POSITIVE POLYNOMIALS LECTURE NOTES
 (15: 08/06/10)

SALMA KUHLMANN

Contents

1. Schmüdgen's Nichtnegativstellensatz 1
2. Application of Schmüdgen's Positivstellensatz to the moment problem

1. SCHMÜDGEN'S NICHTNEGATIVSTELLENSATZ

1.1. Schmüdgen's Nichtnegativstellensatz (Recall 2.2 .1 of lecture 14): Let K_{S} be a compact basic closed semi algebraic set and $f \in \mathbb{R}[\underline{X}]$. Then

$$
f \geq 0 \text { on } K_{S} \Rightarrow \forall \epsilon \text { real, } \epsilon>0: f+\epsilon \in T_{S} .
$$

Corollary 1.2. Let $K=K_{S}$ be a compact basic closed semi algebraic set and $L \neq 0$ be a linear functional $L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ with $L(r)=r \forall r \in \mathbb{R}$. Then

$$
\underbrace{L\left(T_{S}\right) \geq 0}_{\text {(i.e. } \left.L(f) \geq 0 \forall f \in T_{S}\right)} \Rightarrow \underbrace{L\left(\operatorname{Psd}\left(K_{S}\right)\right) \geq 0}_{\text {(i.e. } \left.L(f) \geq 0 \forall f \geq 0 \text { on } K_{S}\right) .}
$$

Proof. W.l.o.g. $L(1)=1, L \neq 0$. Let $f \in \operatorname{Psd}\left(K_{S}\right)$ and assume $L\left(T_{S}\right) \geq 0$, To show: $L(f) \geq 0$
By 1.1, $\forall \epsilon>0: f+\epsilon \in T_{S}$
So, $L(f+\epsilon) \geq 0$ i.e. $L(f) \geq-\epsilon \forall \epsilon>0$ real
$\Rightarrow L(f) \geq 0$.
We shall now relate this to the problem of representation of linear functionals via integration along measures (i.e. $\int d \mu$).

2. APPLICATION OF SPSS TO THE MOMENT PROBLEM

Let \mathcal{X} be a Hausdorff topological space.
Definition 2.1. \mathcal{X} is locally compact if $\forall x \in \mathcal{X} \exists$ open \mathcal{U} in \mathcal{X} s.t. $x \in \mathcal{U}$ and $\overline{\mathcal{U}}$ (closure) is compact.

Notation 2.2. $\mathcal{B}^{\delta}(\mathcal{X}):=$ set of Borel measurable sets in \mathcal{X}
$=$ the smallest family of subsets of \mathcal{X} containing all compact subsets of \mathcal{X}, closed under finite \cup, set theoretic difference $A \backslash B$ and countable \cap.

Definition 2.3. A Borel measure μ on \mathcal{X} is a positive measure on \mathcal{X} s.t. every set in $\mathcal{B}^{\delta}(\mathcal{X})$ is measurable. We also require our measure to be regular i.e. $\forall B \in$ $\mathcal{B}^{\delta}(\mathcal{X})$ and $\forall \epsilon>0 \exists K, \mathcal{U} \in \mathcal{B}^{\delta}(\mathcal{X}), K$ compact, \mathcal{U} open s.t. $K \subseteq B \subseteq \mathcal{U}$ and $\mu(K)+\epsilon \geq \mu(B) \geq \mu(\mathcal{U})-\epsilon$.
2.4. Moment problem is the following:

Given a closed set $K \subseteq \mathbb{R}^{n}$ and a linear functional $L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$
Question:
when does \exists a Borel measure μ on K s.t. $\forall f \in \mathbb{R}[\underline{X}]: L(f)=\int f d \mu$?
Necessary condition for (1): $\forall f \in \mathbb{R}[\underline{X}], f \geq 0$ on $K \Rightarrow L(f) \geq 0$
in other words: $L(\operatorname{Psd}(K)) \geq 0$
Is this necessary condition also sufficient?
The answer is YES.
Theorem 2.5. (Haviland) Given $K \subseteq \mathbb{R}^{n}$ closed and $L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ a linear functional with $L(1)>0$:

$$
\exists \mu \text { as in (1) iff } \forall f \in \mathbb{R}[\underline{X}]: L(f) \geq 0 \text { if } f \geq 0 \text { on } K,
$$

i.e. $(1) \Leftrightarrow(2) \Leftrightarrow(3)$.

We shall prove Haviland's Theorem later. For now we shall deduce a corollary to SPSS.

Corollary 2.6. Let $K_{S}=\left\{\underline{x} \mid g_{i}(\underline{x}) \geq 0 ; i=1, \ldots, s\right\} \subseteq \mathbb{R}^{n}$ be a basic closed semialgebraic set and compact, $L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ a linear functional with $L(1)>0$. If $L\left(T_{S}\right) \geq 0$, then $\exists \mu$ positive Borel measure on K s.t. $L(f)=\int_{K_{S}} f d \mu \forall f \in \mathbb{R}[\underline{X}]$.

Remark 2.7. Let $S=\left\{g_{1}, \ldots, g_{s}\right\}$.

1. $L\left(T_{S}\right) \geq 0$ can be written as

$$
L\left(h^{2} g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}\right) \geq 0 \forall h \in \mathbb{R}[\underline{X}], e_{1}, \ldots, e_{s} \in\{0,1\} .
$$

2. Compare Haviland to Schmüdgen's moment problem, for compact K_{S} : we do not need to check $L\left(\operatorname{Psd}\left(K_{S}\right)\right) \geq 0$ we only need to check $L\left(T_{S}\right) \geq 0$.
3. Reformulation of question (1) (in 2.4) in terms of moment sequences:

Let $L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$, with $L(1)=1$. Consider $\left\{\underline{X} \underline{\underline{\alpha}}=X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}} ; \underline{\alpha} \in \mathbb{N}^{n}\right\}$ a monomial basis for $\mathbb{R}[\underline{X}]$. So L is completely determined by the (multi) sequence of real numbers $\tau(\underline{\alpha}):=L\left(\underline{X}^{\underline{\alpha}}\right) ; \underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ (i.e. $\tau: \mathbb{N}^{n} \longrightarrow \mathbb{R}$ is a function) and conversely, every such sequence determines a linear functional L :

$$
L\left(\sum_{\underline{\alpha}} a_{\underline{\alpha}} \underline{X}^{\underline{\alpha}}\right):=\sum_{\underline{\alpha}} a_{\underline{\alpha}} L\left(\underline{X}^{\underline{\alpha}}\right) .
$$

So, (1) (in 2.4) can be reformulated as:
Given $K \subseteq \mathbb{R}^{n}$ closed, and a multisequence $\tau=\tau(\underline{\alpha})_{\underline{\alpha} \in \mathbb{N}^{n}}$ of real numbers, $\exists \mu$ positive borel measure on K s.t $\int \underline{X}^{\underline{\alpha}} d \mu=\tau_{\underline{\alpha}}$ for all $\underline{\alpha} \in \mathbb{N}^{n}$?

Definition 2.8. A function $\tau: \mathbb{N}^{n} \longrightarrow \mathbb{R}$ is a $K-$ moment sequence if $\exists \mu$ positive borel measure on K s.t $\tau(\underline{\alpha})=\int_{K} \underline{X}^{\underline{\alpha}} d \mu$ for all $\underline{\alpha} \in \mathbb{N}^{n}$

So (1) can be reformulated as: given K and a function $\tau: \mathbb{N}^{n} \longrightarrow \mathbb{R}$, when is τ a K-moment sequence?

Definition 2.9. A function $\tau:\left(\mathbb{Z}_{+}\right)^{n} \longrightarrow \mathbb{R}$ is called psd if

$$
\sum_{i, j=1}^{m} \tau\left(\underline{k}_{i}+\underline{k}_{j}\right) c_{i} c_{j} \geq 0
$$

for $m \geq 1$, arbitrary distinct $\underline{k}_{1}, \ldots, \underline{k}_{m} \in\left(\mathbb{Z}_{+}\right)^{n} ; c_{1}, \ldots, c_{m} \in \mathbb{R}$.

Definition 2.10. Given $\tau:\left(\mathbb{Z}_{+}\right)^{n} \longrightarrow \mathbb{R}$ a function and a fixed polynomial $g(\underline{X})=\sum_{\underline{k} \in \mathbb{Z}_{+}^{n}} a_{\underline{k}} \underline{X}^{\underline{k}} \in \mathbb{R}[\underline{X}]$. Define a new function $g(E)_{\tau}:\left(\mathbb{Z}_{+}\right)^{n} \rightarrow \mathbb{R}$ by $g(E)_{\tau}(\underline{l}):=\sum_{\underline{k} \in \mathbb{Z}_{+}^{n}} a_{\underline{k}} \tau(\underline{k}+\underline{l}) ;$ for any $\underline{l} \in\left(\mathbb{Z}_{+}\right)^{n}$.

Lemma 2.11. Let $L: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R}$ be a linear functional and denote by

$$
\tau:\left(\mathbb{Z}_{+}\right)^{n} \rightarrow \mathbb{R}
$$

the corresponding multisequence (i.e. $\left.\tau(\underline{k}):=L\left(\underline{X}^{\underline{k}}\right) \forall \underline{k} \in\left(\mathbb{Z}_{+}\right)^{n}\right)$.
Fix $g \in \mathbb{R}[\underline{X}], g(\underline{X})=\sum_{\underline{k} \in \mathbb{Z}_{+}{ }^{n}} a_{\underline{k}} \underline{X^{\underline{k}}} \in \mathbb{R}[\underline{X}]$. Then $L\left(h^{2} g\right) \geq 0$ for all $h \in \mathbb{R}[\underline{X}]$ if and only if the multisequence $g(E)_{\tau}$ is psd.

