POSITIVE POLYNOMIALS LECTURE NOTES

(13: 27/05/10)

SALMA KUHLMANN

Contents

1. Archimedean modules 1
2. Representation Theorem (Stone-Krivine, Kadison-Dubois)

1. ARCHIMEDEAN MODULES

Let A be a commutative ring, $Q \subseteq A, T$ a preprime.
Definition 1.1. Let M a T-module. M is archimedean if:

$$
\forall a \in A, \exists N \geq 1, N \in \mathbb{Z}_{+} \text {s.t. } N+a, N-a \in M .
$$

Proposition 1.2. Let T be a generating preprime, M a maximal proper T-module. Assume that M is archimedean. Then \exists a uniquely determined $\alpha \in \operatorname{Hom}(A, \mathbb{R})$ s.t. $M=\alpha^{-1}\left(\mathbb{R}_{+}\right)=P_{\alpha}$.
(In particular, M is an ordering, not just a semi-ordering.)
Proof. Let $a \in A$, define:
$\operatorname{cut}(a)=\{r \in \mathbb{Q} \mid r-a \in M\}$, this is an upper cut in \mathbb{Q} (i.e. final segment of \mathbb{Q}).
Claim 1: $\operatorname{cut}(a) \neq \emptyset$ and $\mathbb{Q} \backslash(\operatorname{cut}(a)):=\mathrm{L}(a) \neq \emptyset$, where $\mathrm{L}(a)$ is a lower cut in \mathbb{Q}.
Proof of claim 1. Since M is archimedean $\exists n \geq 1$ s.t. $n-a \in M$, so $\operatorname{cut}(a) \neq \emptyset$.
Also $\exists m \geq 1$ s.t. $(m+a) \in M$.
If $-(m+1)-a \in M$, then adding we get $-1 \in M$, a contradiction (since M is proper). So we have $-(m+1)-a \notin M$, which $\Rightarrow-(m+1) \in Q \backslash(\operatorname{cut}(a))=\mathrm{L}(a)$.

Now define a map $\alpha: A \longrightarrow \mathbb{R}$ by

$$
\alpha(a):=\inf (\operatorname{cut}(a))
$$

α is well-defined.
Claim 2: $\alpha(1)=1, \alpha(M) \subseteq \mathbb{R}_{+} ; \alpha(a \pm b)=\alpha(a) \pm \alpha(b) \forall a, b \in A$ and $\alpha(t b)=\alpha(t) \alpha(b) \forall t \in T, b \in A$.
This is left as an exercise.
Claim 3: $\alpha(a b)=\alpha(a) \alpha(b) \forall a, b \in A$
Proof of claim 3. T generating $\Rightarrow a=t_{1}-t_{2}, t_{1}, t_{2} \in T$
so, $\alpha(a b)=\alpha\left(t_{1} b-t_{2} b\right)=\alpha\left(t_{1} a\right)-\alpha\left(t_{2} b\right)$

$$
\begin{aligned}
& =\alpha\left(t_{1}\right) \alpha(b)-\alpha\left(t_{2}\right) \alpha(b) \text { [by claim 2] } \\
& =\left(\alpha\left(t_{1}\right)-\alpha\left(t_{2}\right)\right) \alpha(b)=\alpha\left(t_{1}-t_{2}\right) \alpha(b)=\alpha(a) \alpha(b) .
\end{aligned}
$$

\square (claim 3)
Claim 4: $\alpha^{-1}\left(\mathbb{R}_{+}\right)=M$
Proof of claim 4. By Claim 2, $M \subseteq \alpha^{-1}\left(\mathbb{R}_{+}\right)$
so, by maximality of M and since $P_{\alpha}=\alpha^{-1}\left(\mathbb{R}_{+}\right)$is an ordering it follows that
$M=\alpha^{-1}\left(\mathbb{R}_{+}\right)$.

Corollary 1.3. Let A be a commutative ring with $1, T$ an archimedean preprime, M a T-module, $-1 \notin M$ (i.e. M proper T-module). Then $\chi_{M} \neq \emptyset$.

Proof. Since T is archimedean, T is generating (because $a=(n+a)-n$, for $a \in A)$ and M is a proper archimedean module (archimedean module because for an archimedean preprime T, every T-module is also archimedean). By Zorn's lemma extend M to a maximal proper archimedean module Q. Apply Proposition 1.2 to Q to get $\alpha \in \operatorname{Hom}(A, \mathbb{R})$ such that $Q=\alpha^{-1}\left(\mathbb{R}_{+}\right)$. This implies $M \subseteq \alpha^{-1}\left(\mathbb{R}_{+}\right)$. So, $\alpha \in \chi_{M}$, which implies $\Rightarrow \chi_{M} \neq \emptyset$.

