POSITIVE POLYNOMIALS LECTURE NOTES

(18: 17/06/10)

SALMA KUHLMANN

Contents

1. Haviland's Theorem 1
2. $\mathbb{R}[\underline{X}]$ as topological \mathbb{R}-vector space 3

1. HAVILAND'S THEOREM (continued)

We will continue the proof of the following theorem from last lecture. Havilands theorem will follow as a special case.

Theorem 1.1. (Recall 1.2 of last lecture) Let A be an \mathbb{R}-algebra, χ a Hausdorff space and ${ }^{\wedge}: A \rightarrow \operatorname{Cont}_{c}(\chi, \mathbb{R})$ an \mathbb{R} algebra homomorphism. Assume $\exists p \in A$ such that $\hat{p} \geq 0$ on χ and $\forall k \in \mathbb{N}: \chi_{k}:=\{\alpha \in \chi \mid \hat{p}(\alpha) \leq k\}$ is compact.
Then for any linear functional $L: A \rightarrow \mathbb{R}$ satisfying $\forall a \in A: \hat{a} \geq 0$ on $\chi \Rightarrow$ $L(a) \geq 0, \exists$ a Borel measure μ on χ such that $L(a)=\int_{\chi} \hat{a} d \mu \forall a \in A$.
Proof. We have $C_{c}(\chi) \subseteq \mathcal{B}(\chi):=\{f \in C(\chi)|\exists a \in A:|f| \leq|\hat{a}|$ on $\chi\} ; \hat{A} \subseteq \mathcal{B}(\chi)$; $\bar{L}: \hat{A} \rightarrow \mathbb{R}$, defined by $\bar{L}(\hat{a}):=L(a)$.
In particular we got (as in claim 3 in 1.4 of last lecture) \bar{L} is a positive linear functional on $C_{c}(\chi)$ s.t.

$$
\bar{L}(f)=\int_{\chi} f d \mu \forall f \in C_{c}(\chi) \subseteq \mathcal{B}(\chi) .
$$

We claim that this holds also $\forall f \in \mathcal{B}(\chi)$, i.e. $\bar{L}(f)=\int_{\chi} f d \mu \forall f \in \mathcal{B}(\chi)$.
[In particular the proof of the theorem will be completed after proving this since $\hat{A} \subseteq \mathcal{B}(\chi)$, and so for $f=a \in \hat{A}: L(a) \underbrace{=}_{\text {(definition) }} \bar{L}(\hat{a})=\int_{\chi} \hat{a} d \mu$.]
Let $f \in \mathcal{B}(\chi)$. Set $q:=f+\hat{p}$; for $q \in \mathcal{B}(\chi)$.
For each $k \geq 1$, consider $\chi_{k}^{\prime}:=\{\alpha \in \chi \mid q(\alpha) \leq k\}$

- $\forall k: \chi_{k}^{\prime} \subseteq \chi_{k}$ and χ_{k}^{\prime} is closed. So χ_{k}^{\prime} is compact.
- $\chi_{k}^{\prime} \subseteq \chi_{k+1}^{\prime}$ and $\chi=\bigcup_{k} \chi_{k}^{\prime}$.

Subclaim 1: For each $k \in \mathbb{N} \exists f_{k} \in C_{c}(\chi)$ such that $0 \leq f_{k} \leq f ; f_{k}=f$ on χ_{k}^{\prime} and $f_{k}=0$ outside χ_{k+1}^{\prime}.
Proof of subclaim 1. For this we need Urysohn's lemma, which states that
Let X be a topological space and $A, B \subseteq X$ be closed sets such that $A \cap B=\phi$. Then $\exists g \in C(\chi): g: X \rightarrow[0,1]$ such that $g(a)=0 \forall a \in A$ and $g(b)=1 \forall b \in B$.
Applying it with $X=\chi_{k+1}^{\prime}, A=Y_{k}^{\prime}=\left\{\alpha \in \chi_{k+1}^{\prime} \left\lvert\, k+\frac{1}{2} \leq q(\alpha) \leq k+1\right.\right\}$, and $B=\chi_{k}^{\prime}$, we get $g_{k}: \chi_{k+1}^{\prime} \rightarrow[0,1]$ continuous such that $g_{k}=0$ on Y_{k}^{\prime} and $g_{k}=1$ on χ_{k}^{\prime}.
Extend g_{k} to χ by setting $g_{k}=0$ on complement of χ_{k+1}^{\prime}. Set $f_{k}:=f g_{k}$
Then indeed $0 \leq f_{k} \leq f$ on $\chi, f_{k}=f$ on χ_{k}^{\prime} and $f_{k}=0$ off χ_{k+1}^{\prime}. In particular $\operatorname{Supp}(f) \subseteq \chi_{k+1}^{\prime}$ is compact (because closed subset of a compact set is compact), so indeed $f_{k} \in C_{c}(\chi)$.
\square (Subclaim 1)
Subclaim 2: $\bar{L}(f)=\lim _{k \rightarrow \infty} \bar{L}\left(f_{k}\right)$
Note that once the subclaim 2 is proved we are done because:

$$
\int f d \mu=\lim _{k \rightarrow \infty} \int f_{k} d \mu=\lim _{k \rightarrow \infty} \bar{L}\left(f_{k}\right)=\bar{L}(f)
$$

Proof of subclaim 2. Observe that the inequality

$$
\frac{q^{2}}{k} \geq f-f_{k} \geq 0 \text { on } \chi, \text { holds } \forall k \in \mathbb{N} \text {. }
$$

To see this first of all $f=f_{k}$ on χ_{k}^{\prime}, so clearly $\frac{q^{2}}{k} \geq f-f_{k} \geq 0$ on χ_{k}^{\prime}.
Now we consider the complement of χ_{k}^{\prime}, there $q(\alpha)>k$ for $\alpha \in$ complement of χ_{k}^{\prime}. So

$$
\begin{aligned}
q^{2}(\alpha)>k q(\alpha)=k(f(\alpha)+\hat{p}(\alpha)) & \geq k f(\alpha) \\
& \geq k\left(f(\alpha)-f_{k}(\alpha)\right)\left[\text { Since } f_{k}(\alpha) \geq 0 \forall \alpha \in \chi\right]
\end{aligned}
$$

Hence $\frac{q^{2}(\alpha)}{k} \geq\left(f-f_{k}\right)(\alpha)$ for all $\alpha \in\left(\chi_{k}^{\prime}\right)^{\text {compliment }}$.
So,

$$
\frac{q^{2}}{k} \geq f-f_{k} \geq 0 \text { on } \chi \forall k \in \mathbb{N}
$$

So,

$$
\bar{L}\left(\frac{q^{2}}{k}\right) \geq \bar{L}\left(f-f_{k}\right) \geq 0
$$

Now let $k \rightarrow \infty$ to get
$\lim _{k \rightarrow \infty} \bar{L}\left(\frac{q^{2}}{k}\right)=0 \Rightarrow \lim _{k \rightarrow \infty} \bar{L}\left(f_{k}\right)=\bar{L}(f)$.
\square (Subclaim 2)

2. $\mathbb{R}[\underline{X}]$ AS TOPOLOGICAL \mathbb{R}-VECTOR SPACE

Let $A=\mathbb{R}[\underline{X}]$ be a countable dimensional \mathbb{R}-algebra.
Every finite dimensional subspace has the Euclidean Topology (ET on \mathbb{R}^{N} : open balls are a basis. If W is a finite dimensional subspace, fix $B=\left\{w_{1}, \ldots, w_{N}\right\}$ basis and get an isomorphism $W \cong \mathbb{R}^{N}$; pullback the ET from \mathbb{R}^{N} to W. This topology on W is uniquely determined and does not depend on the choice of the basis because a change of basis results in a linear change of coordinates and linear transformations $\underline{x} \mapsto a \underline{x} ; \operatorname{det}(A) \neq 0$ are continuous).

