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1. HAVILAND’S THEOREM (continued)

We will continue the proof of the following theorem from last lecture. Havilands
theorem will follow as a special case.

Theorem 1.1. (Recall 1.2 of last lecture) Let A be an R-algebra, y a Hausdorft
space and "~ : A — Cont.(y,R) an R algebra homomorphism. Assume 4 p € A
suchthat p>0onyandV ke N: y;:={a € x| pla) < k} is compact.
Then for any linear functional L : A — R satisfyingVae€ A:a >0ony =
L(a) > 0, 4 a Borel measure y on y such that L(a) = f& duV a € A.

X
Proof. We have C.(y) C B(y) :={f€C(y)|JacA:|fl <lalony}); A C Bly);
L:A — R, defined by L(a) := L(a).
In particular we got (as in claim 3 in 1.4 of last lecture) L is a positive linear
functional on C.(y) s.t.

L(f) = f Fdu f € Culy) < Bly).

X

We claim that this holds also ¥V f € B(y), i.e. L(f) = ffd,u VY f e By).
X

[In particular the proof of the theorem will be completed after proving this since
ACB(y),andsofor f=aecA: L) _=_ L@ = [adu.]
(definition) X
Let f € B(x). Setq := f + p; for g € B(y).
For each k > 1, consider y, := {e € y | g(@) < k)

1
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e Vk:yx, Cxandy, is closed. So y, is compact.

© X Sxiand y = Jxi .
k

Subclaim 1: For each k € N 3 f; € C.(y) suchthat 0 < f; < f; fy = f on x; and
Sk =0 outside y;,,.

Proof of subclaim 1. For this we need Urysohn’s lemma, which states that

Let X be a topological space and A, B C X be closed sets such that A N B = ¢.
Thendge C(y):g: X — [0,1]suchthat g(a) =0VYaecAandg(h) =1V b € B.
Applyingitwith X = x},,A=Y; ={a € x|, | k+3 < q(a@) <k+1},and B = x},
we get gx : x;,, — [0, 1] continuous such that g; = O on Y] and g, = 1 on y;.
Extend g to y by setting g = 0 on complement of x; . Set fi := fgk

Then indeed 0 < fy < fony, fi = fonx; and fy = 0 off x;,,. In particular
Supp(f) € x;,, is compact (because closed subset of a compact set is compact),
so indeed f; € C.(x). O(Subclaim 1)

Subclaim 2: L(f) = l}l_}l’ilo L(f)
Note that once the subclaim 2 is proved we are done because:
[ rdu= tim [ i = tim LG50 = 209
Proof of subclaim 2. Observe that the inequality
%zzf—sz%n X, holds ¥V k € N.
To see this first of all f = f; on y;, so clearly q{ > f— fi=20o0ny;.

Now we consider the complement of x;, there g(@) > k for a € complement of .
So

g (@) > kq(@) = k(f(@) + p(@)) > kf (@)
> k(f(a) — fi(a)) [Since fi(a) >0V a € x]

2
Hence 4 ]((a) > (f _ fk)(a’) for all a € (X]/{)compliment.
So,
qz
?Zf—kaOon)( ¥k eN.
So,

- qZ -
L(?) > L(f - fr) = 0.

Now let k — oo to get
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2

gim l_,(%) =0= %im L(f) = L(f). O(Subclaim 2)
O

2. R[X] AS TOPOLOGICAL R-VECTOR SPACE

Let A = R[X] be a countable dimensional R-algebra.

Every finite dimensional subspace has the Euclidean Topology (ET on R": open
balls are a basis. If W is a finite dimensional subspace, fix B = {wy,...,wy}
basis and get an isomorphism W = R"; pullback the ET from R" to W. This
topology on W is uniquely determined and does not depend on the choice of the
basis because a change of basis results in a linear change of coordinates and linear
transformations x — ax ; det(A) # 0 are continuous).

Definition 2.1. Define a topology on A := R[X] as:

U C A is open (respectively closed) iff U N W is open (respectively closed) in W,
for every finite dimensional subspace W of A.

This is called direct limit topology on A.

Equivalently, take Ay = {f € Aldeg f < d},d € Z,. Then A = U, A, ask for:

U C A is open (respectively closed) iff U N A, is open (respectively closed) in A,
foralld > 1.

We now list the important properties of this topology. We first need to recall
the following definitions:

Definition 2.2. (i) C C A is called a cone if C is closed under addition and scalar
multiplication by (nonnegetive) positive real numbers.
(i)C CAisconvexifVa,beC;VAe[0,1]: da+(1-A)beC.
Note that a cone is automatically convex.
Theorem 2.3. 1. The open convex sets of A form a basis for the topology,
i.e. A is with locally convex topology,

i.e. x € U and U open subset of A = there is a convex neighbourhood
U’ of x such that U" C U.

2. This topology is the finest non-trivial locally convex topology on A.
Proof. Later (in next lecture as theorem 1.2). O

Theorem 2.4. 1. A endowed with this topology is a topological R—algebra,
1.e. the topology is (Hausdorfl) comparable with addition, scalar multipli-
cation and multiplication, i.e.
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+:AXA—>A,
X:AXA— A, and
. RxA—> A

are all continuous.

2. Every linear functional is continuous in this finest locally convex topology.
Proof. Later (1.5 of Lecture 20). O

Theorem 2.5. (Separation Theorem) Let C C A be a closed cone in A and let
ag € A\ C. Then there is a linear functional L : A — R such that L(C) > 0 but
L(ag) < 0.

(Equivalent statement: Let C C A be a cone and U C A be an open convex set
such that U N C = ¢; U,C # ¢. Then 1 a linear functional L : A — R such that
L(U) <0and L(C) = 0).

Proof. Later (1.8 of Lecture 20). O

Corollary 2.6. For any cone C C A with C # ¢, we have

C=C":={aeA|L(a) >0 for any linear functional L such that L(C) > 0}

={a€A|La) >0V LeC".

Proof. Clearly C € C": since C C C"¥ (from definition), and C"V is closed
(because L € C" is continuous), so C € C*.

Conversely apply separation theorem ( theorem 2.5): if ay ¢ C, there exists L € C"
(i.e. L(C) = 0) with L(ap) < 0. So, ay ¢ C*. O

Corollary 2.7. Let A = R[X], M C A be a quadratic module. Then M = M** and
M is a quadratic module.

Proposition 2.8. (i) Every cone C is convex.
(i1) Every quadratic module M is a cone.

(iii) If C is a cone, then C is a cone.



