POSITIVE POLYNOMIALS LECTURE NOTES (16: 10/06/10)

SALMA KUHLMANN

Contents

1. Application of Schmüdgen's Positivstellensatz to the moment problem 1
2. Schmüdgen's nichtnegativstellensatz and Hankel matrices 2
3. Finite solvability of the K-Moment Problem 3
4. Haviland's Theorem 5

1. APPLICATION OF SPSS TO THE MOMENT PROBLEM (continued)

Lemma 1.1. (Lemma 2.11 of last lecture) Let $L: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R}$ be a linear functional and denote by

$$
\tau:\left(\mathbb{Z}_{+}\right)^{n} \rightarrow \mathbb{R}
$$

the corresponding multisequence (i.e. $\left.\tau(\underline{k}):=L\left(\underline{X}^{\underline{k}}\right) \forall \underline{k} \in\left(\mathbb{Z}_{+}\right)^{n}\right)$.
Fix $g \in \mathbb{R}[\underline{X}], g(\underline{X})=\sum_{\underline{k} \in \mathbb{Z}_{+}{ }^{n}} a_{\underline{k}} \underline{X}^{\underline{k}} \in \mathbb{R}[\underline{X}]$. Then $L\left(h^{2} g\right) \geq 0$ for all $h \in \mathbb{R}[\underline{X}]$ if and only if the multisequence $g(E)_{\tau}$ is psd.

Proof. Compute:

1. $L(\underline{X} \underline{l} g)=\sum_{\underline{k} \in \mathbb{Z}_{+}^{n}} a_{\underline{k}} \tau(\underline{k}+\underline{l})=g(E)_{\tau}(\underline{l})$; for all $\underline{l} \in\left(\mathbb{Z}_{+}\right)^{n}$.

Thus if $h=\sum_{i} c_{i} \underline{X}^{\underline{k}_{i}} \in \mathbb{R}[\underline{X}]$ then $h^{2}=\sum_{i, j} c_{i} c_{j} \underline{X}^{k_{i}+\underline{k}_{j}}$.
2. So, $L\left(h^{2} g\right)=L\left[\left(\sum_{i, j} c_{i} c_{j} \underline{X}^{k_{i}+\underline{k}_{j}}\right) g\right]=\sum_{i, j} c_{i} c_{j} L\left(\underline{X}^{k_{i}+\underline{k}_{j}} g\right)$

$$
\underbrace{=}_{\text {[by 1.] }} \sum_{i, j} g(E)_{\tau}\left(\underline{k}_{i}+\underline{k}_{j}\right) c_{i} c_{j} .
$$

Theorem 1.2. (Schmüdgen's NNSS) (Reformulation in terms of moment sequences) Let $K=K_{S}$ compact, $S=\left\{g_{1}, \ldots, g_{s}\right\}$ and $\tau:\left(\mathbb{Z}^{+}\right)^{n} \rightarrow \mathbb{R}$ be a given multisequence. Then τ is a K-moment sequence if and only if the multisequences $\left(g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}\right)(E)_{\tau}:\left(\mathbb{Z}^{+}\right)^{n} \rightarrow \mathbb{R}$ are all psd for all $\left(e_{1}, \ldots, e_{s}\right) \in\{0,1\}^{s}$.

Next we reformulate question (1) in 2.4 of Lecture 15 in terms of Hankel matrices:

2. SCHMÜDGEN'S NNSS AND HANKEL MATRICES

We want to understand $L\left(h^{2} g\right) \geq 0 ; h, g \in \mathbb{R}[\underline{X}]$ in terms of Hankel matrices.
Definition 2.1. A real symmetric $n \times n$ matrix A is psd if $\underline{x}^{T} A \underline{x} \geq 0 \forall \underline{x} \in \mathbb{R}^{n}$. An $\mathbb{N} \times \mathbb{N}$ symmetric matrix (say) A is psd if $\underline{x}^{T} A \underline{x} \geq 0 \forall \underline{x} \in \mathbb{R}^{n}$ and $\forall n \in \mathbb{N}$.

Definition 2.2. Let $L \neq 0 ; L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ be a given linear functional. Fix $g \in \mathbb{R}[\underline{X}]$. Consider symmetric bilinear form:

$$
\begin{aligned}
& \langle,\rangle_{g}: \mathbb{R}[\underline{X}] \times \mathbb{R}[\underline{X}] \rightarrow \mathbb{R} \\
& \quad\langle h, k\rangle_{g}:=L(h k g) ; h, k \in \mathbb{R}[\underline{X}]
\end{aligned}
$$

Denote by S_{g} the $\mathbb{N} \times \mathbb{N}$ symmetric matrix with $\alpha \beta$-entry $\left\langle\underline{X}^{\underline{\alpha}}, \underline{X} \underline{X}^{\beta}\right\rangle_{g} \forall \underline{\alpha}, \underline{\beta} \in \mathbb{N}^{n}$, i.e. the $\alpha \beta$-entry of S_{g} is $L\left(\underline{X}^{\underline{\alpha}+\underline{\beta}} g\right)$.

Example. Let $g=1$, then

$$
\left\langle\underline{X}^{\underline{\alpha}}, \underline{X}^{\underline{\beta}}\right\rangle_{1}=L\left(\underline{X}^{\alpha+} \underline{\beta}\right):=S_{\underline{\alpha}+\underline{\beta}} .
$$

More generally, if $g=\sum a_{\underline{\gamma}} \underline{X}^{\underline{\gamma}}$ then

$$
\left\langle\underline{X}^{\underline{\alpha}}, \underline{X}^{\beta}\right\rangle_{g}=L\left(\sum_{\gamma} a_{\underline{\gamma}} \underline{X}^{\underline{\alpha}+\underline{\beta}+\underline{\gamma}}\right)=\sum_{\underline{\gamma}} a_{\underline{\gamma}} S_{\underline{\alpha}+\underline{\beta}+\underline{\gamma}} .
$$

Proposition 2.3. Let L, g be fixed as above. Then the following are equivalent:

1. $L(\sigma g) \geq 0 \forall \sigma \in \sum \mathbb{R}[\underline{X}]^{2}$.
2. $L\left(h^{2} g\right) \geq 0 \forall h \in \mathbb{R}[\underline{X}]$.
3. \langle,\rangle_{g} is psd.
4. S_{g} is psd .

Proof. (1) \Leftrightarrow (2) is clear.
Since $\langle h, h\rangle_{g}=L\left(h^{2} g\right),(2) \Leftrightarrow(3)$ is clear.
(3) \Leftrightarrow (4) is also clear.
2.4. Example. (Hamburger) Let $n=1$. A linear functional $L: \mathbb{R}[X] \rightarrow \mathbb{R}$ comes from a Borel measure on \mathbb{R} if and only if $L(\sigma) \geq 0$ for every $\sigma \in \sum \mathbb{R}[X]^{2}$.

Proof. From Haviland we know L comes from a Borel measure iff $L(f) \geq 0$ for every $f(X) \in \mathbb{R}[X], f \geq 0$ on \mathbb{R}. But $\operatorname{Psd}(\mathbb{R})=\sum \mathbb{R}[X]^{2}$ (by exercise in Real Algebraic Geometry course in WS 2009-10). So the condition is clear.

Remark 2.5. We can express Hamburgers's Theorem via Hankel matrix S_{g} with $g=1$ the constant polynomial.
$n=1$, so (for $i, j \in \mathbb{N}$) the $i j{ }^{\text {th }}$ coefficient of S_{1} is $s_{i+j}=L\left(X^{i+j}\right)$.
Hence, $S_{1}=\left(\begin{array}{llll}s_{0} & s_{1} & s_{2} & \ldots \\ s_{1} & s_{2} & \ldots & \\ s_{2} & \ldots & \ddots & \\ \ldots & \ldots & \end{array}\right)$ is psd.