2. REPRESENTATION THEOREM (STONE-KRIVINE, KADISON-DUBOIS)

The following corollary (to Proposition 1.2 and Corollary 1.3) answers the question raised in 2.4 of lecture 12:

Corollary 2.1. (Stone-Krivine, Kadison-Dubois) Let A be a commutative ring, T an archimedean preprime in A, M a proper T-module. Let $a \in A$ and

$$
\begin{aligned}
& \hat{a}: \chi \rightarrow \mathbb{R} \quad \text { defined by } \\
& \hat{a}(\alpha):=\alpha(a)
\end{aligned}
$$

If $\hat{a}>0$ on χ_{M}, then $a \in M$.

Proof. Assume $\hat{a}>0$ on χ_{M}, i.e. $\hat{a}(\alpha)>0 \forall \alpha \in \chi_{M}$.
To show: $a \in M$

- Consider $M_{1}:=M=a T$

Since $\alpha(a)>0 \forall \alpha \in \chi_{M}$, we have $\chi_{M_{1}}=\emptyset$ [because if $\alpha \in \chi_{M_{1}}$, then $\alpha\left(M_{1}\right) \subseteq \mathbb{R}_{+}$. So, $\alpha(-a)=-\alpha(a) \geq 0$. So, $\alpha(a) \leq 0$, but $\alpha \in \chi_{M}$ so $\alpha(a)>0$, a contradiction].
So (since M_{1} is an archimedean T-module), we can apply Corollary 1.3 to M_{1} to deduce that $-1 \in M_{1}$.
Write $-1=s-a t, s \in M, t \in T$
$\Rightarrow a t-1=s \in M$

- Consider $\sum:=\{r \in \mathbb{Q} \mid r+a \in M\}$

We claim that: $\exists \rho \in \Sigma ; \rho<0$
Once the claim is established we are done (with the proof of corollary) because
$a=\underbrace{(a+\rho)}_{\in M}+\underbrace{(-\rho)}_{\in M} \in M$.
$\underline{\text { Proof of the claim: First observe that } \sum \neq \emptyset \text { (since } \exists n \geq 1 \text { s.t } n+a \in T \subseteq}$ M, so $n \in \sum$).

Now fix $r \in \sum, r \geq 0$ and fix an integer $k \geq 1$ s.t $(k-t) \in T$
Write: $k r-1+k a=\underbrace{(k-t)}_{\in T} \underbrace{(r+a)}_{\in M}+\underbrace{(a t-1)}_{\in M}+\underbrace{r t}_{\in M} \in M$
Multiplying by $\frac{1}{k}$, we get
$\left(r-\frac{1}{k}\right)+a \in M$, i.e. $\left(r-\frac{1}{k}\right) \in \Sigma$
Repeating we eventually find $\rho \in \Sigma, \rho<0$.

Note 2.2. For a quadratic module $M \subseteq \mathbb{R}[\underline{X}]$, set

$$
K_{M}:=\left\{x \in \mathbb{R}^{n} \mid g(x) \geq 0 \forall g \in M\right\} .
$$

Note that if $M=M_{S}$ with $S=\left\{g_{1}, \ldots, g_{s}\right\}$, then $K_{S}=K_{M}$.
We have the following corollaries to Corollary 2.1. (Stone-Krivine, KadisonDubois):

Corollary 2.3. (Putinar's Archimedean Positivstellensatz) Let $M \subseteq \mathbb{R}[\underline{X}]$ be an archimedean quadratic module. Then for each $f \in \mathbb{R}[\underline{X}]$:

$$
f>0 \text { on } K_{M} \Rightarrow f \in M
$$

Corollary 2.4. Let $A=\mathbb{R}[\underline{X}]$ and $S=\left\{g_{1}, \ldots, g_{s}\right\}$. Assume that the finitely generated preordering T_{S} is archimedean. Then for all $f \in A$:

$$
f>0 \text { on } K_{S} \Rightarrow f \in T_{S}
$$

Remark 2.5.

1. To apply the corollary we need a criterion to determine when a preordering (quadratic module) is archimedean.
2. T_{S} is archimedean \Rightarrow for $f=\sum X_{i}^{2}: \exists N$ s.t. $N-f=N-\sum X_{i}^{2} \in T_{S}$
$\Rightarrow N-\sum X_{i}^{2} \geq 0$ on K_{S}.
$\Rightarrow K_{S}$ is bounded. Also K_{S} is closed.
So T_{S} is archimedean implies K_{S} is compact.