Definition 2.1. Define a topology on $A:=\mathbb{R}[\underline{X}]$ as:
$U \subseteq A$ is open (respectively closed) iff $U \cap W$ is open (respectively closed) in W, for every finite dimensional subspace W of A.
This is called direct limit topology on A.
Equivalently, take $A_{d}=\{f \in A \mid \operatorname{deg} f \leq d\}, d \in \mathbb{Z}_{+}$. Then $A=\cup_{d \geq 1} A_{d}$, ask for: $U \subseteq A$ is open (respectively closed) iff $U \cap A_{d}$ is open (respectively closed) in A_{d} for all $d \geq 1$.

We now list the important properties of this topology. We first need to recall the following definitions:

Definition 2.2. (i) $C \subseteq A$ is called a cone if C is closed under addition and scalar multiplication by (nonnegetive) positive real numbers.
(ii) $C \subseteq A$ is convex if $\forall a, b \in C ; \forall \lambda \in[0,1]: \lambda a+(1-\lambda) b \in C$.

Note that a cone is automatically convex.
Theorem 2.3. 1. The open convex sets of A form a basis for the topology, i.e. A is with locally convex topology, i.e. $x \in U$ and U open subset of $A \Longrightarrow$ there is a convex neighbourhood U^{\prime} of x such that $U^{\prime} \subseteq U$.
2. This topology is the finest non-trivial locally convex topology on A.

Proof. Later (in next lecture as theorem 1.2).
Theorem 2.4. 1. A endowed with this topology is a topological \mathbb{R}-algebra, i.e. the topology is (Hausdorff) comparable with addition, scalar multiplication and multiplication, i.e.
$+: A \times A \rightarrow A$,
$\times: A \times A \rightarrow A$, and
. : $\mathbb{R} \times A \rightarrow A$
are all continuous.
2. Every linear functional is continuous in this finest locally convex topology.

Proof. Later (1.5 of Lecture 20).
Theorem 2.5. (Separation Theorem) Let $C \subseteq A$ be a closed cone in A and let $a_{0} \in A \backslash C$. Then there is a linear functional $L: A \rightarrow \mathbb{R}$ such that $L(C) \geq 0$ but $L\left(a_{0}\right)<0$.
(Equivalent statement: Let $C \subseteq A$ be a cone and $U \subseteq A$ be an open convex set such that $U \cap C=\phi ; U, C \neq \phi$. Then \exists a linear functional $L: A \rightarrow \mathbb{R}$ such that $L(U)<0$ and $L(C) \geq 0)$.

Proof. Later (1.8 of Lecture 20).
Corollary 2.6. For any cone $C \subseteq A$ with $C \neq \phi$, we have

$$
\begin{aligned}
\bar{C}=C^{\mathrm{vv}} & :=\{a \in A \mid L(a) \geq 0 \text { for any linear functional } L \text { such that } L(C) \geq 0\} \\
& =\left\{a \in A \mid L(a) \geq 0 \forall L \in C^{\mathrm{v}}\right\} .
\end{aligned}
$$

Proof. Clearly $\bar{C} \subseteq C^{\mathrm{vv}}$: since $C \subseteq C^{\mathrm{vv}}$ (from definition), and C^{vv} is closed (because $L \in C^{\mathrm{v}}$ is continuous), so $\bar{C} \subseteq C^{\mathrm{vv}}$.
Conversely apply separation theorem (theorem 2.5): if $a_{0} \notin \bar{C}$, there exists $L \in C^{\mathrm{v}}$ (i.e. $L(C) \geq 0$) with $L\left(a_{0}\right)<0$. So, $a_{0} \notin C^{\mathrm{vv}}$.

Corollary 2.7. Let $A=\mathbb{R}[\underline{X}], M \subseteq A$ be a quadratic module. Then $\bar{M}=M^{\mathrm{vv}}$ and \bar{M} is a quadratic module.

Proposition 2.8. (i) Every cone C is convex.
(ii) Every quadratic module M is a cone.
(iii) If C is a cone, then \bar{C} is a cone.

