POSITIVE POLYNOMIALS LECTURE NOTES (18: 17/06/10)

SALMA KUHLMANN

Contents

1. Haviland's Theorem	1
2. $\mathbb{R}[\underline{X}]$ as topological \mathbb{R} -vector space	3

1. HAVILAND'S THEOREM (continued)

We will continue the proof of the following theorem from last lecture. Havilands theorem will follow as a special case.

Theorem 1.1. (Recall 1.2 of last lecture) Let *A* be an \mathbb{R} -algebra, χ a Hausdorff space and $\hat{}: A \to \operatorname{Cont}_c(\chi, \mathbb{R})$ an \mathbb{R} algebra homomorphism. Assume $\exists p \in A$ such that $\hat{p} \ge 0$ on χ and $\forall k \in \mathbb{N} : \chi_k := \{\alpha \in \chi \mid \hat{p}(\alpha) \le k\}$ is compact. Then for any linear functional $L : A \to \mathbb{R}$ satisfying $\forall a \in A : \hat{a} \ge 0$ on $\chi \Rightarrow L(a) \ge 0$, \exists a Borel measure μ on χ such that $L(a) = \int \hat{a} d\mu \forall a \in A$.

Proof. We have $C_c(\chi) \subseteq \mathcal{B}(\chi) := \{ f \in C(\chi) \mid \exists a \in A : |f| \le |\hat{a}| \text{ on } \chi \}; \hat{A} \subseteq \mathcal{B}(\chi);$ $\bar{L} : \hat{A} \to \mathbb{R}$, defined by $\bar{L}(\hat{a}) := L(a)$.

In particular we got (as in claim 3 in 1.4 of last lecture) \overline{L} is a positive linear functional on $C_c(\chi)$ s.t.

$$\bar{L}(f) = \int_{\chi} f d\mu \ \forall \ f \in C_c(\chi) \subseteq \mathcal{B}(\chi).$$

We **claim** that this holds also $\forall f \in \mathcal{B}(\chi)$, i.e. $\overline{L}(f) = \int_{\chi} f d\mu \ \forall f \in \mathcal{B}(\chi)$.

[In particular the proof of the theorem will be completed after proving this since $\hat{A} \subseteq \mathcal{B}(\chi)$, and so for $f = a \in \hat{A} : L(a) \underbrace{=}_{(\text{definition})} \bar{L}(\hat{a}) = \int_{\chi} \hat{a} d\mu$.]

Let $f \in \mathcal{B}(\chi)$. Set $q := f + \hat{p}$; for $q \in \mathcal{B}(\chi)$. For each $k \ge 1$, consider $\chi'_k := \{\alpha \in \chi \mid q(\alpha) \le k\}$

- $\forall k : \chi'_k \subseteq \chi_k \text{ and } \chi'_k \text{ is closed. So } \chi'_k \text{ is compact.}$
- $\chi'_k \subseteq \chi'_{k+1}$ and $\chi = \bigcup_k \chi'_k$.

Subclaim 1: For each $k \in \mathbb{N} \exists f_k \in C_c(\chi)$ such that $0 \le f_k \le f$; $f_k = f$ on χ'_k and $f_k = 0$ outside χ'_{k+1} .

Proof of subclaim 1. For this we need Urysohn's lemma, which states that Let X be a topological space and $A, B \subseteq X$ be closed sets such that $A \cap B = \phi$. Then $\exists g \in C(\chi) : g : X \to [0, 1]$ such that $g(a) = 0 \forall a \in A$ and $g(b) = 1 \forall b \in B$. Applying it with $X = \chi'_{k+1}, A = Y'_k = \{\alpha \in \chi'_{k+1} | k + \frac{1}{2} \le q(\alpha) \le k + 1\}$, and $B = \chi'_k$, we get $g_k : \chi'_{k+1} \to [0, 1]$ continuous such that $g_k = 0$ on Y'_k and $g_k = 1$ on χ'_k . Extend g_k to χ by setting $g_k = 0$ on complement of χ'_{k+1} . Set $f_k := fg_k$

Then indeed $0 \le f_k \le f$ on χ , $f_k = f$ on χ'_k and $f_k = 0$ off χ'_{k+1} . In particular $\operatorname{Supp}(f) \subseteq \chi'_{k+1}$ is compact (because closed subset of a compact set is compact), so indeed $f_k \in C_c(\chi)$. \Box (Subclaim 1)

Subclaim 2: $\overline{L}(f) = \lim_{k \to \infty} \overline{L}(f_k)$

Note that once the subclaim 2 is proved we are done because:

$$\int f d\mu = \lim_{k \to \infty} \int f_k d\mu = \lim_{k \to \infty} \bar{L}(f_k) = \bar{L}(f).$$

Proof of subclaim 2. Observe that the inequality

$$\frac{q^2}{k} \ge f - f_k \ge 0 \text{ on } \chi, \text{ holds } \forall k \in \mathbb{N}.$$

To see this first of all $f = f_k$ on χ'_k , so clearly $\frac{q^2}{k} \ge f - f_k \ge 0$ on χ'_k .

Now we consider the complement of χ'_k , there $q(\alpha) > k$ for $\alpha \in$ complement of χ'_k . So

$$q^{2}(\alpha) > kq(\alpha) = k(f(\alpha) + \hat{p}(\alpha)) \ge kf(\alpha)$$

$$\ge k(f(\alpha) - f_{k}(\alpha)) \text{ [Since } f_{k}(\alpha) \ge 0 \forall \alpha \in \chi \text{]}$$

Hence $\frac{q^{2}(\alpha)}{k} \ge (f - f_{k})(\alpha)$ for all $\alpha \in (\chi'_{k})^{\text{compliment}}$.
So,

$$\frac{q^{2}}{k} \ge f - f_{k} \ge 0 \text{ on } \chi \quad \forall k \in \mathbb{N}.$$

So,
 $\bar{L}(\frac{q^{2}}{k}) \ge \bar{L}(f - f_{k}) \ge 0.$

Now let $k \to \infty$ to get

$$\lim_{k \to \infty} \bar{L}(\frac{q^2}{k}) = 0 \Rightarrow \lim_{k \to \infty} \bar{L}(f_k) = \bar{L}(f).$$

2. $\mathbb{R}[\underline{X}]$ AS TOPOLOGICAL \mathbb{R} -VECTOR SPACE

Let $A = \mathbb{R}[X]$ be a countable dimensional \mathbb{R} -algebra.

Every finite dimensional subspace has the Euclidean Topology (ET on \mathbb{R}^N : open balls are a basis. If W is a finite dimensional subspace, fix $B = \{w_1, \ldots, w_N\}$ basis and get an isomorphism $W \cong \mathbb{R}^N$; pullback the ET from \mathbb{R}^N to W. This topology on W is uniquely determined and does not depend on the choice of the basis because a change of basis results in a linear change of coordinates and linear transformations $\underline{x} \mapsto a\underline{x}$; det $(A) \neq 0$ are continuous).

Definition 2.1. Define a topology on $A := \mathbb{R}[X]$ as:

 $U \subseteq A$ is **open** (respectively **closed**) iff $U \cap W$ is open (respectively closed) in W, for every finite dimensional subspace W of A.

This is called **direct limit topology** on *A*.

Equivalently, take $A_d = \{f \in A | \deg f \le d\}, d \in \mathbb{Z}_+$. Then $A = \bigcup_{d \ge 1} A_d$, ask for: $U \subseteq A$ is open (respectively closed) iff $U \cap A_d$ is open (respectively closed) in A_d for all $d \ge 1$.

We now list the important properties of this topology. We first need to recall the following definitions:

Definition 2.2. (i) $C \subseteq A$ is called a **cone** if *C* is closed under addition and scalar multiplication by (nonnegetive) positive real numbers.

(ii) $C \subseteq A$ is **convex** if $\forall a, b \in C$; $\forall \lambda \in [0, 1] : \lambda a + (1 - \lambda)b \in C$.

Note that a cone is automatically convex.

Theorem 2.3. 1. The open convex sets of A form a basis for the topology, i.e. A is with locally convex topology, i.e. $x \in U$ and U open subset of $A \implies$ there is a convex neighbourhout

- i.e. $x \in U$ and U open subset of $A \implies$ there is a convex neighbourhood U' of x such that $U' \subseteq U$.
- 2. This topology is the finest non-trivial locally convex topology on *A*.

Proof. Later (in next lecture as theorem 1.2).

Theorem 2.4. 1. A endowed with this topology is a topological \mathbb{R} -algebra, i.e. the topology is (Hausdorff) comparable with addition, scalar multiplication and multiplication, i.e.

 $+: A \times A \to A,$ $\times: A \times A \to A, \text{ and}$ $.: \mathbb{R} \times A \to A$

are all continuous.

2. Every linear functional is continuous in this finest locally convex topology.

Proof. Later (1.5 of Lecture 20).

Theorem 2.5. (Separation Theorem) Let $C \subseteq A$ be a closed cone in A and let $a_0 \in A \setminus C$. Then there is a linear functional $L : A \to \mathbb{R}$ such that $L(C) \ge 0$ but $L(a_0) < 0$.

(Equivalent statement: Let $C \subseteq A$ be a cone and $U \subseteq A$ be an open convex set such that $U \cap C = \phi$; $U, C \neq \phi$. Then \exists a linear functional $L : A \rightarrow \mathbb{R}$ such that L(U) < 0 and $L(C) \ge 0$).

Proof. Later (1.8 of Lecture 20).

Corollary 2.6. For any cone $C \subseteq A$ with $C \neq \phi$, we have

 $\overline{C} = C^{\text{vv}} := \{a \in A \mid L(a) \ge 0 \text{ for any linear functional } L \text{ such that } L(C) \ge 0\}$

 $= \{a \in A \mid L(a) \ge 0 \ \forall \ L \in C^{\mathsf{v}}\}.$

Proof. Clearly $\overline{C} \subseteq C^{vv}$: since $C \subseteq C^{vv}$ (from definition), and C^{vv} is closed (because $L \in C^{v}$ is continuous), so $\overline{C} \subseteq C^{vv}$.

Conversely apply separation theorem (theorem 2.5): if $a_0 \notin \overline{C}$, there exists $L \in C^{\vee}$ (i.e. $L(C) \ge 0$) with $L(a_0) < 0$. So, $a_0 \notin C^{\vee \vee}$.

Corollary 2.7. Let $A = \mathbb{R}[\underline{X}]$, $M \subseteq A$ be a quadratic module. Then $\overline{M} = M^{vv}$ and \overline{M} is a quadratic module.

Proposition 2.8. (i) Every cone *C* is convex.

(ii) Every quadratic module *M* is a cone.

(iii) If C is a cone, then \overline{C} is a cone.