POSITIVE POLYNOMIALS LECTURE NOTES
(11: 20/05/10)

SALMA KUHLMANN
Contents
1. Algebraic independence and transcendence degree 1
2. Krull Dimension of a ring 2
3. Low Dimension 3

1. ALGEBRAIC INDEPENDENCE AND TRANSCENDENCE DEGREE

Definition 1.1. (Recall) Let E/F be a field extension:

(1) A C E is called algebraically independent over F if ¥V ay,...,a, € A there
exists no nonzero polynomial f € F[xy,...,x,]s.t. f(a,...,a,) =0.

(2) A C E is called a transcendence basis of E/F if A is a maximal subset (w.r.t.
inclusion) of E which is algebraically independent over F.

Lemma 1.2. Let E/F be a field extension.

(1) (Steinitz exchange) S C E is algebraically independent over F iff Vs € S : s
is transcendental over F(S — {s}) (the subfield of E generated by S — {s}).

(2) § C E is a transcendence base for E/F iff S is algebraically independent over
F and E is algebraic over F(S). O

Proof. Exercise 1 of UB 6.

Theorem 1.3. The extension E/F has a transcendence base and any two transcen-
dence bases of E/F have the same cardinality.

Proof. The existence follows by Zorn’s lemma and the second statement uses the
Steinitz exchange lemma (above). O
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Definition 1.4. The cardinality of a transcendence base of E/F is called the tran-
scendence degree of E/F, denoted by trdeg (E) over F.

2. KRULL DIMENSION OF A RING

Definition 2.1 Let A be a commutative ring with 1.

(1) A chain of prime ideals of A is of the form
{0CpoCpP1 C...C 9 S... €A, where p; are prime ideals of A.

(2) The Krull dimension of A, denoted by dim (A) is defined to be the maximum
k such that there is a chain of prime ideals of length kin A, i.e. 9o C 91 S ... C P&
[dim(A) can be infinite if arbitrary long chains].

Theorem 2.2. Let F be a field and 7 be any prime ideal in F[X]. Then

F[X F[X
dim (%) = trdeg (ff(%))

Recall 2.3. For § C F"
I(S)={feFIX]| f(x) =0,V xS}
is the ideal of polynomials vanishing on §'.

Definition 2.4. Dimension of semi-algebraic sets C R": Let K C R” be a semi-
algebraic set. Then
dim (K) := dim ( 755 ) -

I(K)

In the lecture 10 (Proposition 1.2) we have proved the following proposition:

Proposition 2.5. Suppose n > 3. Let S = {gy,...,g,} be a finite subset of R[X]
such that Kg € R" and int(Kg)# 0. Then there exists f € R[X] such that f > 0 on
Rtand f ¢ Ts .

This is just a special case of the following result due to Scheiderer:

Theorem 2.6. (Scheiderer) (Theorem 1.11 of lecture 10) Let S be a finite subset
of R[X] and Ks C R" s.t. dimKy > 3. Then there exists f € R[X]; f > 0 on R"
and f ¢ Ts.

To deduce Proposition 2.5 using Theorem 2.6 it suffices to prove the following
lemma:
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Lemma 2.7. Let K C R" be a semi algebraic subset. Then
int(K) # ¢ = dim (K) =n
Proof. We have dim (K) = dim ( @), and
I(K)
we claim that 7(K) = {0} :
fel(K)= f=0onK = f =0onint (K) = f vanishes on a nonempty open
—_

(#¢)
set = f = 0 (by Remark 2.2 of lecture 2).

So, dim (K) = dim (R[X]) = trdeg (R(X)) over R
=n O

3. LOW DIMENSIONS

Proposition 3.1. Let n = 2, Ks € R? and K contains a 2-dimensional affine cone.
Then 3 f e R[X,Y]; f >0onR?% f ¢ Ts.

Definition 3.2. (For n = 1) Let K be a basic closed semi algebraic subset of R.
Then K is a finite union of intervals.
The natural description S of K as basic closed semi algebraic subset is defined as

1. if a € R is the smallest element of K, then take the polynomial X —a € §
2. if a € R is the greatest element of K, then take the polynomiala — X € §
3. ifa,be K,a < b, (a,b)NK = ¢, then take the polynomial (X—-a)(X-b) € §

4. no other polynomial should be in §.

Proposition 3.3. Let K C R be a basic closed semi algebraic subset and S is the
natural description of K. Then V f € R[X] :

f=20onK = feTs,

i.e. for every basic semi algebraic subset K of R, there exists a description §
(namely the natural) so that Ts is saturated.

Proposition 3.4. Let K C R be a non-compact basic semi algebraic subset and S’
be a description of K. Then

Ty is saturated & S 2 S (up to a scalar multiple factor).

Remark 3.5. Summarizing:
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(1) dim(Ks) > 3 = Ty is not saturated.

(2) dim(Ky) = 2 = T can be or cannot be saturated (depending on the geometry
of K and §).

(3) dim(Ks) = 1 = T can be or cannot be saturated [but depends on K and

description S of K, if n > 2).

After all this discussion about positive polynomials, strictly positive polyno-
mials, we now want to show Schmiidgen’s Positivstellensatz:

Theorem 3.6. (Schmiidgen’s Positivstellensatz) Let S = {gy,...,g,} be a finite
subset of R[X,...,X,] and Kg € R" be a compact basic closed semi algebraic
set. And let f € R[X]s.t. f > 0on K. Then f € Ts.

Note that this holds for every finite description S of K.

To prove this we first need Representation Theorem (Stone-Krivine, Kadison-
Dubois), which will be proved in the next lecture.



