POSITIVE POLYNOMIALS LECTURE NOTES (16: 10/06/10)

SALMA KUHLMANN

Contents

1. Application of Schmüdgen's Positivstellensatz to the moment problem	1
2. Schmüdgen's nichtnegativstellensatz and Hankel matrices	2
3. Finite solvability of the K-Moment Problem	3
4. Haviland's Theorem	5

1. APPLICATION OF SPSS TO THE MOMENT PROBLEM (continued)

Lemma 1.1. (Lemma 2.11 of last lecture) Let $L : \mathbb{R}[\underline{X}] \to \mathbb{R}$ be a linear functional and denote by

$$\tau:(\mathbb{Z}_+)^n\to\mathbb{R}$$

the corresponding multisequence (i.e. $\tau(\underline{k}) := L(\underline{X}^{\underline{k}}) \forall \underline{k} \in (\mathbb{Z}_{+})^{n}$). Fix $g \in \mathbb{R}[\underline{X}], g(\underline{X}) = \sum_{\underline{k} \in \mathbb{Z}_{+}^{n}} a_{\underline{k}} \underline{X}^{\underline{k}} \in \mathbb{R}[\underline{X}]$. Then $L(h^{2}g) \geq 0$ for all $h \in \mathbb{R}[\underline{X}]$ if and only if the multisequence $g(E)_{\tau}$ is psd.

Proof. Compute:

1.
$$L(\underline{X}^{\underline{l}}g) = \sum_{\underline{k} \in \mathbb{Z}_{+}^{n}} a_{\underline{k}} \tau(\underline{k} + \underline{l}) = g(E)_{\tau}(\underline{l}); \text{ for all } \underline{l} \in (\mathbb{Z}_{+})^{n}.$$

Thus if $h = \sum_{i} c_{i} \underline{X}^{\underline{k}_{i}} \in \mathbb{R}[\underline{X}] \text{ then } h^{2} = \sum_{i,j} c_{i} c_{j} \underline{X}^{\underline{k}_{i} + \underline{k}_{j}}.$
2. So, $L(h^{2}g) = L[(\sum_{i,j} c_{i} c_{j} \underline{X}^{\underline{k}_{i} + \underline{k}_{j}})g] = \sum_{i,j} c_{i} c_{j} L(\underline{X}^{\underline{k}_{i} + \underline{k}_{j}}g)$
 $\underset{[by 1.]}{=} \sum_{i,j} g(E)_{\tau}(\underline{k}_{i} + \underline{k}_{j})c_{i}c_{j}.$

(16: 10/06/10)

Theorem 1.2. (Schmüdgen's NNSS) (Reformulation in terms of moment sequences) Let $K = K_S$ compact, $S = \{g_1, \ldots, g_s\}$ and $\tau : (\mathbb{Z}^+)^n \to \mathbb{R}$ be a given multisequence. Then τ is a *K*-moment sequence if and only if the multisequences $(g_1^{e_1} \ldots g_s^{e_s})(E)_{\tau} : (\mathbb{Z}^+)^n \to \mathbb{R}$ are all psd for all $(e_1, \ldots, e_s) \in \{0, 1\}^s$.

Next we reformulate question (1) in 2.4 of Lecture 15 in terms of Hankel matrices:

2. SCHMÜDGEN'S NNSS AND HANKEL MATRICES

We want to understand $L(h^2g) \ge 0$; $h, g \in \mathbb{R}[X]$ in terms of Hankel matrices.

Definition 2.1. A real symmetric $n \times n$ matrix A is **psd** if $\underline{x}^T A \underline{x} \ge 0 \forall \underline{x} \in \mathbb{R}^n$. An $\mathbb{N} \times \mathbb{N}$ symmetric matrix (say) A is psd if $\underline{x}^T A \underline{x} \ge 0 \forall \underline{x} \in \mathbb{R}^n$ and $\forall n \in \mathbb{N}$.

Definition 2.2. Let $L \neq 0$; $L : \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ be a given linear functional. Fix $g \in \mathbb{R}[X]$. Consider symmetric bilinear form:

$$\langle , \rangle_g : \mathbb{R}[\underline{X}] \times \mathbb{R}[\underline{X}] \to \mathbb{R}$$
$$\langle h, k \rangle_g := L(hkg) ; h, k \in \mathbb{R}[\underline{X}]$$

Denote by S_g the $\mathbb{N} \times \mathbb{N}$ symmetric matrix with $\alpha\beta$ -entry $\langle \underline{X}^{\underline{\alpha}}, \underline{X}^{\underline{\beta}} \rangle_g \forall \underline{\alpha}, \underline{\beta} \in \mathbb{N}^n$, i.e. the $\alpha\beta$ -entry of S_g is $L(\underline{X}^{\underline{\alpha}+\underline{\beta}}g)$.

