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1. Haviland’s Theorem 1

1. HAVILAND’S THEOREM (continued)

Recall Theorem 4.3 of last lecture:

Theorem 1.1. Riesz Representation Theorem:
Let y be a locally compact Hausdorff space and L : Cont.(y,R) — R be a positive
linear functional i.e. L(f) > 0 Vf > 0 on y. Then there exists a unique (positive

regular) Borel measure p on y such that L(f) = f fdu Y f € Cont.(y,R),

X
where Cont.(y,R) := the ring (R-algebra) of all continuous functions f : y — R
(addition and multiplication defined pointwise) with compact support i.e. such
that the set supp(f) := {x € x : f(x) # 0} is compact. O

We shall use theorem 1.1 to prove the following general result. Haviland’s
theorem (2.5 of lecture 15) will follow as a special case.

Theorem 1.2. Let A be an R-algebra, y a Hausdorft space and " : A — Cont.(y, R)
an R algebra homomorphism. Assume 4 p € A such that p > 0 on y and
VkeN: y,:={a€ x| pla) < k}is compact. e (%)
Then for any linear functional L : A — R satisfying Va € A : a > 0 on

X = L(a) > 0, 3 aBorel measure u on y such that L(a) = f& duV¥ a € A.
X

1.3. Remarks before proof.

1. (%) implies in particular that y is locally compact (i.e. ¥ x € y : 1 an open
neighbourhood U > x such that U is compact).

1
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Proof. Letx e y, fixk > 1s.t. p(x) <k
Set Uy :={yex|p(y) <k}
Clyex|py) <k} =xx
U, is open , x € Uy; (L_Ik C Xk, SO (L_[k is compact.
[xx = p~'((~0, k]) being inverse image of closed set under continuous map

is closed but not necessarily compact, and U; = p~'((—o0, k)) being inverse
image of open set under continuous map is open. | O

2. Haviland’s Theorem is a corollary (to Theorem 1.2) if we set y = K closed
subset of R", A = R[X], and

" R[X] — Cont(K,R);
f > f (restriction of the polynomial function f to K)
p(x) = X x7 = ||x|I%, xx compact.

1.4. Proof of Theorem 1.2. Set C(y) = Cont(y,R) and C.(y) = Cont.(y,R).

Let A := {a | a € A} (the image under the R-algebra homomorphism ~ is a
subalgebra).

Define B(y) € C(x) to be the following subalgebra of C(y):

By):={feClx)|TacA:|fl <|alony}.

Observe that B(y) is a subalgebra of C(y) and A € B(y) C C(y).
Claim 1: C.(y) € B(y)

Proof of Claim 1. Let f € C.(x), f continuous and {x € y : f(x) # 0} compact
subset. Then |f| < k, for some k e N; k € A, i.e. |f] < k on y.

So C.(x) € B(y) as claimed i.e. C.(y) is a subalgebra of B(y). O(Claim 1)
Let now as in the hypothesis of the theorem:
L:A—RwithL(a)>0ifa>0ony,VacA.

We define L : A — R, by L(a) := L(a).

Claim 2: L is a well defined linear function.

Proof of Claim 2. Since L(a + b) = L(a + b) = L(a + b), so it is enough to prove
that: a =0= L(a) =0

Now a >0 = L(a) > 0,and —a > 0 = —-L(a) = L(—-a) > 0; (together)

= L(a) =0. o(Claim 2)
Claim 3: L extends to a linear map:

L : B(y) —» R with L(f) > 0 for f > 0 on y.
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Proof of Claim 3. We use Zorn’s lemma to prove this:
Consider the collection of all pairs (B, L), where B is a R—subspace of B(y) con-
taining A and L is an extension of L (on A) with the property:

VfeB:f>0ony = L(f)>0 (D)

and consider a partial order: (B, L) C (Bs, L,) :©& By C B and Ly|p, := L.

e this collection is nonempty since (A, L) belongs toit: @ > 0on y = L(a) =
L(a) > 0O (by definition)

e every chain has an upper bound

e Let (B, L) be a maximal element.
Subclaim: we claim that B = B(y)
Otherwise let g € B(y) \ B.
If fi,,€Bst fi<gand g < f,ony, then f; < f> on y so L(f)) < L(f>).
So we consider the following sets of reals
U:={L(f)IfieB fisgony}<{L(fL)| € B,g< frony} =6
Note that these sets U, 6 are nonempty, i.e. fi, f> exist.
[e.g. leta e As.t. |g| <|alony

a+1 .

now (a= 1> 0,50 la] < Z—— € A
a+1 . a+1 .
sotakefl::—a2 eA;fZ::a2 €A

By completeness of R, let e € R s.t.

sup (L(fi) | fi € B, fi<gl <e<inf{L(f)| f» € B,g < fa}.

Extend L to B + Rg € B(y) by setting

L(g) :=eand L(f +dg) := L(f) +de;d €R

To verify: ¥V f +dg € B+ Rg : f +dg >0 = L(f + dg) > 0. (Exercise)

This will contradict the maximal choice of B and will complete subclaim

that B = B(y), and so complete the proof of claim 3. o(Claim 3)
Thus L is defined on B(y) and satisfies:
VFeBk):f=0ony = L(f) > 0. ()

In particular L is defined on C.(y) and satisfies (1), i.e. L is a positive linear
functional on C.(y). So we can apply Riesz Representation Theorem (theorem
l1.D)on L :

| yon)(suchthati(f):ffd,queCc(X)QB(X). LT

X
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Main claim: (7 7 1) holds also ¥V f € B(y), i.e. L(f) = ffd,u VY f e Bly).

X
In particular the proof of the theorem will be completed after proving this since
ACB(y),andsofor f=acA: L) _= L@ = [adu.

(definition) X

Proof of main claim. Let f € B(y)

Set f, :=max {f,0}, f- := —min{f,0}; f = f. — /-
So, w.l.o.g. we are reduced to the case f > O on y, f € B(y).

Set g := f + p; for g € B(y).
For each k > 1, consider y, := {@ € x| g() < k}

o V£k :)(;( C Xk and)(;{ is closed. So )(;( is compact.
« Xy SXpmand x = Jxi -
k
Subclaim 1: For each k € N 3 f; € C.(y) such that 0 < f; < f; fi = fon x; and
Ji = O outside y;,,.
Subclaim 2: L(f) = ]}im L(fo)
Note that once they are proved we are done because:

[ rdu= tim [ i = tim LG50 = £

We will prove subclaim 1 and 2 in next lecture.



