POSITIVE POLYNOMIALS LECTURE NOTES (17: 15/06/10)

SALMA KUHLMANN

Contents

1. Haviland's Theorem

1

1. HAVILAND'S THEOREM (continued)

Recall Theorem 4.3 of last lecture:

Theorem 1.1. Riesz Representation Theorem:

Let χ be a locally compact Hausdorff space and $L : \operatorname{Cont}_c(\chi, \mathbb{R}) \to \mathbb{R}$ be a positive linear functional i.e. $L(f) \ge 0 \forall f \ge 0$ on χ . Then there exists a unique (positive

regular) Borel measure μ on χ such that $L(f) = \int f d\mu \quad \forall f \in \text{Cont}_c(\chi, \mathbb{R}),$

where $\operatorname{Cont}_c(\chi, \mathbb{R}) :=$ the ring (\mathbb{R} -algebra) of all continuous functions $f : \chi \to \mathbb{R}$ (addition and multiplication defined pointwise) with compact support i.e. such that the set $\operatorname{supp}(f) := \{x \in \chi : f(x) \neq 0\}$ is compact. \Box

We shall use theorem 1.1 to prove the following general result. Haviland's theorem (2.5 of lecture 15) will follow as a special case.

Theorem 1.2. Let *A* be an \mathbb{R} -algebra, χ a Hausdorff space and $\hat{}: A \to \operatorname{Cont}_c(\chi, \mathbb{R})$ an \mathbb{R} algebra homomorphism. Assume $\exists p \in A$ such that $\hat{p} \geq 0$ on χ and $\forall k \in \mathbb{N} : \chi_k := \{ \alpha \in \chi \mid \hat{p}(\alpha) \leq k \}$ is compact.(\star) Then for any linear functional $L : A \to \mathbb{R}$ satisfying $\forall a \in A : \hat{a} \geq 0$ on $\chi \Rightarrow L(a) \geq 0$, \exists a Borel measure μ on χ such that $L(a) = \int_{\chi} \hat{a} \, d\mu \, \forall a \in A$.

1.3. Remarks before proof.

1. (\star) implies in particular that χ is locally compact (i.e. $\forall x \in \chi : \exists$ an open neighbourhood $\mathcal{U} \ni x$ such that $\overline{\mathcal{U}}$ is compact).

Proof. Let
$$x \in \chi$$
, fix $k \ge 1$ s.t. $\hat{p}(x) < k$
Set $\mathcal{U}_k := \{ y \in \chi \mid \hat{p}(y) < k \}$

$$\subseteq \{y \in \chi \mid \hat{p}(y) \le k\} = \chi_k$$

 \mathcal{U}_k is open, $x \in \mathcal{U}_k$; $\overline{\mathcal{U}_k} \subseteq \chi_k$; so $\overline{\mathcal{U}_k}$ is compact.

 $[\chi_k = \hat{p}^{-1}((-\infty, k])$ being inverse image of closed set under continuous map is closed but not necessarily compact, and $\mathcal{U}_k = \hat{p}^{-1}((-\infty, k))$ being inverse image of open set under continuous map is open.]

2. Haviland's Theorem is a corollary (to Theorem 1.2) if we set $\chi = K$ closed subset of \mathbb{R}^n , $A = \mathbb{R}[\underline{X}]$, and

$$\hat{f} : \mathbb{R}[\underline{X}] \to \operatorname{Cont}(K, \mathbb{R});$$

$$f \mapsto \hat{f} \text{ (restriction of the polynomial function f to } K)$$

$$\hat{p}(x) = \sum x_i^2 = ||\underline{x}||^2, \chi_k \text{ compact.}$$

1.4. Proof of Theorem 1.2. Set $C(\chi) = \text{Cont}(\chi, \mathbb{R})$ and $C_c(\chi) = \text{Cont}_c(\chi, \mathbb{R})$. Let $\hat{A} := \{\hat{a} \mid a \in A\}$ (the image under the \mathbb{R} -algebra homomorphism $\hat{}$ is a subalgebra).