Example. Let g = 1, then

$$\langle \underline{X}^{\underline{\alpha}}, \underline{X}^{\underline{\beta}} \rangle_1 = L(\underline{X}^{\underline{\alpha}+\underline{\beta}}) := S_{\underline{\alpha}+\underline{\beta}}.$$

More generally, if $g = \sum a_{\gamma} \underline{X}^{\gamma}$ then

$$\langle \underline{X}^{\underline{\alpha}}, \underline{X}^{\underline{\beta}} \rangle_{g} = L \Big(\sum_{\gamma} a_{\underline{\gamma}} \, \underline{X}^{\underline{\alpha} + \underline{\beta} + \underline{\gamma}} \Big) = \sum_{\underline{\gamma}} a_{\underline{\gamma}} \, S_{\underline{\alpha} + \underline{\beta} + \underline{\gamma}} \ .$$

Proposition 2.3. Let *L*, *g* be fixed as above. Then the following are equivalent:

- 1. $L(\sigma g) \ge 0 \ \forall \ \sigma \in \sum \mathbb{R}[\underline{X}]^2$.
- 2. $L(h^2g) \ge 0 \forall h \in \mathbb{R}[\underline{X}].$
- 3. \langle , \rangle_g is psd.
- 4. S_g is psd.

Proof. (1) \Leftrightarrow (2) is clear. Since $\langle h, h \rangle_g = L(h^2g)$, (2) \Leftrightarrow (3) is clear. (3) \Leftrightarrow (4) is also clear.

2.4. Example. (Hamburger) Let n = 1. A linear functional $L : \mathbb{R}[X] \to \mathbb{R}$ comes from a Borel measure on \mathbb{R} if and only if $L(\sigma) \ge 0$ for every $\sigma \in \sum \mathbb{R}[X]^2$.

Proof. From Haviland we know *L* comes from a Borel measure iff $L(f) \ge 0$ for every $f(X) \in \mathbb{R}[X], f \ge 0$ on \mathbb{R} . But $Psd(\mathbb{R}) = \sum \mathbb{R}[X]^2$ (by exercise in Real Algebraic Geometry course in WS 2009-10). So the condition is clear. \Box

Remark 2.5. We can express Hamburgers's Theorem via Hankel matrix S_g with g = 1 the constant polynomial.

 $n = 1, \text{ so (for } i, j \in \mathbb{N}) \text{ the } ij^{\text{ th }} \text{ coefficient of } S_1 \text{ is } s_{i+j} = L(X^{i+j}).$ Hence, $S_1 = \begin{pmatrix} s_0 & s_1 & s_2 & \dots \\ s_1 & s_2 & \dots \\ s_2 & \dots & s_n \end{pmatrix} \text{ is psd.}$

2.1. REFORMULATION OF SCHMÜDGEN'S SOLUTION TO THE MOMENT PROBLEM IN TERMS OF HANKEL MATRICES

2.6. Let $S = \{g_1, \ldots, g_s\} \subseteq \mathbb{R}[\underline{X}]$ and $K_S \subseteq \mathbb{R}^n$ is compact. A linear functional L on $\mathbb{R}[\underline{X}]$ is represented by a Borel measure on K iff the $2^S \mathbb{N} \times \mathbb{N}$ Hankel matrices $\{S_{g_1^{e_1} \ldots g_s^{e_s}} | (e_1, \ldots, e_s) \in \{0, 1\}^s\}$ are psd, where $S_g := [L(\underline{X}^{\underline{\alpha} + \underline{\beta}}g)]_{\underline{\alpha}, \beta}$; $\underline{\alpha}, \beta \in \mathbb{N}^n$.

3. FINITE SOLVABILITY OF THE K- MOMENT PROBLEM

Definition 3.1. Let *K* be a basic closed semi-algebraic subset of \mathbb{R}^n .

- 1. The *K*-moment problem (**KMP**) is **finitely solvable** if there exists *S* finite, $S \subseteq \mathbb{R}[\underline{X}]$ such that:
 - (i) $K = K_S$, and
 - (ii) \forall linear functional *L* on $\mathbb{R}[\underline{X}]$ we have: $L(T_S) \ge 0 \Rightarrow L(\operatorname{Psd}(K)) \ge 0$ (equivalently, (iii) $L(T_S) \ge 0 \Rightarrow \exists \mu : L = \int d\mu$).
- 2. We shall say *S* solves the KMP if (i) and (ii) (equivalently (i) and (iii)) hold.

3.2. Schmüdgen's solution to the KPM for *K* compact b.c.s.a. Let $K \subseteq \mathbb{R}^n$ be a compact basic closed semi-algebraic set. Then *S* solves the KMP for any finite description *S* of *K* (i.e. for all finite $S \subseteq \mathbb{R}[X]$ with $K = K_S$).

