \times V_{n}^{\prime}$ is open in ET on V_{n}^{\prime}.
(\Rightarrow) Conversely we show that open set in the finite topology on $V \times V^{\prime}$ implies open in the product topology.
Wlog let $\mathcal{U}^{\prime \prime}$ be a convex open neighbourhood of zero in $V \times V^{\prime}$.
Set $\mathcal{U}:=\left\{x \in V \mid(2 x, 0) \in \mathcal{U}^{\prime \prime}\right\}$ and $\mathcal{U}^{\prime}:=\left\{y \in V^{\prime} \mid(0,2 y) \in \mathcal{U}^{\prime \prime}\right\}$. \mathcal{U} and \mathcal{U}^{\prime} are convex open neighbourhoods of zero in V and V^{\prime} respectively. So $\mathcal{U} \times \mathcal{U}^{\prime}$ is open in product topology. Also $\mathcal{U} \times \mathcal{U}^{\prime} \subseteq \mathcal{U}^{\prime \prime}$ because if $(x, y) \in \mathcal{U} \times \mathcal{U}^{\prime}$ then $(x, y)=\frac{1}{2}(2 x, 0)+\frac{1}{2}(0,2 y) \in \mathcal{U}^{\prime \prime}$, since $\mathcal{U}^{\prime \prime}$ is convex.

POSITIVE POLYNOMIALS LECTURE NOTES

 (20: 24/06/10)SALMA KUHLMANN

Contents

1. Topology on finite and countable dimensional \mathbb{R}-vectorspace

1. TOPOLOGY ON FINITE AND COUNTABLE DIMENSIONAL \mathbb{R}-VECTOR SPACE (continued)

We want to prove Theorem 2.4 of Lecture 18, i.e.
Theorem 1.1. V is a topological vector space with finite topology τ. Moreover (V, τ) is a topological \mathbb{R}-algebra if V is endowed with \mathbb{R} algebra structure.

We still need more helping lemmas (towards proof of 1.1):
Lemma 1.2. (About finite dimensional spaces with ET)

1. Finite dimensional \mathbb{R}-vector spaces V with ET are topological spaces.
2. Linear functionals $L: V \rightarrow \mathbb{R}$ are continuous. More generally, let V_{i}, V_{j} be finite dimensional vectorpaces with ET and $L: V_{i} \times V_{i} \rightarrow V_{j}$ bilinear map, then L is continuous.
1.3. Helping lemma III. Let $V=\bigcup_{i} V_{i}$ be a countable dimensional vector space with (finite topology) $\tau_{\text {fin }}(V)$, where V_{i} 's are finite dimensional. Let (χ, x) be a topological space and $f: V \rightarrow \chi$ be a map. Then f is continuous (with respect to $\tau_{\mathrm{fin}}(V)$ and χ) iff $\left.f\right|_{V_{i}}$ is continuous (with respect to ET on V_{i} and χ) for each $i \in \mathbb{N}$.

Proof. (\Rightarrow) Clear.
(\Leftarrow) Let $X \subseteq(\chi, x)$ be open. To show: $f^{-1}(X)$ is open in V. Using Hilfslemma I (4) it is enough to show that $f^{-1}(X) \cap V_{i}$ is open in $V_{i} \forall i$. But $f^{-1}(X) \cap V_{i}=\left(\left.f\right|_{V_{I}}\right)^{-1}(X)$ which is open in $V_{i} \forall i$ since $\left.f\right|_{V_{i}}$ is assumed to be continuous $\forall i$.

Corollary 1.4. Let V be countable dimensional with finite topology $\tau_{\mathrm{fin}}(V)$ and $L: V \rightarrow \mathbb{R}$ be a linear functional. Then L is continuous.
1.5. Proof of the theorem 1.1. Helping lemma $\underbrace{\mathrm{I}+\mathrm{II}}_{\text {(last lecture) }}+\mathrm{III}$ implies the proof as follows:
(i) We need to verify that $+:(V \times V, \underbrace{\left.\tau_{\mathrm{fin}}(V) \times \tau_{\mathrm{fin}}(V)\right)}_{\text {(product topology) }} \rightarrow\left(V, \tau_{\mathrm{fin}}(V)\right)$ is continuous. Using Helping lemma II, it is enough to verify that

$$
+:\left(V \times V, \tau_{\mathrm{fin}}(V \times V)\right) \rightarrow\left(V, \tau_{\mathrm{fin}}(V)\right) \text { is continuous. }
$$

Proof. Let $V=\bigcup_{i \in \mathbb{N}} V_{i}$, then $V \times V=\bigcup_{i}\left(V_{i} \times V_{i}\right)$. By Hilfslemma III, enough to verify that

$$
+:\left(V_{i} \times V_{i}, E T\right) \rightarrow\left(V, \tau_{\mathrm{fin}}(V)\right) \text { is continuous. }
$$

Let $U \subseteq V$ open in $\tau_{\text {fin }}(V)$. We show that $(+)^{-1}(U) \subseteq V_{i} \times V_{i}$ is open in ET.
But V_{i} is a subspace so $(+)^{-1}(U)=(+)^{-1}\left(U \cap V_{i}\right)$. Now $U \cap V_{i}$ is open in V_{i} and by lemma 1.2 we know that V_{i} is a topological vector space so $(+)^{-1}\left(U \cap V_{i}\right)$ is open.
(ii) Scalar multiplication:

$$
.: \mathbb{R} \times V \rightarrow V ;(r, v) \mapsto r v \text { is continuous. }
$$

Proof. Analogous.
(iii) Multiplication: Let V be a \mathbb{R}-algebra. Then

$$
\times:(V \times V, \underbrace{\left.\tau_{\mathrm{fin}}(V) \times \tau_{\mathrm{fin}}(V)\right)}_{\text {(product topology) }} \rightarrow\left(V, \tau_{\mathrm{fin}}(V)\right. \text { is continuous. }
$$

Proof. Observe that restriction of multiplication to the finite dimensional subspaces V_{i} is not well defined i.e. V_{i} need not be a sub algebra, but
Claim 1: $\exists j$ large enough so that

$$
\times: V_{i} \times V_{i} \rightarrow V_{j} \text { is well defined. }
$$

Proof of claim 1: Let $\left\{v_{1}, \ldots, v_{i}\right\}$ be a basis of V_{i}. Let j be large enough so that the product vectors $v_{l} v_{k} \in V_{j}$ for all $1 \leq l, k \leq i$.
Claim 2: The mapping $\times: V_{i} \times V_{i} \rightarrow V_{j}$ is bilinear and hence continuous by lemma 1.2.

Theorem 1.6. (Separation Theorem) (Theorem 2.5 of Lecture 18) Let V be a countable dimensional vector space, $U \subseteq V$ be open and convex, $C \subseteq V$ be a cone such that $U, C \neq \phi$ and $U \cap C=\phi$. Then there exists a linear functional $L: V \rightarrow \mathbb{R}$ such that $L(U)<0$ and $L(C) \geq 0$.

Corollary 1.7. If $C \subseteq V$ is closed cone and $x_{0} \notin C$ then there exists $L: V \rightarrow \mathbb{R}$ such that $L\left(x_{0}\right)<0$ and $L(C) \geq 0$.

Proof. $\exists U^{\prime} \ni x_{0}: U^{\prime}$ open and $U^{\prime} \cap C=\phi$. By theorem 2.3 of Lecture 18 , let U be an open convex subset of V with $x_{0} \in U \subseteq U^{\prime}$ and $U \cap C=\phi$.
1.8. Proof of the theorem 1.6.

Consider $\{D \mid D$ is a cone in $V, D \supseteq C ; D \cap U=\phi\}$. This family is nonempty. By Zorn's lemma let D be the maximal element (with these properties).
Claim 1: $-U \subseteq D$.
If not let $x \in-U, x \notin D$. By maximality: $\left(D+x \mathbb{R}_{+}\right) \cap U \neq \phi$.
So $\exists y \in D ; r \geq 0 ; u \in U$ with $y+r x=u$. So $y=r(-x)+u$.
So $\underbrace{\frac{y}{1+r}}_{\in D \text { since } D \text { is a cone }}=\underbrace{\frac{r}{1+r}(-x)+\frac{1}{1+r}}_{\in U \text { by convexity of } U} u \in D \cap U$, a contradiction.

Claim 2: $D \cup-D=V$.
Let $x \in V$ and $x \notin D$. Then $\left(D+\mathbb{R}_{+} x\right) \cap U \neq \phi$. So $\exists u=d+r x$ such that $u \in U, r>0, d \in D$. Then $-x=\frac{1}{r}(d-u) \in \frac{1}{r}(D-U) \underbrace{\subseteq}_{\text {(by claim 1) }} \frac{1}{r}(D+D) \subseteq D$. (claim 2)
Claim 3: D is closed.
If not, let $d_{i} \in D$ such that $\lim _{i \rightarrow \infty} d_{i} \rightarrow x$ and $x \notin D$. Then $\left(D+\mathbb{R}_{+} x\right) \cap U \neq \phi$. So $\exists u=d+r x ; u \in U, r>0, d \in D$. Then $u=d+r \lim _{i \rightarrow \infty} d_{i}=\lim _{i \rightarrow \infty}\left(d+r d_{i}\right)$. So $d+r d_{i} \in U$ for i sufficiently large (since U is open so complement of U is closed), but also $d+r d_{i} \in D$ (since D is a cone). This contradicts $U \cap D=\phi$. \square (claim 3)

Now let $W:=D \cap-D$. Fix $x_{0} \in U$. By previous claims we see that W is a subspace. Further $x_{0} \in U \Rightarrow x_{0} \notin D \Rightarrow x_{0} \notin W$.
Now consider the subspace $W \oplus \mathbb{R} x_{0}$.
Claim 4: $V=W \oplus \mathbb{R} x_{0}$ (i.e. W is a hyperplane in V i.e. has codimension 1 in V). Let $y \in V$, w.l.o.g. $y \in D$ (if $y \notin D ;-y \in D$ same argument).
Consider $\left\{\lambda x_{0}+(1-\lambda) y \mid 0 \leq \lambda \leq 1\right\}$ and the largest λ in the interval $[0,1]$ such that $z=\lambda x_{0}+(1-\lambda) y \in D$. Then $\lambda<1 ; z \in D \cap-D=W$.
So $y=\frac{1}{1-\lambda} z+\frac{-\lambda}{1-\lambda} x_{0} \in W+\mathbb{R} x_{0}$.
Now let $L: V \rightarrow \mathbb{R}$ be the uniquely determined functional defined by $L(W)=0$ and $L\left(x_{0}\right)=-1$.
Claim 5: $L \geq 0$ on D.
Let $y \in D$. If $y \in W$ then $L(y)=0$, so done. If $y \notin W$ then for some λ :

$$
\begin{aligned}
& \lambda x_{0}+(1-\lambda) y \in W ; 0<\lambda<1 . \text { Applying } L: \\
& \lambda L\left(x_{0}\right)+(1-\lambda) L(y)=-\lambda+(1-\lambda) L(y)=0 \\
& \text { So } L(y)=\frac{\lambda}{1-\lambda}>0
\end{aligned}
$$

$$
\square(\text { claim } 4)
$$

POSITIVE POLYNOMIALS LECTURE NOTES

(21: 29/06/10)

SALMA KUHLMANN

Contents

1. K-Moment problem 1
2. Closed finitely generated preorderings 2
3. K-MOMENT PROBLEM (continuation to Lecture 17)

1.1. Framework

$$
\begin{gathered}
A=\mathbb{R}[\underline{X}] \\
S=\left\{g_{1}, \ldots, g_{s}\right\} \\
K=K_{S} ; \text { b.c.s.a.set } \\
T_{S}: \text { f.g. preordering. }
\end{gathered}
$$

We have the containment (recall 3.5 of Lecture 16)

$$
\begin{equation*}
T_{S} \subseteq \bar{T}_{S} \subseteq \operatorname{Psd}\left(K_{S}\right) \tag{1}
\end{equation*}
$$

Remark 1.2. We have an interesting comparison between $\operatorname{Psd}\left(K_{S}\right)$ and \bar{T}_{S}. One can show:

$$
\begin{aligned}
& \operatorname{Psd}\left(K_{S}\right)=\bigcap_{\alpha: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R}} \bigcap_{\text {homomorphism of } \mathbb{R} \text {-algebra with } \alpha\left(T_{S}\right) \geq 0} \alpha^{-1}\left(\mathbb{R}_{+}\right) \\
& =\bigcap_{\alpha: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R}, \alpha=e v_{\underline{x}}, \underline{x} \in K_{S}} \alpha^{-1}\left(\mathbb{R}_{+}\right)
\end{aligned}
$$

whereas

$$
\bar{T}_{S}=T_{S}^{\mathrm{vv}}=\bigcap_{L: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R} \text { linear homomorphism of } \mathbb{R} \text {-vector spaces with } L\left(T_{S}\right) \geq 0} L^{-1}\left(\mathbb{R}_{+}\right)
$$

We Shall study the containment in (1).

1.3. Recall.

(a) If $T_{S}=\operatorname{Psd}\left(K_{S}\right)$, then T_{S} is saturated.
(b) If $\bar{T}_{S}=\operatorname{Psd}\left(K_{S}\right)$, then " S solves the $K_{S}-\mathrm{MP}$ ".

Proposition 1.4. If $T_{S} \subseteq \mathbb{R}[\underline{X}]$ is closed then S solves the KMP if and only if T_{S} is saturated.

Proof. Immediate from (a) and (b) (of 1.3 above) and $T_{S}=\bar{T}_{S}$ if T_{S} is closed.
We shall therefore study closed preorderings now:

2. CLOSED FINITELY GENERATED PREORDERINGS

Proposition 2.1. Let $A=\mathbb{R}[\underline{X}]$ endowed with finite topology and $A_{d}=\mathbb{R}[\underline{X}]_{d}=$ $\{f \in A \mid \operatorname{deg} f \leq d\} ; d \in \mathbb{Z}_{+}$. This subspace is finite dimensional generated by $\underline{X}^{\underline{\alpha}}$ of degree $|\underline{\alpha}|:=\alpha_{1}+\ldots+\alpha_{n} \leq d$.
$\operatorname{Dim}\left(A_{d}\right)=\binom{n+d}{d} ;\left\{A_{d}\right\}_{d \in \mathbb{N}} ; A_{d} \subseteq A_{d+1} ; A=\bigcup_{d} A_{d}$.
So $T \subseteq A$ is closed in A if and only if $T_{d}:=T \cap A_{d}$ is closed in A_{d} for ET; for all $d \in \mathbb{Z}_{+}$.

Theorem 2.2. Let $\mathbb{R}[\underline{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$. Then
(i) $\sum \mathbb{R}[\underline{X}]^{2}$ is closed in $\left(\mathbb{R}[\underline{X}], \tau_{\text {fin }}\right)$ (Berg et al; 1970).
(ii) Let $S=\left\{g_{1}, \ldots, g_{s}\right\}$ and $K=K_{S} \subseteq \mathbb{R}^{n}$ ba a b.c.s.a. set.
(K-M) If K_{S} contains a cone with nonempty interior (equivalently a cone of dimension n, equivalently just a non empty generating Cone C), then T_{S} is closed.