Define $\mathcal{B}(\chi) \subseteq C(\chi)$ to be the following subalgebra of $C(\chi)$:

$$\mathcal{B}(\chi) := \{ f \in C(\chi) \mid \exists a \in A : |f| \le |\hat{a}| \text{ on } \chi \}.$$

Observe that $\mathcal{B}(\chi)$ is a subalgebra of $C(\chi)$ and $\hat{A} \subseteq \mathcal{B}(\chi) \subseteq C(\chi)$.

Claim 1: $C_c(\chi) \subseteq \mathcal{B}(\chi)$

Proof of Claim 1. Let $f \in C_c(\chi)$, f continuous and $\overline{\{x \in \chi : f(x) \neq 0\}}$ compact subset. Then $|f| \le k$, for some $k \in \mathbb{N}$; $k \in A$, i.e. $|f| \le \hat{k}$ on χ .

So $C_c(\chi) \subseteq \mathcal{B}(\chi)$ as claimed i.e. $C_c(\chi)$ is a subalgebra of $\mathcal{B}(\chi)$. \Box (Claim 1)

Let now as in the hypothesis of the theorem:

 $L: A \to \mathbb{R}$ with $L(a) \ge 0$ if $\hat{a} \ge 0$ on $\chi, \forall a \in A$.

We define $\overline{L} : \widehat{A} \to \mathbb{R}$, by $\overline{L}(\widehat{a}) := L(a)$.

Claim 2: \overline{L} is a well defined linear function.

Proof of Claim 2. Since $\overline{L}(\hat{a} + \hat{b}) = \overline{L}(\widehat{a + b}) = L(a + b)$, so it is enough to prove that: $\hat{a} = 0 \Rightarrow L(a) = 0$

Now $\hat{a} \ge 0 \Rightarrow L(a) \ge 0$, and $-\hat{a} \ge 0 \Rightarrow -L(a) = L(-a) \ge 0$; (together) $\Rightarrow L(a) = 0$. \Box (Claim 2)

Claim 3: \overline{L} extends to a linear map:

$$\overline{L} : \mathcal{B}(\chi) \to \mathbb{R}$$
 with $\overline{L}(f) \ge 0$ for $f \ge 0$ on χ .

Proof of Claim 3. We use Zorn's lemma to prove this:

Consider the collection of all pairs (B, \overline{L}) , where B is a \mathbb{R} -subspace of $\mathcal{B}(\chi)$ containing \widehat{A} and \overline{L} is an extension of \overline{L} (on A) with the property:

$$\forall f \in B : f \ge 0 \text{ on } \chi \implies \overline{L}(f) \ge 0 \qquad \dots (\dagger)$$

(17: 15/06/10)

and consider a partial order: $(B_1, \overline{L}_1) \subseteq (B_2, \overline{L}_2) :\Leftrightarrow B_1 \subseteq B_2$ and $\overline{L}_2|_{B_1} := \overline{L}_1$.