(16: 10/06/10)

One can restate the condition "*S* solves the *K*-Moment problem" via the equality of two preorderings. We shall adopt this approach throughout:

Definition 3.3. Let $T_S \subseteq \mathbb{R}[\underline{X}]$ be a preordering. Define the **dual cone** of T_S :

 $T_{S}^{\vee} := \{L \mid L : \mathbb{R}[\underline{X}] \to \mathbb{R} \text{ is a linear functional}; L(T_{S}) \ge 0\},\$

and the **double dual cone**:

$$T_S^{\mathrm{vv}} := \{ f \mid f \in \mathbb{R}[\underline{X}]; L(f) \ge 0 \ \forall \ L \in T_S^{\mathrm{v}} \}.$$

Lemma 3.4. For $S \subseteq \mathbb{R}[X]$, *S* finite:

- (a) $T_S \subseteq T_S^{vv}$
- (b) $T_S^{vv} \subseteq Psd(K_S)$.

Proof. (a) Immediate by definition.

(b) Let $f \in T_S^{vv}$. To show: $f(\underline{x}) \ge 0 \forall \underline{x} \in K_S$.

Now every $\underline{x} \in \mathbb{R}^n$ determines an \mathbb{R} -algebra homomorphism

$$e_{v_x} := L_{\underline{x}} \in \operatorname{Hom}(\mathbb{R}[\underline{X}], \mathbb{R}); \ L_{\underline{x}}(g) = e_{v_x}(g) := g(\underline{x}) \ \forall \ g \in \mathbb{R}[\underline{X}],$$

this L_x is in particular a linear functional.

Moreover we claim that $L_{\underline{x}}(T_S) \ge 0$ for $\underline{x} \in K_S$. Indeed if $g \in T_S$ then $L_{\underline{x}}(g) = g(\underline{x}) \ge 0$ for $\underline{x} \in K_S$.

So, by assumption on f we must also have $L_{\underline{x}}(f) \ge 0$ for $\underline{x} \in K_S$, i.e. $f(\underline{x}) \ge 0$ for all $\underline{x} \in K_S$ as required.

We summarize as follows:

Corollary 3.5. For finite $S \subseteq \mathbb{R}[X]$:

$$T_S \subseteq T_S^{vv} \subseteq \operatorname{Psd}(K_S).$$

Corollary 3.6. (Reformulation of finite solvability) Let $K \subseteq \mathbb{R}^n$ be a b.c.s.a. set and $S \subseteq \mathbb{R}[X]$ be finite. Then *S* solves the KMP iff

- (j) $K = K_S$, and
- (jj) $T_S^{vv} = Psd(K)$.

Proof. Assume (ii) of definition 3.1, i.e. $\forall L : L(T_S) \ge 0 \Rightarrow L(\text{Psd}(K)) \ge 0$, and show (jj) i.e. $T_S^{vv} = \text{Psd}(K)$: Let $f \in \text{Psd}(K)$. Show $f \in T_S^{vv}$ i.e. show $L(f) \ge 0 \forall L \in T_S^{v}$. Assume $L(T_S) \ge 0$. Then by assumption $L(\text{Psd}(K)) \ge 0$. So, $L(f) \ge 0$ as required.

Conversely, assume (jj) and show (ii): Let $L(T_S) \ge 0$, i.e. $L \in T_S^{\vee}$. Show $L(\operatorname{Psd}(K)) \ge 0$, i.e show $L(f) \ge 0 \forall f \in \operatorname{Psd}(K)$. Now [by assumption (jj)] $f \in \operatorname{Psd}(K) \Rightarrow f \in T_S^{\vee \vee} \Rightarrow L(f) \ge 0 \forall L \in T_S^{\vee}$. \Box

We shall come back later to T_S^{VV} and describe it as closure w.r.t. an appropriate topology.

4. HAVILAND'S THEOREM

For the proof of Haviland's theorem (2.5 of lecture 15), we will recall Riesz Representation Theorem.

Definition 4.1. A topological space is said to be **Hausdorff** (or **seperated**) if it satisfies

(H4): any two distinct points have disjoint neighbourhoods, or (T_2) : two distinct points always lie in disjoint open sets.

Definition 4.2. A topological space χ is said to be **locally compact** if $\forall x \in \chi \exists$ an open neighbourhood $\mathcal{U} \ni x$ such that $\overline{\mathcal{U}}$ is compact.

Theorem 4.3. (Riesz Representation Theorem) Let χ be a locally compact Hausdorff space and $L : \operatorname{Cont}_c(\chi, \mathbb{R}) \to \mathbb{R}$ be a positive linear functional i.e. $L(f) \ge 0 \forall f \ge 0 \text{ on } \chi$. Then there exists a unique (positive regular) Borel measure μ on χ such that $L(f) = \int f d\mu \quad \forall f \in \operatorname{Cont}_c(\chi, \mathbb{R})$, where $\operatorname{Cont}_c(\chi, \mathbb{R}) :=$

the ring (\mathbb{R} -algebra) of all continuous functions $f : \chi \to \mathbb{R}$ (addition and multiplication defined pointwise) with compact support i.e. such that the set supp(f) := { $x \in \chi : f(x) \neq 0$ } is compact.

Definition 4.4. *L* **positive** means:

 $L(f) \ge 0 \ \forall f \in \operatorname{Cont}_{\mathbb{C}}(\chi, \mathbb{R}) \text{ with } f \ge 0 \text{ on } \chi.$