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1. Haviland’s Theorem 1

1. HAVILAND’S THEOREM (continued)

Recall Theorem 4.3 of last lecture:

Theorem 1.1. Riesz Representation Theorem:
Let χ be a locally compact Hausdorff space and L : Contc(χ,R)→ R be a positive
linear functional i.e. L( f ) ≥ 0 ∀ f ≥ 0 on χ. Then there exists a unique (positive

regular) Borel measure µ on χ such that L( f ) =

∫
χ

f dµ ∀ f ∈ Contc(χ,R),

where Contc(χ,R) := the ring (R-algebra) of all continuous functions f : χ → R
(addition and multiplication defined pointwise) with compact support i.e. such
that the set supp( f ) := {x ∈ χ : f (x) , 0} is compact. �

We shall use theorem 1.1 to prove the following general result. Haviland’s
theorem (2.5 of lecture 15) will follow as a special case.

Theorem 1.2. Let A be anR-algebra, χ a Hausdorff space and ˆ : A→ Contc(χ,R)
an R algebra homomorphism. Assume ∃ p ∈ A such that p̂ ≥ 0 on χ and
∀ k ∈ N : χk := {α ∈ χ | p̂(α) ≤ k} is compact. . . . (?)
Then for any linear functional L : A → R satisfying ∀ a ∈ A : â ≥ 0 on
χ⇒ L(a) ≥ 0, ∃ a Borel measure µ on χ such that L(a) =

∫
χ

â dµ ∀ a ∈ A.

1.3. Remarks before proof.

1. (?) implies in particular that χ is locally compact (i.e. ∀ x ∈ χ : ∃ an open
neighbourhoodU 3 x such thatU is compact).

1
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Proof. Let x ∈ χ, fix k ≥ 1 s.t. p̂(x) < k

Set Uk :=
{
y ∈ χ | p̂(y) < k}

⊆ {y ∈ χ | p̂(y) ≤ k
}

= χk

Uk is open , x ∈ Uk; Uk ⊆ χk; soUk is compact.[
χk = p̂−1((−∞, k]

)
being inverse image of closed set under continuous map

is closed but not necessarily compact, andUk = p̂−1((−∞, k)
)

being inverse
image of open set under continuous map is open.

]
�

2. Haviland’s Theorem is a corollary (to Theorem 1.2) if we set χ = K closed
subset of Rn, A = R[X], and

ˆ : R[X]→ Cont(K,R);

f 7→ f̂ (restriction of the polynomial function f to K)

p̂(x) =
∑

x2
i = ||x||2, χk compact.

1.4. Proof of Theorem 1.2. Set C(χ) = Cont(χ,R) and Cc(χ) = Contc(χ,R).
Let Â := {â | a ∈ A} (the image under the R-algebra homomorphism ˆ is a
subalgebra).
Define B(χ) ⊆ C(χ) to be the following subalgebra of C(χ):

B(χ) :=
{
f ∈ C(χ) | ∃ a ∈ A : | f | ≤ |â| on χ

}
.

Observe that B(χ) is a subalgebra of C(χ) and Â ⊆ B(χ) ⊆ C(χ).
Claim 1: Cc(χ) ⊆ B(χ)
Proof of Claim 1. Let f ∈ Cc(χ), f continuous and {x ∈ χ : f (x) , 0} compact
subset. Then | f | ≤ k, for some k ∈ N; k ∈ A, i.e. | f | ≤ k̂ on χ.
So Cc(χ) ⊆ B(χ) as claimed i.e. Cc(χ) is a subalgebra of B(χ). �(Claim 1)
Let now as in the hypothesis of the theorem:
L : A→ R with L(a) ≥ 0 if â ≥ 0 on χ,∀ a ∈ A.
We define L̄ : Â→ R, by L̄(â) := L(a).

