POSITIVE POLYNOMIALS LECTURE NOTES (01: 13/04/10)

SALMA KUHLMANN

Contents

1. The polynomial ring $\mathbb{R}[\underline{X}]$	1
2. Borel measure	2
2. Preordering	2

1. THE POLYNOMIAL RING $\mathbb{R}[X]$

Notation 1.1. $\mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \dots, X_n]$ is the polynomial ring in *n* variables and real coefficients, where \mathbb{R} is the set of real numbers.

Note that $\mathbb{R}[\underline{X}]$ is a vector space of countable dimension (a basis is $\{\underline{X}^{\underline{\alpha}} \mid \underline{\alpha} \in \mathbb{Z}_{+}^{n}\}$, where $\underline{X}^{\underline{\alpha}} := X_{1}^{\alpha_{1}} \dots X_{n}^{\alpha_{n}}$ is a monomial).

Definition 1.2. A polynomial is said to be **homogenous** if it is a linear combination of monomials with same degree (or zero polynomial).

Convention: deg (0) := $-\infty$, where "0" is the polynomial with 0 coefficients.

Definition 1.3. Let $f \in \mathbb{R}[\underline{x}]$, the **homogenous decomposition** of f is $f = h_0 + \dots + h_d$, where h_i are homogenous (or 0) and $\deg(h_i) = i$ if $h_i \neq 0$. Note that if $h_d \neq 0$, then $d = \deg(h_d) = \deg(f)$.

Remark 1.4. Let $f, g \in \mathbb{R}[\underline{x}]$; $f \neq 0, g \neq 0$, then:

- (i) $\deg(fg) = \deg(f) + \deg(g)$
- (ii) $\deg(f + g) \le \max{\deg(f), \deg(g)}$
- (iii) deg $(f + g) = \max \{ \deg (f), \deg (g) \}$, if deg $(f) \neq \deg (g)$.

(01: 13/04/10)

2. BOREL MEASURE

Definition 2.1. Let X be a locally compact Hausdorff topological space (ie. $\forall x \in X \exists \mathcal{U} \ni x$ such that $\overline{\mathcal{U}}$ is compact). A **Borel measure** " μ " on X is a positive measure such that every $B \in \beta^{\delta}(X)$ is measurable, where $\beta^{\delta}(X) :=$ the smallest class of subsets of X which contain all compact sets and is closed under finite unions, complements and countable intersections.

Further we will assume that μ is **regular**, ie.

 $\forall B \in \beta^{\delta}(X), \forall \epsilon > 0 \exists C, \mathcal{U} \in \beta^{\delta}(X) \text{ with } C \subseteq B \subseteq \mathcal{U}, \text{ where } C \text{ is compact, } \mathcal{U} \text{ is open and } \mu(C) + \epsilon \ge \mu(B) \ge \mu(\mathcal{U}) - \epsilon.$

Definition 2.2. Let *K* be a closed compact subset of \mathbb{R}^n . *K* is said to be **basic closed semi-algebraic** if there exists a finite $S \subseteq \mathbb{R}[\underline{X}]$, say $S = \{g_1, \ldots, g_s\}$ (for $s \in \mathbb{N}$) such that $K = K_S = \{x \in \mathbb{R}^n \mid g_i(x) \ge 0 \forall i = 1, \ldots, s\}$.

Notation 2.3. $\sum \mathbb{R}[\underline{X}]^2 := \{ \sigma = \sum_{i=1}^m f_i^2 \mid f_i \in \mathbb{R}[\underline{X}], m \in \mathbb{N} \}.$

Theorem 2.4. (Schmüdgen's Positivstellensatz) Let $K \subseteq \mathbb{R}^n$ be a compact semialgebraic set, $K = K_S$ (as above). Let $L : \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ be a linear functional. Then *L* can be represented by a positive Borel measure μ defined on K (i.e. L(f) =

 $\int_{K} f d\mu \text{ for } f \in \mathbb{R}[\underline{X}] \text{ if and only if } L(\sigma g_1^{e_1} \dots g_s^{e_s}) \geq 0 \forall \sigma \in \sum \mathbb{R}[\underline{X}]^2 \text{ and}$ $e_1, \dots, e_s \in \{0, 1\}.$

See Corollary 2.6 in lecture 13.

3. PREORDERING

- **Definition 3.1.** Let *A* be a commutative ring with 1, $\Sigma A^2 := \{\Sigma a_i^2 \mid i \ge 0, a_i \in A\}.$
- (1) A quadratic module M in A is a subset $M \subseteq A$ such that $M + M \subseteq M, a^2M \subseteq M \forall a \in A, 1 \in M$.
- (2) A **preordering** T in A is a quadratic module with $TT \subseteq T$. T is said to be **proper** if $-1 \notin T$.

Proof. For
$$a \in A$$
 one can write: $a = \left(\frac{a+1}{2}\right)^2 + (-1)\left(\frac{a-1}{2}\right)^2 \in T$

Examples 3.3.

(1) $\underbrace{\Sigma A^2}_{\text{(the smallest preordering)}} \subseteq T \text{ for a preordering } T \text{ in } A.$

(2) Let $S = \{g_1, \ldots, g_s\} \subseteq A$, then

$$T_{S} := \left\{ \sum_{e_{1},\ldots,e_{s} \in \{0,1\}} \sigma_{e} g_{1}^{e_{1}} \ldots g_{s}^{e_{s}} \mid \sigma_{e} \in \Sigma A^{2}, e = (e_{1},\ldots,e_{s}) \right\}$$

is the preordering generated by g_1, \ldots, g_s .

Definiton 3.4. A preordering $T \subseteq A$ is said to be **finitely generated** if \exists a finite $S \subseteq A$ with $T = T_S$.

For example: ΣA^2 is finitely generated with $S = \phi$.

Example 3.5. Let $S \subseteq A = \mathbb{R}[\underline{X}]$ be a finite subset. We associate to S the basic closed semi-algebraic subset $K_S \subseteq \mathbb{R}^n$ and the finitely generated preordering $T_S \subseteq \mathbb{R}[\underline{X}]$. We recall that $K_S := \{\underline{x} \in \mathbb{R}^n \mid g_i(\underline{x}) \ge 0 \forall i = 1, ..., s\}, S = \{g_1, ..., g_s\}$. For example: If $S = \phi : K_S = \mathbb{R}^n, T_S = \sum \mathbb{R}[\underline{X}]^2$.

Definiton 3.6. An element $f \in T_S$ is said to be **positive semidefinite** on K_S if $f(x) \ge 0$ for all $x \in K_S$.

For $K \subseteq \mathbb{R}^n$, set $\operatorname{Psd}(K) := \left\{ f \in \mathbb{R}[\underline{X}] \mid f(\underline{x}) \ge 0 \ \forall \ \underline{x} \in K \right\}$

Note that $T_S \subseteq Psd(K_S)$.

Question. If $f \in Psd(K_S)$, then does $f \in T_S$?

Answer. No.

But there is a connection of f with T_S (which will become clear through the Positivstellensatz in the next lecture).