The proof of (i) will follow from a series of lemma:
Lemma 2.3. It is enough to show that $\sum_{d}:=\left(\sum \mathbb{R}[\underline{X}]^{2}\right) \cap A_{d}$ is closed in $A_{d} \forall d \in$ $2 \mathbb{Z}_{+}$.

Lemma 2.4. Let $f \in \sum_{d}, d$ even.

1. if $f=\sum_{i=1}^{m} h_{i}^{2}$ then $\operatorname{deg}(f)=\max _{i=1, \ldots, m}\left\{\operatorname{deg} h_{i}^{2}\right\}$
2. therefore for any representation $\sum_{i=1}^{m} h_{i}^{2}$ of f we must have $\operatorname{deg}\left(h_{i}\right) \leq \frac{d}{2}$ for all $i=1, \ldots, m$.
3. w.l.o.g. we may assume that $m \leq N:=\operatorname{dim} A_{d / 2}=\binom{n+\frac{d}{2}}{\frac{d}{2}}$.
4. Therefore (for d even) $f \in \sum_{d}$ can be written as: $f=\sum_{i=1}^{N} h_{i}^{2}$ with $\operatorname{deg}\left(h_{i}\right) \leq$ $\frac{d}{2} \forall i=1, \ldots, n$.

Proof. (1) and (2): clear.
Proof of (3): Let $f \in \mathbb{R}[\underline{X}], d=\operatorname{deg} f=2 q$. Set $N=\binom{n+q}{q}$.
Claim: $f \in \mathbb{R}\left[\underline{X}^{2}\right]$ iff there exists an $N \times N$ psd symmetric matrix $M \in S_{N \times N}(\mathbb{R})$ such that $f(\underline{x})=Y^{T} M Y$, where $Y=\left(\begin{array}{c}Y_{1} \\ \vdots \\ y_{N}\end{array}\right)$ where $\left\{Y_{1}, \ldots, Y_{N}\right\}$ is an enumeration of all possible monomials $\underline{x}^{\underline{\underline{\alpha}}}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ with $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n}$ and $|\underline{\alpha}|:=$ $\alpha_{1}+\ldots+\alpha_{n} \leq q$.
In particular: $f \in \sum \mathbb{R}[\underline{X}]^{2}$ iff $f=\sum_{i=1}^{N} h_{i}^{2}$
Proof of the claim:
Proof of the claim:
(\Rightarrow) Assume $f \in \mathbb{R}\left[\underline{X}^{2}\right]$ and $f=\sum h_{i}^{2}$ where $h_{i} \in A_{q}$. Write $h_{i}=\left(\begin{array}{c}a_{i 1} \\ \vdots \\ a_{i N}\end{array}\right) \in \mathbb{R}^{N}$ and define $M_{\alpha \beta}:=\sum_{i} a_{i \alpha} a_{i \beta}$ the $\alpha \beta^{\text {th }}$ coefficient of the matrix M for $\alpha, \beta \in\{1, \ldots, N\}$. Obviously it is symmetric. Check that M is PSD and that $f=Y^{T} M Y$.
(\Leftarrow) Conversely if $f=Y^{T} M Y$ with M symmetric and psd; i.e. $M \in S_{N \times N}(\mathbb{R})$. By spectral theorem write

$$
M=B^{T} B, \text { where } B \in M_{N \times N}
$$

So $f=\left(Y^{T} B^{T}\right)(B Y)=(B Y)^{T}(B Y)=\sum_{\alpha=1}^{N}(B Y)_{\alpha}^{2}$.
Lemma 2.5. Fix a set D of $d+1$ distinct real numbers and set $\Delta:=D^{n} \subseteq \mathbb{R}^{n}$. Consider the map

$$
\begin{aligned}
\Psi: A_{d} & \rightarrow \mathbb{R}^{\Delta} \\
g(\underline{X}) & \mapsto\left(g^{(a)}\right)_{\underline{a} \in \Delta}
\end{aligned}
$$

Then Ψ is linear and $\Psi(g)=\underline{0}$ iff $g \equiv 0$ (i.e. $\operatorname{Ker}(\Psi)=\{0\})$. So Ψ is homomorphism onto a closed subspace of \mathbb{R}^{Δ}.
Proof. The only thing to verify is $\operatorname{Ker}(\Psi)=\{0\}$.
By induction on n.
If $n=1$ and g is a polynomial of degree $\leq d$ that has $d+1$ roots is identically the zero polynomial i.e. $g \equiv 0$. So on it follows for all n.

Corollary 2.6. Let $\left\{f_{j}\right\}_{j} \subseteq A_{d} ; f \in A_{d}$. Then

1. $f_{j} \rightarrow f$ in A_{d} if and only if $f_{j}(\underline{a}) \rightarrow f(\underline{a})$ in \mathbb{R} for each $\underline{a} \in \Delta$ (i.e. point wise convergence on Δ).
2. More generally $\left\{f_{j}\right\}_{j} \subseteq A_{d}$ is a convergent in A_{d} iff $\left\{f_{j}(\underline{a})\right\}_{j}$ is convergent sequence in \mathbb{R} for each $\underline{a} \in \Delta$.

Proof. Proof of 2:

(\Leftarrow) From assumption $\Psi\left(f_{j}\right)$ converges to a point $\gamma \in \mathbb{R}^{\Delta}$. But since $\operatorname{Im} \Psi$ is a subspace of \mathbb{R}^{Δ} it is closed so $\gamma \in \operatorname{Im} \Psi$. So $\lim _{j \rightarrow \infty} f_{j}=\Psi^{-1}(\gamma) \in A_{d}$.
2.7. Proof of Theorem 2.2 (i).

We want to show that \sum_{d} is closed in A_{d} in the Euclidean topology (i.e. convergence of coefficients).
Let $f \in A_{d} ; f_{j} \in \sum_{d}$ so that $f_{j} \rightarrow f$ coefficientwise in A_{d}
To show: $f \in \sum_{d}$
Write without loss of generality: $f_{j}=\sum_{i=1}^{N} h_{i j}^{2}, \operatorname{deg} h_{i j} \leq \frac{d}{2} \forall j ; N=\binom{n+d / 2}{d / 2}$.
$(\star) \Rightarrow f_{j}(\underline{a}) \rightarrow f(\underline{a}) \forall \underline{a} \in \Delta$ as $j \rightarrow \infty$
i.e. $\sum_{i}^{N}\left(h_{i j}(\underline{a})\right)^{2} \rightarrow f(\underline{a})$ in $\mathbb{R} \forall \underline{a} \in \Delta$.

So $\exists \delta>0$ s.t.

$$
h_{i j}^{2}(\underline{a}) \leq f_{j}(\underline{a}) \leq \delta \forall \underline{a} \in \Delta, \forall j \in \mathbb{N}, \forall i=1, \ldots, N
$$

So for each fixed $\underline{a} \in \Delta$ and each fixed $i \in\{1, \ldots, N\},\left\{h_{i j}(\underline{a})\right\}_{j \in \mathbb{N}}$ is a bounded sequence of reals so has a convergent subsequence.
Also since Δ is finite there is therefore a subsequence $\left\{h_{i j_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{h_{i j}\right\}$ for each fixed $i \in\{1, \ldots, N\}$ such that $\left\{h_{i_{k}}(\underline{a})\right\}_{k \in \mathbb{N}}$ is convergent for each $\underline{a} \in \Delta$. So by Corollary 2.6 above:
for each $i \in\{1, \ldots, N\}:\left\{h_{i j_{k}}\right\}_{k \in \mathbb{N}}$ is convergent in $A_{d / 2}$ say to h_{i}.
So $\sum_{i=1}^{N} h_{i}^{2}=\lim _{k \rightarrow \infty} \sum_{i=1}^{N} h_{i j_{k}}^{2}=\lim _{k \rightarrow \infty} f_{j_{k}}=f$.
So $f \in \sum_{d}$ as required.

POSITIVE POLYNOMIALS LECTURE NOTES

 (22: 01/07/10)SALMA KUHLMANN

Contents

1. Closed finitely generated preorderings 1
2. Applications to the K-Moment problem 2
3. The finest locally convex topology on a \mathbb{R}-vector space 3

1. CLOSED FINITELY GENERATED PREORDERINGS(continue)

Theorem 1.1. (Theorem 2.2 (ii) of last lecture) Let K be a basic closed semialgebraic set. Assume $C \subseteq K$ is a non empty open cone. Let $S=\left\{g_{1}, \ldots, g_{s}\right\}$ such that $K=K_{S}$. Then T_{S} is closed.

Proof. It is enough to prove the following lemma, which is a generalization of lemma 2.4 of last lecture.

Lemma 1.2. Let $S=\left\{g_{1}, \ldots, g_{s}\right\}$ such that K_{S} contains a non-empty open cone. Let $f \in A_{d} \cap M_{S}:=M_{d} ; f=b_{0}+b_{1} g_{1}+\ldots+b_{s} g_{s}$ where $b_{i} \in \sum \mathbb{R}[\underline{X}]^{2}$, then

1. $\operatorname{deg} f=\max \left\{\operatorname{deg} b_{0}, \operatorname{deg}\left(b_{1} g_{1}\right), \ldots \operatorname{deg}\left(b_{s} g_{s}\right)\right\}$
2. If $f=\sum_{j=1}^{m_{0}}\left(h_{0 j}\right)^{2}+\sum_{j=1}^{m_{1}}\left(h_{1 j}\right)^{2} g_{1}+\ldots+\sum_{j=1}^{m_{s}}\left(h_{s j}\right)^{2} g_{s}$ then $\operatorname{deg} h_{0 j} \leq \frac{d}{2}$ and $\operatorname{deg}\left(h_{i j}\right) \leq \frac{d-\operatorname{deg} g_{i}}{2} ; i=1, \ldots, s$.

So w.l.o.g. $f \in M_{d}$ has the form

$$
f=\sum_{j=1}^{m_{0}}\left(h_{0 j}\right)^{2}+\sum_{j=1}^{m_{1}}\left(h_{1 j}\right)^{2} g_{1}+\ldots+\sum_{j=1}^{m_{s}}\left(h_{s j}\right)^{2} g_{s} \text { with } \operatorname{deg}\left(h_{i j}\right) \leq \frac{d}{2} .
$$

To prove 1.) of this lemma we need the following two propositions:

Proposition 1.3. Let $C \in \mathbb{R}^{n}$ be a cone, $h \in \mathbb{R}[\underline{X}]$ and $h=h_{0}+\ldots+h_{\nu}$ be the decomposition of h into homogeneous components, i.e. $\operatorname{deg} h_{i}=i$ and $\operatorname{deg} h=$ $\operatorname{deg} h_{v}=v$. Write $L T(h)=h_{\nu}$.
If $h \geq 0$ in C then $L T(h) \geq 0$ on C.
Proof. Let $c \in C$. We show that $h+v(c) \geq 0$. Wlog $h_{v}(c) \neq 0$. Consider the following variable in one real variable $\lambda: P_{c}(\lambda):=h(\lambda c)=h_{0}+h_{1}(c) \lambda+h_{2}(c) \lambda^{2}+$ $\ldots+h_{\nu}(c) \lambda^{\nu}$. For all $\lambda>0, \lambda c \in C$ so $P_{c}(\lambda)=h(\lambda c) \geq 0$. So $P_{c}(\lambda) \geq 0$ on $[0, \infty) \subseteq \mathbb{R}$. So it must have positive leading coefficient i.e. $h_{\nu}(c)>0$ as required.

Proposition 1.4. Let $p_{0}, \ldots, p_{s} \in \mathbb{R}[\underline{X}]$ and assume that there is a nonempty open cone C such that $p_{i} \geq 0$ on $C, \forall i=1, \ldots s$ then $\operatorname{deg}\left(p_{0}+\ldots+p_{s}\right)=$ $\max \left(\operatorname{deg} p_{0}, \ldots, \operatorname{deg} p_{s}\right)$.

Proof. Let $m=\max \left(\operatorname{deg} p_{0}, \ldots, \operatorname{deg} p_{s}\right)$. Let us gather those leading terms of degree m say $\left.L T\left(p_{0}\right), \ldots, L T\left(p_{l}\right)\right), l \leq s$. We want to show that $L T\left(p_{0}\right)+\ldots+$ $L T\left(p_{l}\right) \not \equiv 0$ (once this is shown we are done because this sum, if nonzero, is the $L T\left(p_{0}+\ldots+p_{s}\right)$ and is of degree m so this will establish that $\operatorname{deg}\left(p_{0}+\ldots+p_{s}\right)=m$ indeed). Now $L T\left(p_{1}\right) \neq 0$ so there is $c \in C$ such that $L T\left(p_{1}\right)$ does not vanish at c (a nonzero polynomial does not vanish on a nonempty open set). By proposition 1.3 we must have $L T\left(p_{1}\right)$ evaluated at c is >0. Since $L T\left(p_{i}\right)$ evaluated at c for $i=1, \ldots, l$ are all ≥ 0 (again proposition 1.3), we se that there are no cancellations and $L T\left(p_{0}\right)+\ldots+L T\left(p_{l}\right)$ evaluated at c is >0. So $L T\left(p_{0}\right)+\ldots+L T\left(p_{l}\right) \not \equiv 0$

2. APPLICATIONS TO THE K-MOMENT PROBLEM

Corollary 2.1. $K \subseteq \mathbb{R}^{n}, n \geq 3$ bcsas. K contains a non empty open cone $\Rightarrow \mathrm{KMP}$ is not finitely solvable.

Proof. 1. $\operatorname{Dim}(K) \geq 3 ; K=K_{S}, S-$ finite $\Rightarrow T_{S}$ is not saturated.
2. But T_{S} is closed so S solves KMP iff T_{S} is saturated.
3. So S does not solve KMP.

Corollary 2.2. $K \subseteq \mathbb{R}^{n}, n \geq 2$. If K contains cone of dimension 2 then KMP is not finitely solvable. Note that we do not claim that T is closed.

Corollary 2.3. If K is non compact b.c.s.a. set $K=K_{S}, S$ any finite description. Then T_{S} is closed.

Proof. K contains an open infinite half line $\Rightarrow K$ contains open cone.

3. THE FINEST LOCALLY CONVEX TOPOLOGY ON A \mathbb{R}-VECTOR SPACE

Recall:

1. Hausdorff: If $x_{1} \neq x_{2}, \exists u_{1}, u_{2}$ open such that $u_{1} \cap u_{2}=\phi$ and $x_{i} \in u_{i}$.
2. Topological vector space: Topology continuous with + and scalar multiplication.
3. A topology is locally convex if V is a topological vector space and has a basis of convex open sets.

Theorem 3.1. Tychonoff theorem On a finite dimensional vector space there is a unique topology making it into a Hausdorff topological vector space namely the ET. (much stronger statement then the fact that all-topologies are equivalent!)

Theorem 3.2. If V is a (Hausdorff) topological vector space and W is a subspace then W is a (Hausdorff) topological vector space with the induced topology.

We first claim the following general fact:
Let X be a topological space and $Y \subseteq X$. Then the product topology of the induced topologies on X on $Y \times Y$ is induced topology of the product topology of $X \times X$ on $Y \times Y$.

- Fact 1: Any vector space admits the finest topology (greatest number of open sets) making it into a locally convex topological vector space.
- Fact 2: This finest locally convex topology is Haudorff.

Theorem 3.3. Let V be a countable dimensional real vector space. Then the finest locally convex topology (from Fact 1) is the finite topology.

Proof. Let $u \subset V$ be open in the finest locally convex topology then we want to show that u is open in the finite topology. Let $W \subset V$ be finite dimensional subspace. We show that $W \cap u$ is open in W in ET. Now W inherits the finite locally convex topology and $W \cap u$ is open in the inherited f.l.c. topology by definition of relative topology. But the induced f.l.c. topology on W makes it into a Hausdorff topological vectorspace by theorem 3.2 and therefore is the ET by theorem 3.1. So $W \cap u$ is open in W for the ET.

Conversely, let u be an open set in the finite topology on V. it must be open in the finest locally convex topology because finite topology on a countable dimensional vector space is a locally convex topolgy. Therefore u is open in the finest locally convex topology.

Remark 3.4. Let V be a real vector space of arbitrary dimension and define a topology on V as follows: $u \subset V$ is open iff $u \cap W$ is open for every finite dimensional subspace W of V. Then V need not to be a topological vector space as addition as a binary map is not necessarily continuous. Furthermore the topology need not be locally convex.

POSITIVE POLYNOMIALS LECTURE NOTES

 (23: 06/07/10)SALMA KUHLMANN

Contents

1. The finest locally convex topology on a vector space

1. THE FINEST LOCALLY CONVEX TOPOLOGY ON A VECTOR SPACE (continued)

Let E be a vectorspace. There is a finest topology making E into a locally convex topological vector space. This topology is Hausdorff. It is called the finest locally convex topology.
Let E be a topological vector space.
Remark 1.1. Since translation for $u \in E, T_{u}: X \mapsto X+u$ is a homomorphism of E. If B is a base for neighbourhoods of zero then $u+B$ is a base for all neighbourhoods of u. Therefore the whle topological structure of E determined by all neighbourhoods of the origin.

Definition 1.2. A function $p: E \rightarrow[0, \infty)$ is called a seminorm if it has the following properties:

1. Homogeneity: $p(\lambda X)=|\lambda| p(X), \lambda \in \mathbb{R} ; X \in E$
2. Subadditivity: $p(X+Y) \leq p(X)+p(Y) \forall X, Y \in E$.

If $p^{-1}(\{0\})=\{0\}$, then p norm.

Strategy for proof of the theorem

- Fact 2. A family of seminorms induces a local convex topology on E making it into a topological vector space.
- Fact 1. Conversely $(1.4+1.6)$ the topology of an arbitrary local convex topological vector space is always induced by a family of seminorms.
- Fact 3. Take all seminorms. It induces a local convex topology making into a topological vector space by Fact 2. It is the finest by Fact 1.

Definition 1.3. Let $A \subset E$. Then A

1. is absorbing if $\forall X \in E$ there exists $M>0$ such that $X \in \lambda A \forall \lambda \in \mathbb{R} ;|\lambda| \geq$ M.
2. is balanced if $\lambda A \subseteq A$ for all $\lambda \in \mathbb{R}$ with $|\lambda| \leq 1$.

3 . is absolutely convex if it is convex and balanced.
Filter of neighbourhoods of zero just means the collection of all neighbourhoods of zero.

Proposition 1.4. Let E be a topological vector space and $\mathcal{U}=\{$ all neighbourhoods of zero\}. Then

1. $u \in \mathcal{U}$ is absorbing.
2. for every $u \in \mathcal{U}$ there exists $u^{\prime} \in \mathcal{U}$ with $u+u^{\prime} \subseteq \mathcal{U}$.
3. for every $u \in \mathcal{U}$;

$$
b(u):=\cap_{|\mu| \geq 1} \mu u \text { is a balanced neighbourbood of zero contained in } u .
$$

It follows that every topological vector space has a base of balanced neighbourhoods of zero.

Proof. For every $X \in E$, the map:

$$
\begin{aligned}
& \mathbb{R} \rightarrow E \\
& \lambda \mapsto \lambda X
\end{aligned}
$$

is continuous at $\lambda=0$. This implies (1).
Similarly the continuity at $(0,0)$ of the map

$$
\begin{gathered}
E \times E \rightarrow E \\
(X, Y) \mapsto X+Y
\end{gathered}
$$

implies (2).
By continuity of

$$
\begin{aligned}
& \mathbb{R} \times E \rightarrow E \\
& (\lambda, X) \mapsto \lambda X
\end{aligned}
$$

So given $u \in \mathcal{U}$ there exists $\epsilon>0$ and $v \in \mathcal{U}$ suc that $\lambda v \subseteq u$ for $|\lambda| \leq \epsilon$. Therefore $\epsilon v \subseteq b(u) \subseteq u$. So u contains a balanced set $b(u)$ which is a neighbourhood of zero because ϵv is a neighbourhood of zero; $X \mapsto \epsilon X$ being a homomorphism of E.

Proposition 1.5. Let E be a locally convex topological vector space then the filter collection of neighbourhoods of zero has a base \mathcal{B} with the following properties:

1. Every $u \in \mathcal{B}$ is absorbing and absolutely convex.
2. If $u \in \mathcal{B}$ and $0 \neq \lambda \in \mathbb{R}$ then $\lambda u \in \mathcal{B}$.

Proof. If u is a neighbourhood of zero then $b(u)$ is absolutely convex (by proposition 1.2). So if \mathcal{B}_{0} is a base of convex neighbourhoods of zero then the family $\mathcal{B}:=\left\{\lambda b(u) \mid u \in \mathcal{B}_{0} ; \lambda \neq 0\right\}$ is a base satisfying (1) and (2).

Converse of the above proposition: Let E have a base for a filter on E with properties (1) and (2) there is a uniqe topology on E such that E is a locally convex topological vector space with \mathcal{B} as a base of neighbourhoods of zero.

1.1. CONNECTION TO SEMINORMS

Remark 1.6. If p is a seminorm and $\alpha>0$ then the set $\{X \in E \mid p(X<\alpha)\}$ is convex and absorbing.

Proof. Exercise

Let E be a vector space. Associating a seminorm candidate to a subset of E : For $A \neq \phi, A \subseteq E$ sefine a mapping:

$$
\begin{gathered}
p_{A}: E \rightarrow[0 \infty] \\
p_{A}(X):=\inf \{\lambda>0 \mid X \in \lambda A\}
\end{gathered}
$$

(where $p_{A}(X)=\infty$ if the set $p_{A}(X)$ is empty).
When p_{A} is seminorm?
Lemma 1.7. If $A \neq \phi, A \subseteq E$ is

1. absorbing; then $p_{A}(X)<\infty$ for all $X \in E$.
2. convex, then p_{A} is subadditive.
3. balanced then p_{A} is homogeneous and $\left\{X \in E \mid p_{A}(X)<1\right\} \subseteq A \subseteq\{A \in$ $\left.E \mid p_{A}(X) \leq 1\right\}$.

If A satisfies (1)-(3) then p_{A} is called the seminorm determined by A.

Proposition 1.8. Let E be a vector space and $\left(P_{i}\right)_{i \in I}$ a family of seminorms. There exists a coarsest topology on E with the properties that E is a topological vector space and each P_{i} is continuous under this topology E is locally convex and the familie of sets $\left\{X \in E \mid p_{i_{1}}<\epsilon, \ldots, p_{i_{n}}<\epsilon\right\}$ for all $\left\{i_{1}, \ldots, i_{n}\right\} \in I$ and $n \in \mathbb{N}, \epsilon>$ $0, \epsilon \in \mathbb{R}$ is a base for the (filter of) neighbourhoods of zero.

Proof. Later
Proposition 1.9. The topology of an arbitrary locally convex tpological vector space E is always induced by a family of seminorms.

Proof. By proposition 1.4 let \mathcal{B} be the base for neighbourhoods of zero with properties ((i) absorbing and absolutely convex and (ii) $u \in \mathcal{B}, \lambda \neq 0 \Rightarrow \lambda u \in \mathcal{B}$).

