POSITIVE POLYNOMIALS LECTURE NOTES

(17: 15/06/10)

SALMA KUHLMANN

Contents

1. Haviland's Theorem

1. HAVILAND'S THEOREM (continued)

Recall Theorem 4.3 of last lecture:

Theorem 1.1. Riesz Representation Theorem:

Let χ be a locally compact Hausdorff space and $L: \operatorname{Cont}_{c}(\chi, \mathbb{R}) \rightarrow \mathbb{R}$ be a positive linear functional i.e. $L(f) \geq 0 \forall f \geq 0$ on χ. Then there exists a unique (positive regular) Borel measure μ on χ such that $L(f)=\int_{\chi} f d \mu \forall f \in \operatorname{Cont}_{c}(\chi, \mathbb{R})$, where $\operatorname{Cont}_{c}(\chi, \mathbb{R}):=$ the ring (\mathbb{R}-algebra) of all continuous functions $f: \chi \rightarrow \mathbb{R}$ (addition and multiplication defined pointwise) with compact support i.e. such that the set $\operatorname{supp}(f):=\{x \in \chi: f(x) \neq 0\}$ is compact.

We shall use theorem 1.1 to prove the following general result. Haviland's theorem (2.5 of lecture 15) will follow as a special case.

Theorem 1.2. Let A be an \mathbb{R}-algebra, χ a Hausdorff space and ${ }^{\wedge}: A \rightarrow \operatorname{Cont}_{c}(\chi, \mathbb{R})$ an \mathbb{R} algebra homomorphism. Assume $\exists p \in A$ such that $\hat{p} \geq 0$ on χ and $\forall k \in \mathbb{N}: \chi_{k}:=\{\alpha \in \chi \mid \hat{p}(\alpha) \leq k\}$ is compact. Then for any linear functional $L: A \rightarrow \mathbb{R}$ satisfying $\forall a \in A: \hat{a} \geq 0$ on $\chi \Rightarrow L(a) \geq 0, \exists$ a Borel measure μ on χ such that $L(a)=\int_{\chi} \hat{a} d \mu \forall a \in A$.

1.3. Remarks before proof.

1. (\star) implies in particular that χ is locally compact (i.e. $\forall x \in \chi: \exists$ an open neighbourhood $\mathcal{U} \ni x$ such that $\overline{\mathcal{U}}$ is compact).

Proof. Let $x \in \chi$, fix $k \geq 1$ s.t. $\hat{p}(x)<k$
Set $\mathcal{U}_{k}:=\{y \in \chi \mid \hat{p}(y)<k\}$

$$
\subseteq\{y \in \chi \mid \hat{p}(y) \leq k\}=\chi_{k}
$$

\mathcal{U}_{k} is open , $x \in \mathcal{U}_{k} ; \overline{\mathcal{U}_{k}} \subseteq \chi_{k} ;$ so $\overline{\mathcal{U}_{k}}$ is compact.
$\left[\chi_{k}=\hat{p}^{-1}((-\infty, k])\right.$ being inverse image of closed set under continuous map is closed but not necessarily compact, and $\mathcal{U}_{k}=\hat{p}^{-1}((-\infty, k))$ being inverse image of open set under continuous map is open.]
2. Haviland's Theorem is a corollary (to Theorem 1.2) if we set $\chi=K$ closed subset of $\mathbb{R}^{n}, A=\mathbb{R}[\underline{X}]$, and

$$
\begin{aligned}
\wedge: \mathbb{R}[\underline{X}] & \rightarrow \operatorname{Cont}(K, \mathbb{R}) ; \\
f & \mapsto \hat{f}(\text { restriction of the polynomial function } \mathrm{f} \text { to } K) \\
\hat{p}(x)=\sum x_{i}^{2}=\|\underline{x}\|^{2}, \chi_{k} & \text { compact. }
\end{aligned}
$$

1.4. Proof of Theorem 1.2. Set $C(\chi)=\operatorname{Cont}(\chi, \mathbb{R})$ and $C_{c}(\chi)=\operatorname{Cont}_{c}(\chi, \mathbb{R})$.

Let $\hat{A}:=\{\hat{a} \mid a \in A\}$ (the image under the \mathbb{R}-algebra homomorphism ${ }^{\wedge}$ is a subalgebra).
Define $\mathcal{B}(\chi) \subseteq C(\chi)$ to be the following subalgebra of $C(\chi)$:

$$
\mathcal{B}(\chi):=\{f \in C(\chi)|\exists a \in A:|f| \leq|\hat{a}| \text { on } \chi\} .
$$

Observe that $\mathcal{B}(\chi)$ is a subalgebra of $C(\chi)$ and $\hat{A} \subseteq \mathcal{B}(\chi) \subseteq C(\chi)$.
Claim 1: $C_{c}(\chi) \subseteq \mathcal{B}(\chi)$
Proof of Claim 1. Let $f \in C_{c}(\chi), f$ continuous and $\overline{\{x \in \chi: f(x) \neq 0\}}$ compact subset. Then $|f| \leq k$, for some $k \in \mathbb{N} ; k \in A$, i.e. $|f| \leq \hat{k}$ on χ.
So $C_{c}(\chi) \subseteq \mathcal{B}(\chi)$ as claimed i.e. $C_{c}(\chi)$ is a subalgebra of $\mathcal{B}(\chi)$. \quad (Claim 1)
Let now as in the hypothesis of the theorem:
$L: A \rightarrow \mathbb{R}$ with $L(a) \geq 0$ if $\hat{a} \geq 0$ on $\chi, \forall a \in A$.
We define $\bar{L}: \hat{A} \rightarrow \mathbb{R}$, by $\bar{L}(\hat{a}):=L(a)$.
Claim 2: \bar{L} is a well defined linear function.
Proof of Claim 2. Since $\bar{L}(\hat{a}+\hat{b})=\bar{L}(\widehat{a+b})=L(a+b)$, so it is enough to prove that: $\hat{a}=0 \Rightarrow L(a)=0$
Now $\hat{a} \geq 0 \Rightarrow L(a) \geq 0$, and $-\hat{a} \geq 0 \Rightarrow-L(a)=L(-a) \geq 0$; (together) $\Rightarrow L(a)=0$.
\square (Claim 2)
Claim 3: \bar{L} extends to a linear map:

$$
\bar{L}: \mathcal{B}(\chi) \rightarrow \mathbb{R} \text { with } \bar{L}(f) \geq 0 \text { for } f \geq 0 \text { on } \chi .
$$

Proof of Claim 3. We use Zorn's lemma to prove this:
Consider the collection of all pairs (B, \bar{L}), where B is a \mathbb{R}-subspace of $\mathcal{B}(\chi)$ containing \hat{A} and \bar{L} is an extension of \bar{L} (on A) with the property:

$$
\forall f \in B: f \geq 0 \text { on } \chi \Rightarrow \bar{L}(f) \geq 0
$$

and consider a partial order: $\left(B_{1}, \bar{L}_{1}\right) \subseteq\left(B_{2}, \bar{L}_{2}\right): \Leftrightarrow B_{1} \subseteq B_{2}$ and $\left.\bar{L}_{2}\right|_{B_{1}}:=\bar{L}_{1}$.

- this collection is nonempty since (\hat{A}, \bar{L}) belongs to it : $\hat{a} \geq 0$ on $\chi \Rightarrow \bar{L}(\hat{a})=$ $L(a) \geq 0$ (by definition)
- every chain has an upper bound
- Let (B, \bar{L}) be a maximal element.