Claim 2: L̄ is a well defined linear function.
Proof of Claim 2. Since L̄(â + b̂) = L̄(â + b) = L(a + b), so it is enough to prove
that: â = 0⇒ L(a) = 0
Now â ≥ 0 ⇒ L(a) ≥ 0, and −â ≥ 0 ⇒ −L(a) = L(−a) ≥ 0; (together)
⇒ L(a) = 0. �(Claim 2)

Claim 3: L̄ extends to a linear map:

L̄ : B(χ)→ R with L̄( f ) ≥ 0 for f ≥ 0 on χ.
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Proof of Claim 3. We use Zorn’s lemma to prove this:
Consider the collection of all pairs (B, L̄), where B is a R−subspace of B(χ) con-
taining Â and L̄ is an extension of L̄ (on A) with the property:

∀ f ∈ B : f ≥ 0 on χ ⇒ L̄( f ) ≥ 0 . . . (†)

and consider a partial order: (B1, L̄1) ⊆ (B2, L̄2) :⇔ B1 ⊆ B2 and L̄2|B1 := L̄1.

• this collection is nonempty since (Â, L̄) belongs to it : â ≥ 0 on χ⇒ L̄(â) =

L(a) ≥ 0 (by definition)

• every chain has an upper bound

• Let (B, L̄) be a maximal element.
Subclaim: we claim that B = B(χ)
Otherwise let g ∈ B(χ) \ B.
If f1, f2 ∈ B s.t. f1 ≤ g and g ≤ f2 on χ, then f1 ≤ f2 on χ so L̄( f1) ≤ L̄( f2).
So we consider the following sets of reals

U := {L̄( f1) | f1 ∈ B, f1 ≤ g on χ} ≤ {L̄( f2) | f2 ∈ B, g ≤ f2 on χ} =: θ

Note that these setsU, θ are nonempty, i.e. f1, f2 exist.[
e.g. let a ∈ A s.t. |g| ≤ |â| on χ

now
(
â ± 1

)2
≥ 0, so |â| ≤

â2 + 1
2
∈ Â

so take f1 := −
â2 + 1

2
∈ Â; f2 :=

â2 + 1
2
∈ Â

]
By completeness of R, let e ∈ R s.t.

sup {L̄( f1) | f1 ∈ B, f1 ≤ g} ≤ e ≤ inf {L̄( f2) | f2 ∈ B, g ≤ f2}.

Extend L̄ to B + Rg ⊆ B(χ) by setting

L̄(g) := e and L̄( f + dg) := L̄( f ) + de; d ∈ R

To verify: ∀ f + dg ∈ B + Rg : f + dg ≥ 0⇒ L̄( f + dg) ≥ 0. (Exercise)

This will contradict the maximal choice of B and will complete subclaim
that B = B(χ), and so complete the proof of claim 3. �(Claim 3)

Thus L̄ is defined on B(χ) and satisfies:

∀ f ∈ B(χ) : f ≥ 0 on χ ⇒ L̄( f ) ≥ 0. . . . (††)

In particular L̄ is defined on Cc(χ) and satisfies (††), i.e. L̄ is a positive linear
functional on Cc(χ). So we can apply Riesz Representation Theorem (theorem
1.1) on L̄ :

∃ µ on χ such that L̄( f ) =
∫
χ

f dµ ∀ f ∈ Cc(χ) ⊆ B(χ). . . . († † †)
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Main claim: († † †) holds also ∀ f ∈ B(χ), i.e. L̄( f ) =
∫
χ

f dµ ∀ f ∈ B(χ).

In particular the proof of the theorem will be completed after proving this since
Â ⊆ B(χ), and so for f = a ∈ Â : L(a) =︸︷︷︸

(definition)

L̄(â) =
∫
χ

âdµ.

Proof of main claim. Let f ∈ B(χ)
Set f+ := max { f , 0}, f− := − min{ f , 0}; f = f+ − f−
So, w.l.o.g. we are reduced to the case f ≥ 0 on χ, f ∈ B(χ).
Set q := f + p̂; for q ∈ B(χ).
For each k ≥ 1, consider χ

′

k := {α ∈ χ | q(α) ≤ k}

• ∀ k : χ
′

k ⊆ χk and χ
′

k is closed. So χ
′

k is compact.

• χ
′

k ⊆ χ
′

k+1 and χ =
⋃

k

χ
′

k .

Subclaim 1: For each k ∈ N ∃ fk ∈ Cc(χ) such that 0 ≤ fk ≤ f ; fk = f on χ′k and
fk = 0 outside χ′k+1.

Subclaim 2: L̄( f ) = lim
k→∞

L̄( fk)

Note that once they are proved we are done because:∫
f dµ = lim

k→∞

∫
fkdµ = lim

k→∞
L̄( fk) = L̄( f ).

We will prove subclaim 1 and 2 in next lecture.
�


