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1. HAVILAND’S THEOREM (continued)

We will continue the proof of the following theorem from last lecture. Havilands
theorem will follow as a special case.

Theorem 1.1. (Recall 1.2 of last lecture) Let A be an R-algebra, χ a Hausdorff
space and ˆ : A → Contc(χ,R) an R algebra homomorphism. Assume ∃ p ∈ A
such that p̂ ≥ 0 on χ and ∀ k ∈ N : χk := {α ∈ χ | p̂(α) ≤ k} is compact.
Then for any linear functional L : A → R satisfying ∀ a ∈ A : â ≥ 0 on χ ⇒
L(a) ≥ 0, ∃ a Borel measure µ on χ such that L(a) =

∫
χ

â dµ ∀ a ∈ A.

Proof. We have Cc(χ) ⊆ B(χ) :=
{
f ∈ C(χ) | ∃ a ∈ A : | f | ≤ |â| on χ

}
; Â ⊆ B(χ);

L̄ : Â→ R, defined by L̄(â) := L(a).
In particular we got (as in claim 3 in 1.4 of last lecture) L̄ is a positive linear
functional on Cc(χ) s.t.

L̄( f ) =

∫
χ

f dµ ∀ f ∈ Cc(χ) ⊆ B(χ).

We claim that this holds also ∀ f ∈ B(χ), i.e. L̄( f ) =
∫
χ

f dµ ∀ f ∈ B(χ).

[In particular the proof of the theorem will be completed after proving this since
Â ⊆ B(χ), and so for f = a ∈ Â : L(a) =︸︷︷︸

(definition)

L̄(â) =
∫
χ

âdµ.]

Let f ∈ B(χ). Set q := f + p̂; for q ∈ B(χ).
For each k ≥ 1, consider χ

′

k := {α ∈ χ | q(α) ≤ k}

1
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• ∀ k : χ
′

k ⊆ χk and χ
′

k is closed. So χ
′

k is compact.

• χ
′

k ⊆ χ
′

k+1 and χ =
⋃

k

χ
′

k .

Subclaim 1: For each k ∈ N ∃ fk ∈ Cc(χ) such that 0 ≤ fk ≤ f ; fk = f on χ′k and
fk = 0 outside χ′k+1.
Proof of subclaim 1. For this we need Urysohn’s lemma, which states that
Let X be a topological space and A, B ⊆ X be closed sets such that A ∩ B = φ.
Then ∃ g ∈ C(χ) : g : X → [0, 1] such that g(a) = 0 ∀ a ∈ A and g(b) = 1 ∀ b ∈ B.
Applying it with X = χ′k+1, A = Y ′k = {α ∈ χ′k+1 | k + 1

2 ≤ q(α) ≤ k + 1}, and B = χ′k,
we get gk : χ′k+1 → [0, 1] continuous such that gk = 0 on Y ′k and gk = 1 on χ′k.
Extend gk to χ by setting gk = 0 on complement of χ′k+1. Set fk := f gk

Then indeed 0 ≤ fk ