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1. RING OF FORMAL POWER SERIES

Definition 1.1. (Recall) Let S = {g1, . . . , gs} ⊆ R[x1, . . . , xn], then

KS :=
{
x ∈ Rn | gi(x) ≥ 0 ∀ i = 1, . . . , s

}
,

TS :=
{ ∑

e1,...,es∈{0,1}

σe ge1
1 . . . g

es
s | σe ∈ ΣR[X]2, e = (e1, . . . , es)

}
is the preordering

generated by S .

Proposition 1.2. Let n ≥ 3. Let S be a finite subset of R[x] such that KS ⊆ R
n has

non empty interior. Then ∃ f ∈ R[x] such that f ≥ 0 on Rn and f < TS .

To prove proposition 1.2 we need to learn a few facts about formal power
series rings:

Definition 1.3. R~x� := R~x1, . . . , xn� ring of formal power series in x =

(x1, . . . , xn) with coefficients in R, i.e. , f ∈ R~x� is expressible uniquely in the
form

f = f0 + f1 + . . .,

where fi is a homogenous polynomial of degree i in the variables x1, . . . , xn .
Here:

• Addition is defined point wise, and

1
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• multiplication is defined using distributive law:

( ∞∑
i=0

fi

)( ∞∑
i=0

gi

)
= ( f0g0)+( f0g1+ f1g0)+( f0g2+ f1g1+ f2g0)+. . . =

∞∑
k=0

( ∑
i+ j=k

( fig j)
)

So, both addition and multiplication are well defined and R~x� is an integral do-
main and R[x] ⊆ R~x� .

Notation 1.4. Fraction field of R~x� is denoted by

f f (R~x� := R((x)).

The valuation v : R~x�→ Z ∪ {∞} defined by:

v( f ) =

 least i s.t. fi , 0 , if f , 0
∞ , if f = 0

extends to R((x)) via

v
(

f
g

)
:= v( f ) − v(g) .

Lemma 1.5. Let f ∈ R~x�; f = fk + fk+1 + . . ., where fi homogeneous of degree
i, fk , 0. Assume that f is a sos in R~x�.
Then k is even and fk is a sum of squares of forms of degree k

2 .

Proof. f = g2
1 + . . . + g2

l , and

gi = gi j + gi, j+1 + . . . , with j = min{v(gi) ; i = 1, . . . , l}

Then f0 = . . . = f2 j−1 = 0 and f2 j =

k∑
i=1

g2
i j , 0

So, k = 2 j. �

1.6. Units in R~x�: Let f = f0 + f1 + . . . , with v( f ) = 0 i.e. f0 , 0. Then f
factors as

f = a(1 + t); where

a ∈ R, a , 0, t ∈ R~x� and v(t) ≥ 1 with a := f0 ∈ R \ {0}; t := 1
f0

( f1 + f2 + . . .) .

Lemma 1.7. f ∈ R~x� is a unit of R~x� if and only if f0 , 0
(
i.e. v( f ) = 0

)
.

Proof:
1

1 + t
= 1 − t + t2 − . . ., for t ∈ R~x� ; v(t) ≥ 1
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is a well defined element of R~x�.

So, if v( f ) = 0, then f = a(1 + t) with a ∈ R, a , 0 gives

f −1 =
1
a

1
(1 + t)

∈ R~x�. �

Corollary 1.8. It follows that R~x� is a local ring because I = { f | v( f ) ≥ 1} is a
maximal ideal (quotient is a field R).

Lemma 1.9. Let f ∈ R~x� a positive unit, i.e. f0 > 0. Then f is a square in R~x�.

Proof. f = a(1 + t); a > 0, v(t) ≥ 1√
f =
√

a
√

1 + t ,

where
√

1 + t := (1 + t)1/2 = 1 +
1
2

t −
1
8

t2 + . . . is a well defined element of R~x�
�

Lemma 1.10. Suppose n ≥ 3. Then ∃ f ∈ R[x] such that f ≥ 0 on Rn and f is not
a sum of squares in R~x� .

Proof. Let f ∈ R[x] be any homogeneous polynomial which is ≥ 0 on Rn but is
not a sum of squares in R[x] (by Hilbert’s Theorem such a polynomial exists).
Now by lemma 1.5 it follows that f is not sos in R~x� . �

Now we prove Proposition 1.2:

Proof of Proposition 1.2. Let S = {g1, . . . , gs}

•W.l.o.g. assume gi . 0, for each i = 1, . . . , s. So g :=
s∏

i=1

gi . 0

int(KS ) , ∅ ⇒ ∃ p := (p1, . . . , pn) ∈ int(KS ) with
s∏

i=1

gi(p) , 0.

Thus gi(p) > 0 ∀ i = i, . . . , s .

•W.l.o.g. assume p = 0 the origin(
by making a variable change Yi := Xi − pi , and noting that

R[Y1, . . . ,Yn] = R[X1, . . . , Xn]
)

So gi(0, . . . , 0) > 0 for each i = i, . . . , s (i.e. has positive constant term),
that means gi ∈ R~X� is a positive unit in R~X� ∀ i = 1, . . . , s .

By Lemma 1.9 (on positive units in power series): gi ∈ R~X�2 ∀ i = i, . . . , s.
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So the preordering TS
A generated by S = {g1, . . . , gs} in the ring A := R~X� is just

ΣR[X]2.

Now using Lemma 1.10 : ∃ f ∈ R[X], f ≥ 0 on Rn but f is not a sum of squares
in R~X� (i.e. f < ΣR[X]2 = TS

R~X�) .

So clearly f < TS . �(Proposition 1.2)

Proposition 1.2 that we just proved is just a special case of the following result
due to Scheiderer:

Theorem 1.11. Let S be a finite subset of R[X] such that KS has dimension ≥ 3.
Then ∃ f ∈ R[X]; f ≥ 0 on Rn and f < TS .

To prove this result we need:
(1) a reminder about dimension of semi algebraic sets, and
(2) more facts about non singular zeros.

2. ALGEBRAIC INDEPENDENCE

Let E/F be a field extension:

Definition 2.1. (1) a ∈ E is algebraic over F if it is a root of some non zero
polynomial f (x) ∈ F[x], otherwise a is a transcedental over F.

(2) A = {a1, . . . , an} ⊆ E is called algebraically independent over F if there is no
nonzero polynomial f (x1, . . . , xn) ∈ F[x1, . . . , xn] s.t. f (a1, . . . , an) = 0.
In general A ⊆ E is algebraically independent over F if every finite subset of A is
algebraic independent over F.

(3) A transcendence base of E/F is a maximal subset (w.r.t. inclusion) of E
which is algebraically independent over F.