Now consider the family $\left\{p_{u} \mid u \in \mathcal{B}\right\}$. By lemma 1.6 this is a family of seminorms (Moreover since u is open we actually have $u=\left\{X \in E \mid p_{u}(X)<1\right\}$). Verify that the topology induced by this family of seminorms (as described in Fact 1) Coincides with the given topology E.

POSITIVE POLYNOMIALS LECTURE NOTES

 (24: 08/07/10)SALMA KUHLMANN

Contents

1. Topological \mathbb{R}-vector space

1. TOPOLOGICAL \mathbb{R}-VECTOR SPACE

1.1. Fix $E \mathbb{R}$-vector space (no assumptions in the dimension)

Notation: $\overline{0} \in E, 0 \in \mathbb{R}$ (to distinguish them).
Let τ be a topology on E making it a topological \mathbb{R}-vector space, i.e. the maps

$$
\begin{aligned}
E \times E & \rightarrow E \\
(x, y) & \mapsto x+y, \text { and } \\
\mathbb{R} \times E & \rightarrow E \\
(\lambda, x) & \mapsto \lambda x \text { are continuous, }
\end{aligned}
$$

where \mathbb{R} has Euclidean topology τ_{E},
$E \times E$ has the product topology $\tau \times \tau$, and
$\mathbb{R} \times E$ has the product topology $\tau_{E} \times \tau$.
Recall that $\left\{A_{1} \times A_{2} \mid A_{1} \in \tau_{1}, A_{2} \in \tau_{2}\right\}$ is a base for the product topology $\tau_{1} \times \tau_{2}$. Let $\mathcal{U}_{\tau}=\{U \in \tau \mid \overline{0} \in U\}=\{\tau-$ neighbourhood of $\overline{0}\}$.
Since $\forall x \in E$ the map

$$
E \rightarrow E, a \mapsto a+x
$$

is a τ-homeomorphism, $\forall a \in E, a+\mathcal{U}_{\tau}=\left\{a+U \mid U \in \mathcal{U}_{\tau}\right\}=\{\tau-$ neighbourhood of $a \in E\}$.
Namely \mathcal{U}_{τ} determines all the topology τ.
We want to prove the following theorem:
Theorem 1.2. There is a finest locally convex topology $\tau_{\max }$ on E. Moreover $\tau_{\max }$ is Hausdorff.

Definition 1.3. Let (p, \leq) be a partial order.

1. $F \subseteq P$ is a filter if

- $\forall x, y \in F, \exists z \in F$ such that $z \leq x$ and $z \leq y$;
- $\forall x, \in F, \forall y \in P: x \leq y \Rightarrow y \in F$

2. Let $F \subseteq P$ is a filter. Then $B \subseteq F$ is a base for the filter if $\forall x \in F \exists y \in B$ such that $y \leq x$.

Example 1.4. Let (X, τ) be a topological space and $x \in X$. Then

$$
F_{x}=\{A \in \tau \mid x \in A\}=\{\tau-\text { neighbourhoods of } x \in X\}
$$

is a filter of the partial order (τ, \subseteq) :

- $A_{1}, A_{2} \in F_{x} \Rightarrow A_{1} \cap A_{2} \in F_{x}$ and $A_{1} \cap A_{2} \subseteq A_{1}, A_{1} \cap A_{2} \subseteq A_{2}$.
- For $A \in F_{x}, U \in \tau: A \subseteq U \Rightarrow U \in F_{x}$.

In particular $\mathcal{U}_{\tau}=\{\tau-$ neighbourhoods of $\overline{0}\}$ is a filter of (τ, \subseteq)
Let $\mathcal{B} \subseteq \mathcal{U}_{\tau}$ be a base of the filter \mathcal{U}_{τ} (in sense of the above definition).
Definition 1.5. A topological space (X, τ) is said to be locally convex if $\forall x \in X$ and $\forall U_{x} \in \tau$ containing $x, \exists V \in \tau$ convex such that $x \in V \subset U_{x}$.

Remark 1.6. Let (E, τ) be a topological \mathbb{R}-vector space. In order to prove that (E, τ) is locally convex, it is enough to prove that the filter \mathcal{U}_{τ} of τ-neighbourhoods of $\overline{0}$ has a base B (in the sense of base of a filter) made of convex set:

Let \mathcal{B} be a base for the filter \mathcal{U}_{τ} such that each $U \in \mathcal{B}$ is convex. Let $x \in X$, $U_{x} \in \tau$ containing x. Then (see page 1) $U_{x}=x+U$ for some $U \in \mathcal{U}_{\tau}$. Let $C \in \mathcal{B}$ such that $C \subseteq U$ (\exists such C because \mathcal{B} is a base), then $x+C \subset U_{x}$ is convex and contains x.
1.7. Fact 1: $U \in \mathcal{U}_{\tau} \Rightarrow U$ is absorbing (i.e. $\forall x \in E, \exists \mu>0$ such that $|\lambda| \geq \mu \Rightarrow$ $x \in \lambda U$).

Proof. Fix $U \in \mathcal{U}_{\tau}$ and $x \in E$. The map

$$
f_{x}: \mathbb{R} \rightarrow E ; \lambda \mapsto \lambda x
$$

is continuous everywhere, in particular in $0 \in \mathbb{R}$.
So $f_{x}^{-1}(U) \subseteq \mathbb{R}$ is open and contains $0 \in \mathbb{R}$.
So $\exists \epsilon>0$ such that $f_{x}(-\epsilon, \epsilon) \subseteq U$, (we can assume $\epsilon<1$). In other words, $c<\epsilon \Rightarrow c x \in U \Leftrightarrow x \in c^{-1} U$. So we can take for instance $\mu=\epsilon^{-1}+1$
1.8. Fact 2: $U \in \mathcal{U}_{\tau} \Rightarrow \exists V \in \mathcal{U}_{\tau}$ such that $V+V \subseteq U$.

Proof. The map

$$
+: E \times E \rightarrow E ;(x, y) \mapsto x+y
$$

is continuous in $(\overline{0}, \overline{0})$. So $+{ }^{-1}(U)$ is open in $E \times E$. So there are $V_{1}, V_{2} \in \mathcal{U}_{\tau}$ such that $V_{1}+V_{2} \subseteq U$ and we can take $V=V_{1} \cap V_{2}$.
1.9. Fact 3: Let $U \in \mathcal{U}_{\tau}$. Set $b(U):=\bigcap_{|\mu| \geq 1} \mu U$. Then $b(U) \subseteq U, b(U) \in \mathcal{U}_{\tau}$, and $b(U)$ is balanced (i.e. $\lambda b(U) \subseteq b(U) \forall \lambda \in \mathbb{R},|\lambda| \leq 1)$.

Proof. The map

$$
\mathbb{R} \times E \rightarrow E,(\lambda, x) \mapsto \lambda x
$$

is continuous at $(0, \overline{0})$. So $\exists \epsilon>0, \exists V \in \mathcal{U}_{\tau}$ such that $\lambda V \subseteq U \forall \lambda \in \mathbb{R},|\lambda| \leq \epsilon$.
Claim: $\epsilon V \subseteq b(U)$.
Let $|\mu| \geq 1$, we want $\epsilon V \subseteq \mu U$. We can take $\lambda:=\frac{|\epsilon|}{|\mu|}<\epsilon$ and $\lambda V \subseteq U \Rightarrow \epsilon V \subseteq$ μU.

Proposition 1.10. If (E, τ) is locally convex then $\exists \mathcal{B} \subseteq \mathcal{U}_{\tau}$ base for the filter \mathcal{U}_{τ} with the following properties:

1. Every $U \in \mathcal{B}$ is absorbing and absolutely convex (i.e. convex and balanced).
2. If $U \in \mathcal{B}$ and $\lambda \neq 0$, then $\lambda U \in \mathcal{B}$.

Conversely, given a base \mathcal{B} for a filter on E with above properties (1.) and (2.) above, there is a unique topology on E such that E is a (locally convex) topological vector space with \mathcal{B} as a base for the filter of neighbourhoods of $\overline{0} \in E$.

Proof. U convex neighborhood of $\overline{0} \in E \Rightarrow b(U)$ is absolutely convex. If \mathcal{B}_{0} is a base of convex neighbourhoods, then

$$
\mathcal{B}:=\left\{\lambda b(U) \mid U \in \mathcal{B}_{0}, \lambda \neq 0\right\}
$$

has properties (1.) and (2.) above.
Conversely, Let \mathcal{B} be a base for a filter F on E satisfying properties (1.) and (2.). Then $U \in F \Rightarrow \overline{0} \in U$.

The only topology which makes E a topological \mathbb{R}-vector space and such that $F=\mathcal{U}_{\tau}$, has $a+F$ as a filter of $a \in E$ (see again page 1).
Setting $G \subseteq E$ open if $\forall a \in G \exists U \in \mathcal{B}$ such that $a+U \in G$, we define a topology such that $a+F$ is the filter of neighbourhoods of a and E is a topological \mathbb{R}-vector space.

Definition 1.11. $p: E \rightarrow[0, \infty[$ is a seminorm if

1. $p(\lambda x)=|\lambda| p(x), \forall x \in E, \forall \lambda \in \mathbb{R}$;
2. $p(x+y) \leq p(x)+p(y), \forall x, y \in E$

If $p^{-1}(\{0\})=\{0\}$ then p is a norm.
Proposition 1.12. Let $\left(p_{i}\right)_{i \in I}$ be a family of seminorms on E. Then \exists a coarsest topology τ_{C} on E such that
(a) E is a topological \mathbb{R}-vector space.
(b) p_{i} is τ_{C}-continuous $\forall i \in I$.
(E, τ_{C}) is locally convex and the family of sets of the form

$$
\left\{x \in E \mid p_{i_{1}}(x)<\epsilon, \ldots, p_{i_{n}}(x)<\epsilon\right\} ; i_{1}, \ldots, i_{n} \in I, n \in \mathbb{N}, \epsilon>0
$$

is a base for $\mathcal{U}_{\tau_{C}}$ (the τ_{C}-neighbourhood of $\overline{0}$).
Proof. Let \mathcal{B} be the above family of sets. Then \mathcal{B} is a base for a filter on E having properties (1.) and (2.) of Proposition 1.10 and the unique topology asserted in Proposition 1.10 is the coarsest topology on E making E a topological vector space in which each p_{i} is continuous.

The topology given by Proposition 1.12 is said to be the topology induced by the family $\left(p_{i}\right)_{i \in I}$ of seminorms.
Lemma 1.13. Let τ_{C} be the topology induced by the family of seminorms $\left(p_{i}\right)_{i \in I}$ on E. Suppose that $\forall x \in E \backslash\{\overline{0}\}, \exists i \in I$ such that $p_{i}(x) \neq 0$. Then τ_{C} is Hausdorff.
Proof. Let $x, y \in E, x \neq y$. Then $\exists i \in I, \exists \epsilon>0$ such that $p_{i}(x-y)=2 \epsilon$. So $U_{x}:=\left\{u \in E \mid p_{i}(x-u)<\epsilon\right\}$ and $U_{y}:=\left\{u \in E \mid p_{i}(y-u)<\epsilon\right\}$ are open disjoint neighbourhoods of x and y respectively.

1.14. Proof of Theorem 1.2:

If we take the topology induced by the family of all seminorms on E, then we obtain the finest locally convex topology on E such that E is a topological \mathbb{R} vector space. We denote it by $\tau_{\max }$. We want to see that $\tau_{\max }$ is Hausdorff.
We need to verify the hypothesis of above lemma, for the family of all seminorms on E. Let $x \in E \backslash\{\overline{0}\}$. Complete $\{x\}$ to a base \mathcal{B} of E as a \mathbb{R}-vector space. Define a linear functional

$$
\begin{aligned}
x: & E \rightarrow \mathbb{R} \\
x & \mapsto 1 \\
y & \mapsto 0, \forall y \in B \backslash\{x\} .
\end{aligned}
$$

Then $p:=|\chi|$ is a semi norm on E and $p(x) \neq 0$.

POSITIVE POLYNOMIALS LECTURE NOTES

 (25: 13/07/10)SALMA KUHLMANN

Contents

1. Topological \mathbb{R}-vector space (continued)

1. TOPOLOGICAL \mathbb{R}-VECTOR SPACE (continued)

Theorem 1.1. There is unique Hausdorff topology τ on a finite dimensional \mathbb{R} vector space making it a topological \mathbb{R}-vector space.

Remark 1.2. Lets see why the discrete topology τ_{D} is not good. Let V be an \mathbb{R}-vector space. When we ask that the map
$\cdot: \mathbb{R} \times V \rightarrow V$,
$(\lambda, v) \longmapsto \lambda v \quad$ is continuous,
we assume that \mathbb{R} is endowed with euclidean topology τ_{E} and $\mathbb{R} \times V$ with the product topology.
So, for instance, $\{\overline{0}\} \in \tau_{D}=\mathcal{P}(V)$,
and $\cdot^{-1}(\{\overline{0}\})=(\mathbb{R} \times\{\overline{0}\}) \cup(\{0\} \times V$, which is not open in the product topology $\tau_{E} \times \tau_{D}$.

Remark 1.3. If we do not assume Hausdorffness, there are other topologies as $\tau_{I}=\{\phi, V\}$ (the indiscrete topology).
1.4. Let V be an \mathbb{R}-vector space, $\operatorname{dim}(V)=n \in \mathbb{N}$.

Claim: We may assume $V=\mathbb{R}^{n}$
Proof of claim: Let $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a base of V (as a \mathbb{R}-vector space).
Let $\Phi_{\mathcal{B}}: V \rightarrow \mathbb{R}^{n}$
$\sum_{i=1}^{n} a_{i} v_{i} \mapsto\left(a_{1}, \ldots, a_{n}\right)$
$\Phi_{\mathcal{B}}$ is an isomorphism of \mathbb{R}-vector space.
We define:

$$
A \subset V \text { open } \Leftrightarrow \Phi_{\mathcal{B}}(A) \in \tau_{E} \text { (the Euclidean topology on } \mathbb{R}^{n} \text {). }
$$

This defines a topology τ on V that does not depend on \mathcal{B} and such that (v, τ) is homeomorphic to (\mathbb{R}^{n}, τ_{E}).
Since $\left(\mathbb{R}^{n}, \tau_{E}\right)$ is a topological \mathbb{R}-vector space, also (V, τ) is a topological \mathbb{R}-vector space, and so Theorem 1.1 is equivalent to:

Theorem 1.5. The Euclidean topology τ_{E} on \mathbb{R}^{n} is the unique Hausdorff topology on \mathbb{R}^{n} such that the following maps are continuous:
$\mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} ;(\lambda, x) \mapsto \lambda x$, and

$$
\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} ;(x, y) \mapsto x+y
$$

Proposition 1.6. Let (P, \leq) be a partial order. Let F_{1}, F_{2} be a filter of P, and $B_{1} \subseteq F_{1}, B_{2} \subseteq F_{2}$ base. Suppose that
(i) $\forall x \in B_{1} \exists y \in B_{2}$ s.t. $y \leq x$.
(ii) $\forall x \in B_{2} \exists y \in B_{1}$ s.t. $y \leq x$.