2.1. REFORMULATION OF SCHMÜDGEN'S SOLUTION TO THE MOMENT PROBLEM IN TERMS OF HANKEL MATRICES

2.6. Let $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[\underline{X}]$ and $K_{S} \subseteq \mathbb{R}^{n}$ is compact. A linear functional L on $\mathbb{R}[\underline{X}]$ is represented by a Borel measure on K iff the $2^{S} \mathbb{N} \times \mathbb{N}$ Hankel matrices $\left\{S_{g_{1}{ }_{1}^{e_{1}} \ldots g_{s}^{s s}} \mid\left(e_{1}, \ldots, e_{s}\right) \in\{0,1\}^{s}\right\}$ are psd, where $S_{g}:=\left[L\left(\underline{X}^{\underline{\alpha}+\underline{\beta}} g\right)\right]_{\underline{\alpha}, \underline{\beta}} ; \underline{\alpha}, \underline{\beta} \in \mathbb{N}^{n}$.

3. FINITE SOLVABILITY OF THE K - MOMENT PROBLEM

Definition 3.1. Let K be a basic closed semi-algebraic subset of \mathbb{R}^{n}.

1. The K-moment problem (KMP) is finitely solvable if there exists S finite, $S \subseteq \mathbb{R}[\underline{X}]$ such that:
(i) $K=K_{S}$, and
(ii) \forall linear functional L on $\mathbb{R}[\underline{X}]$ we have: $L\left(T_{S}\right) \geq 0 \Rightarrow L(\operatorname{Psd}(K)) \geq 0$ (equivalently, (iii) $L\left(T_{S}\right) \geq 0 \Rightarrow \exists \mu: L=\int d \mu$).
2. We shall say S solves the KMP if (i) and (ii) (equivalently (i) and (iii)) hold.
3.2. Schmüdgen's solution to the KPM for K compact b.c.s.a. Let $K \subseteq \mathbb{R}^{n}$ be a compact basic closed semi-algebraic set. Then S solves the KMP for any finite description S of K (i.e. for all finite $S \subseteq \mathbb{R}[\underline{X}]$ with $K=K_{S}$).

One can restate the condition " S solves the K-Moment problem" via the equality of two preorderings. We shall adopt this approach throughout:

Definition 3.3. Let $T_{S} \subseteq \mathbb{R}[\underline{X}]$ be a preordering. Define the dual cone of T_{S} :

$$
T_{S}^{\mathrm{v}}:=\left\{L \mid L: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R} \text { is a linear functional; } L\left(T_{S}\right) \geq 0\right\}
$$

and the double dual cone:

$$
T_{S}^{\mathrm{vv}}:=\left\{f \mid f \in \mathbb{R}[\underline{X}] ; L(f) \geq 0 \forall L \in T_{S}^{\mathrm{v}}\right\} .
$$

Lemma 3.4. For $S \subseteq \mathbb{R}[\underline{X}]$, S finite:
(a) $T_{S} \subseteq T_{S}^{\mathrm{vv}}$
(b) $T_{S}^{\mathrm{vv}} \subseteq \operatorname{Psd}\left(K_{S}\right)$.

Proof. (a) Immediate by definition.
(b) Let $f \in T_{S}^{\mathrm{vv}}$. To show: $f(\underline{x}) \geq 0 \forall \underline{x} \in K_{S}$.

Now every $\underline{x} \in \mathbb{R}^{n}$ determines an \mathbb{R}-algebra homomorphism

$$
e_{v_{x}}:=L_{\underline{x}} \in \operatorname{Hom}(\mathbb{R}[\underline{X}], \mathbb{R}) ; L_{\underline{x}}(g)=e_{v_{x}}(g):=g(\underline{x}) \forall g \in \mathbb{R}[\underline{X}],
$$

this $L_{\underline{x}}$ is in particular a linear functional.
Moreover we claim that $L_{x}\left(T_{S}\right) \geq 0$ for $\underline{x} \in K_{S}$. Indeed if $g \in T_{S}$ then $L_{\underline{x}}(g)=g(\underline{x}) \geq 0$ for $\underline{x} \in K_{S}$.
So, by assumption on f we must also have $L_{\underline{x}}(f) \geq 0$ for $\underline{x} \in K_{S}$, i.e. $f(\underline{x}) \geq 0$ for all $\underline{x} \in K_{S}$ as required.