Subclaim: we claim that $B=\mathcal{B}(\chi)$
Otherwise let $g \in \mathcal{B}(\chi) \backslash B$.
If $f_{1}, f_{2} \in B$ s.t. $f_{1} \leq g$ and $g \leq f_{2}$ on χ, then $f_{1} \leq f_{2}$ on χ so $\bar{L}\left(f_{1}\right) \leq \bar{L}\left(f_{2}\right)$.
So we consider the following sets of reals
$\mathcal{U}:=\left\{\bar{L}\left(f_{1}\right) \mid f_{1} \in B, f_{1} \leq g\right.$ on $\left.\chi\right\} \leq\left\{\bar{L}\left(f_{2}\right) \mid f_{2} \in B, g \leq f_{2}\right.$ on $\left.\chi\right\}=: \theta$
Note that these sets \mathcal{U}, θ are nonempty, i.e. f_{1}, f_{2} exist.
[e.g. let $a \in A$ s.t. $|g| \leq|\hat{a}|$ on χ
now $(\hat{a} \pm 1)^{2} \geq 0$, so $|\hat{a}| \leq \frac{\hat{a}^{2}+1}{2} \in \hat{A}$
so take $\left.f_{1}:=-\frac{\hat{a}^{2}+1}{2} \in \hat{A} ; f_{2}:=\frac{\hat{a}^{2}+1}{2} \in \hat{A}\right]$
By completeness of \mathbb{R}, let $e \in \mathbb{R}$ s.t.
$\sup \left\{\bar{L}\left(f_{1}\right) \mid f_{1} \in B, f_{1} \leq g\right\} \leq e \leq \inf \left\{\bar{L}\left(f_{2}\right) \mid f_{2} \in B, g \leq f_{2}\right\}$.
Extend \bar{L} to $B+\mathbb{R} g \subseteq \mathcal{B}(\chi)$ by setting
$\bar{L}(g):=e$ and $\bar{L}(f+d g):=\bar{L}(f)+d e ; d \in \mathbb{R}$
To verify: $\forall f+d g \in B+\mathbb{R} g: f+d g \geq 0 \Rightarrow \bar{L}(f+d g) \geq 0$. (Exercise)
This will contradict the maximal choice of B and will complete subclaim that $B=\mathcal{B}(\chi)$, and so complete the proof of claim 3 .
\square (Claim 3)
Thus \bar{L} is defined on $\mathcal{B}(\chi)$ and satisfies:

$$
\forall f \in \mathcal{B}(\chi): f \geq 0 \text { on } \chi \Rightarrow \bar{L}(f) \geq 0
$$

In particular \bar{L} is defined on $C_{c}(\chi)$ and satisfies $(\dagger \dagger)$, i.e. \bar{L} is a positive linear functional on $C_{c}(\chi)$. So we can apply Riesz Representation Theorem (theorem 1.1) on \bar{L} :
$\exists \mu$ on χ such that $\bar{L}(f)=\int_{\chi} f d \mu \forall f \in C_{c}(\chi) \subseteq \mathcal{B}(\chi)$.

Main claim: $(\dagger \dagger \dagger)$ holds also $\forall f \in \mathcal{B}(\chi)$, i.e. $\bar{L}(f)=\int_{\chi} f d \mu \forall f \in \mathcal{B}(\chi)$.
In particular the proof of the theorem will be completed after proving this since $\hat{A} \subseteq \mathcal{B}(\chi)$, and so for $f=a \in \hat{A}: L(a) \underbrace{=}_{\text {(definition) }} \bar{L}(\hat{a})=\int_{\chi} \hat{a} d \mu$.
Proof of main claim. Let $f \in \mathcal{B}(\chi)$
Set $f_{+}:=\max \{f, 0\}, f_{-}:=-\min \{f, 0\} ; f=f_{+}-f_{-}$
So, w.l.o.g. we are reduced to the case $f \geq 0$ on $\chi, f \in \mathcal{B}(\chi)$.
Set $q:=f+\hat{p}$; for $q \in \mathcal{B}(\chi)$.
For each $k \geq 1$, consider $\chi_{k}^{\prime}:=\{\alpha \in \chi \mid q(\alpha) \leq k\}$

- $\forall k: \chi_{k}^{\prime} \subseteq \chi_{k}$ and χ_{k}^{\prime} is closed. So χ_{k}^{\prime} is compact.
- $\chi_{k}^{\prime} \subseteq \chi_{k+1}^{\prime}$ and $\chi=\bigcup_{k} \chi_{k}^{\prime}$.

Subclaim 1: For each $k \in \mathbb{N} \exists f_{k} \in C_{c}(\chi)$ such that $0 \leq f_{k} \leq f ; f_{k}=f$ on χ_{k}^{\prime} and $f_{k}=0$ outside χ_{k+1}^{\prime}.

Subclaim 2: $\bar{L}(f)=\lim _{k \rightarrow \infty} \bar{L}\left(f_{k}\right)$
Note that once they are proved we are done because:

$$
\int f d \mu=\lim _{k \rightarrow \infty} \int f_{k} d \mu=\lim _{k \rightarrow \infty} \bar{L}\left(f_{k}\right)=\bar{L}(f) .
$$

We will prove subclaim 1 and 2 in next lecture.