Then we conclude that $F_{1}=F_{2}$.
Proof. " $F_{1} \subseteq F_{2}$ ": Let $z \in F_{2}$. B_{2} base for $F_{2} \Rightarrow \exists x \in B_{2}$ s.t. $x \leq z$.
(ii) $\Rightarrow \exists y \in B_{1}$ s.t. $y \leq x \leq z$.
F_{1} filter, $B_{1} \subseteq F_{1} \Rightarrow z \in F_{1}$.
" $F_{2} \subseteq F_{1}$ " is symmetric using (i) instead of (ii).

1.7. Proof of Theorem 1.5:

Let τ be a topology on \mathbb{R}^{n} s.t. τ is Hausdorff and $\left(\mathbb{R}^{n}, \tau\right)$ is a topological \mathbb{R}-vector space.
We want to show that: $\tau=\tau_{E}$
Since the topology is determined from what happens around $\overline{0} \in \mathbb{R}^{n}$, so

$$
(\star) \Leftrightarrow \mathcal{U}_{\tau}=\mathcal{U}_{\tau_{E}} .
$$

Consider $F_{\tau}=\left\{X \subset \mathbb{R}^{n} \mid \overline{0} \in U \subset X\right.$, for some $\left.U \in \tau\right\}$. Then F_{τ} is a filter.
We will show that $F_{\tau}=F_{\tau_{E}}$, by applying Proposition 1.6, where $(P, \leq)=$ $\left(\mathcal{P}\left(\mathbb{R}^{n}\right) \subseteq\right), F_{1}=F_{\tau}, F_{2}=F_{\tau_{E}}$, and B_{1} and B_{2} two bases for F_{1} and F_{2} with properties (i) and (ii). We will find next a good base for F_{τ}.

Definition 1.8. Let (E, τ) be a topological \mathbb{R}-vector space. $X \subset E$ is said to be circled if $\alpha \in \mathbb{R},|\alpha|<1, x \in X \Rightarrow \alpha x \in X$.

Proposition 1.9. Any topological \mathbb{R}-vector space (E, τ) has a base of circled neighbourhoods of $\overline{0} \in E$.

Proof. $\mathcal{B}_{\tau}=\left\{\bigcup_{|\alpha| \leq 1} \alpha V \mid V \in \mathcal{U}_{\tau}\right\}$ is a base for F_{τ}.
(We will actually show that \mathcal{B}_{τ} is a base for \mathcal{U}_{τ}, since it is equivalent)
Fix $V \in \mathcal{U}_{\tau}$. By continuity in $(\overline{0}, 0)$ of the product $\exists \epsilon>0$, $\exists W \in \mathcal{U}_{\tau}$ s.t.
$|\lambda| \leq \epsilon$ and $x \in W \Rightarrow \lambda x \in V$.
Set $U:=\epsilon W$. Then $\alpha V \subset U \forall \alpha,|\alpha| \leq 1$.
So, $\cup_{|\alpha| \leq 1} \alpha V \subseteq U$.
1.10. Topological fact: Let (X, τ) be a topological space, $K \subseteq X$. Then $x \in \bar{K} \Leftrightarrow \forall V_{x} \tau$ - open containing $x, V_{x} \cap K \neq \phi$.

Proof. " \Rightarrow " Suppose, for a contradiction $V_{x} \tau$ - open containing x, with $V_{x} \cap K=$ ϕ. Then $x \notin K$, and $A=(X \backslash \bar{K}) \cup V_{x}$ is open, so $A \cap K=\phi$ in contradiction with the fact that $X \backslash \bar{K}$ is the biggest open set disjoint from K (because \bar{K} is the smallest closed set containing K).
" \Leftarrow " Suppose $x \notin \bar{K}$, so $x \in X \backslash \bar{K}$ which is open. Then $\exists V_{x}$ open containing x s.t. $V_{x} \subset V \backslash \bar{K}$, contradiction.

Lemma 1.11. Let (X, τ) be a Hausdorff topological space. If $K \subseteq X$ is τ-compact, then K is τ-closed.

Proof. Let $x \in \bar{K}$. We want $x \in K$. Suppose on contrary $x \notin K$.
$x \in \bar{K} \Leftrightarrow \forall V_{x} \tau$ - open containing $x, V_{x} \cap K \neq \phi$.
X Hausdorff $\Rightarrow \forall a \in K: \exists \tau$ - open $V_{a} \ni a, V_{a}^{x} \ni x$ such that $V_{a} \cap V_{a}^{x}=\phi$.
$\left\{V_{a} \mid a \in K\right\}$ is an open covering of K.
K compact $\rightarrow \exists$ finite subcovering $\left\{V_{a_{1}}, \ldots, V_{a_{n}}\right\}$. Set $V_{x}:=V_{a_{1}}^{x} \cap \ldots \cap V_{a_{n}}^{x}$.
Then V_{x} is τ-open (since finite intersection of open sets is open) containing x and $V_{x} \cap K=\phi$, a contradiction
(otherwise if $e \in V_{x} \cap K$, then $\exists i=1, \ldots, n$ s.t. $e \in V_{x} \cap V_{a_{i}}^{x}=\phi$).

1.12. Proof of Theorem 1.5 continued:

To prove: $\tau=\tau_{E}$
" $\tau \subseteq \tau_{E}$ ": Let U be circled τ-neighbourhood of $\overline{0}$, and let V be a circled τ neighbourhood of $\overline{0}$ s.t. $\underbrace{V+\ldots+V}_{n-\text { times }} \subseteq U$.
V absorbing (see Fact 1 of last lecture) $\Rightarrow \exists k>0$ s.t. $k e_{i} \in V \forall i=1, \ldots, n$.
$\Rightarrow k \sum_{i=1}^{n} \alpha_{i} e_{i} \in U$ if $\sum_{i}\left|\alpha_{i}\right|^{2} \leq 1$.
Therefore $B_{k}:=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2}<k\right\} \subset U$.
" $\tau_{E} \subseteq \tau$ ": Let $B=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2}<1\right\}$ and $S:=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2}=1\right\}$.
$S \tau_{E}$-compact, $\tau \subseteq \tau_{E} \Rightarrow S$ is τ-compact.
By Lemma 1.11, S is τ - closed.
$\overline{0} \notin S \Rightarrow \exists$ a circled τ-neighbourhood V of $\overline{0}$ s.t. $V \cap S=\phi$.
We want $V \subset B$. Suppose not: $\exists x \in V$ s.t. $\|x\|_{2} \geq 1(\Leftrightarrow x \notin B)$, then $\frac{x}{\|x\|_{2}} \in V \cap S=\phi$, a contradiction.
Thus B is a τ - neighbourhood of $\overline{0}$. Multipying by scalars we have a τ - neighbourhood base at $\overline{0}$, so $\tau_{E} \subseteq \tau$.

Remark 1.13. The hypothesis that $\operatorname{dim} V=n \in \mathbb{N}$ cannot be avoided. Consider for instance $V=\mathbb{R}^{\mathbb{N}}$:
We saw that $\tau_{\text {fin }}$ is a topology on $\mathbb{R}^{\mathbb{N}}$ making it a topological \mathbb{R}-vector space. $\tau_{\text {fin }}$ is Hausdorff.
It is not the only use !
Consider for instance the product topology τ on $\mathbb{R}^{\mathbb{N}}$. τ is Hausdorff and makes $\mathbb{R}^{\mathbb{N}}$ a topological \mathbb{R} - vectore space.
$\tau \subseteq \tau_{\text {fin }}$, but $\tau \neq \tau_{\text {fin }}$. For instance: $(0,1)^{\mathbb{N}} \in \tau_{\text {fin }} \backslash \tau$.

[^0]: ${ }^{1}$ See (5) implies (2) of Theorem 4.5.1 in Real Algebraic Geometry by J. Bochnak, M. Coste, M.-F. Roy or (5) implies (2) of Theorem 12.7 in Positive Polynomials and Sum of Squares by M. Marshall.