We summarize as follows:
Corollary 3.5. For finite $S \subseteq \mathbb{R}[\underline{X}]$:

$$
T_{S} \subseteq T_{S}^{\mathrm{vv}} \subseteq \operatorname{Psd}\left(K_{S}\right)
$$

Corollary 3.6. (Reformulation of finite solvability) Let $K \subseteq \mathbb{R}^{n}$ be a b.c.s.a. set and $S \subseteq \mathbb{R}[\underline{X}]$ be finite. Then S solves the KMP iff
(j) $K=K_{S}$, and
(jj) $T_{S}^{\mathrm{vv}}=\operatorname{Psd}(K)$.

Proof. Assume (ii) of definition 3.1, i.e. $\forall L: L\left(T_{S}\right) \geq 0 \Rightarrow L(\operatorname{Psd}(K)) \geq 0$, and show (jj) i.e. $T_{S}^{\mathrm{vv}}=\operatorname{Psd}(K)$:
Let $f \in \operatorname{Psd}(K)$. Show $f \in T_{S}^{\mathrm{vv}}$ i.e. show $L(f) \geq 0 \forall L \in T_{S}^{\mathrm{v}}$.
Assume $L\left(T_{S}\right) \geq 0$. Then by assumption $L(\operatorname{Psd}(K)) \geq 0$. So, $L(f) \geq 0$ as required.
Conversely, assume (jj) and show (ii):
Let $L\left(T_{S}\right) \geq 0$, i.e. $L \in T_{S}^{\mathrm{v}}$. $\underline{\text { Show }} L(\operatorname{Psd}(K)) \geq 0$, i.e show $L(f) \geq 0 \forall f \in \operatorname{Psd}(K)$. Now [by assumption (jj)] $f \in \operatorname{Psd}(K) \Rightarrow f \in T_{S}^{\mathrm{vv}} \Rightarrow L(f) \geq 0 \forall L \in T_{S}^{\mathrm{v}}$.

We shall come back later to T_{S}^{vv} and describe it as closure w.r.t. an appropriate topology.

4. HAVILAND'S THEOREM

For the proof of Haviland's theorem (2.5 of lecture 15), we will recall Riesz Representation Theorem.

Definition 4.1. A topological space is said to be Hausdorff (or seperated) if it satisfies
(H4): any two distinct points have disjoint neighbourhoods, or $\left(\mathrm{T}_{2}\right)$: two distinct points always lie in disjoint open sets.

Definition 4.2. A topological space χ is said to be locally compact if $\forall x \in \chi \exists$ an open neighbourhood $\mathcal{U} \ni x$ such that $\overline{\mathcal{U}}$ is compact.

Theorem 4.3. (Riesz Representation Theorem) Let χ be a locally compact Hausdorff space and $L: \operatorname{Cont}_{c}(\chi, \mathbb{R}) \rightarrow \mathbb{R}$ be a positive linear functional i.e. $L(f) \geq 0 \forall f \geq 0$ on χ. Then there exists a unique (positive regular) Borel measure μ on χ such that $L(f)=\int_{\chi} f d \mu \forall f \in \operatorname{Cont}_{c}(\chi, \mathbb{R})$, where $\operatorname{Cont}_{c}(\chi, \mathbb{R}):=$ the ring (\mathbb{R}-algebra) of all continuous functions $f: \chi \rightarrow \mathbb{R}$ (addition and multiplication defined pointwise) with compact support i.e. such that the set $\operatorname{supp}(f):=$ $\{x \in \chi: f(x) \neq 0\}$ is compact.

Definition 4.4. L positive means:

$$
L(f) \geq 0 \forall f \in \operatorname{Cont}_{\mathrm{C}}(\chi, \mathbb{R}) \text { with } f \geq 0 \text { on } \chi .
$$