- this collection is nonempty since (Â, L̄) belongs to it : â ≥ 0 on χ ⇒ L̄(â) = L(a) ≥ 0 (by definition)
- every chain has an upper bound
- Let (B, \overline{L}) be a maximal element. **Subclaim:** we claim that $B = \mathcal{B}(\chi)$ Otherwise let $g \in \mathcal{B}(\chi) \setminus B$. If $f_1, f_2 \in B$ s.t. $f_1 \leq g$ and $g \leq f_2$ on χ , then $f_1 \leq f_2$ on χ so $\overline{L}(f_1) \leq \overline{L}(f_2)$. So we consider the following sets of reals $\mathcal{U} := \{ \bar{L}(f_1) \mid f_1 \in B, f_1 \le g \text{ on } \chi \} \le \{ \bar{L}(f_2) \mid f_2 \in B, g \le f_2 \text{ on } \chi \} =: \theta$ Note that these sets \mathcal{U}, θ are nonempty, i.e. f_1, f_2 exist. [e.g. let $a \in A$ s.t. $|g| \le |\hat{a}|$ on χ now $(\hat{a} \pm 1)^2 \ge 0$, so $|\hat{a}| \le \frac{\hat{a}^2 + 1}{2} \in \hat{A}$ so take $f_1 := -\frac{\hat{a}^2 + 1}{2} \in \hat{A}; f_2 := \frac{\hat{a}^2 + 1}{2} \in \hat{A}$] By completeness of \mathbb{R} , let $e \in \mathbb{R}$ s.t. $\sup \{ \bar{L}(f_1) \mid f_1 \in B, f_1 \le g \} \le e \le \inf \{ \bar{L}(f_2) \mid f_2 \in B, g \le f_2 \}.$ Extend \overline{L} to $B + \mathbb{R}g \subseteq \mathcal{B}(\chi)$ by setting $\overline{L}(g) := e$ and $\overline{L}(f + dg) := \overline{L}(f) + de; d \in \mathbb{R}$ To verify: $\forall f + dg \in B + \mathbb{R}g : f + dg \ge 0 \Rightarrow \overline{L}(f + dg) \ge 0$. (Exercise) This will contradict the maximal choice of B and will complete subclaim that $B = \mathcal{B}(\chi)$, and so complete the proof of claim 3. \Box (Claim 3)

Thus \overline{L} is defined on $\mathcal{B}(\chi)$ and satisfies:

$$\forall f \in \mathcal{B}(\chi) : f \ge 0 \text{ on } \chi \implies L(f) \ge 0. \qquad \dots (\dagger \dagger)$$

In particular \overline{L} is defined on $C_c(\chi)$ and satisfies ($\dagger \dagger$), i.e. \overline{L} is a positive linear functional on $C_c(\chi)$. So we can apply Riesz Representation Theorem (theorem 1.1) on \overline{L} :

$$\exists \ \mu \text{ on } \chi \text{ such that } \overline{L}(f) = \int_{\chi} f d\mu \ \forall \ f \in C_c(\chi) \subseteq \mathcal{B}(\chi). \qquad \dots (\dagger \dagger \dagger)$$

POSITIVE POLYNOMIALS LECTURE NOTES

(17: 15/06/10)

Main claim: († † †) holds also $\forall f \in \mathcal{B}(\chi)$, i.e. $\overline{L}(f) = \int_{Y} f d\mu \ \forall f \in \mathcal{B}(\chi)$.

In particular the proof of the theorem will be completed after proving this since $\hat{A} \subseteq \mathcal{B}(\chi)$, and so for $f = a \in \hat{A} : L(a) \underbrace{=}_{(\text{definition})} \bar{L}(\hat{a}) = \int_{\chi} \hat{a} d\mu$.

Proof of main claim. Let $f \in \mathcal{B}(\chi)$ Set $f_+ := \max \{f, 0\}, f_- := -\min\{f, 0\}; f = f_+ - f_-$ So, w.l.o.g. we are reduced to the case $f \ge 0$ on $\chi, f \in \mathcal{B}(\chi)$. Set $q := f + \hat{p}$; for $q \in \mathcal{B}(\chi)$. For each $k \ge 1$, consider $\chi'_k := \{\alpha \in \chi \mid q(\alpha) \le k\}$

- $\forall k : \chi'_k \subseteq \chi_k \text{ and } \chi'_k \text{ is closed. So } \chi'_k \text{ is compact.}$
- $\chi'_{k} \subseteq \chi'_{k+1}$ and $\chi = \bigcup_{k} \chi'_{k}$.

Subclaim 1: For each $k \in \mathbb{N} \exists f_k \in C_c(\chi)$ such that $0 \le f_k \le f$; $f_k = f$ on χ'_k and $f_k = 0$ outside χ'_{k+1} .

Subclaim 2: $\bar{L}(f) = \lim_{k \to \infty} \bar{L}(f_k)$

Note that once they are proved we are done because:

$$\int f d\mu = \lim_{k \to \infty} \int f_k d\mu = \lim_{k \to \infty} \overline{L}(f_k) = \overline{L}(f).$$

We will prove subclaim 1 and 2 in next lecture.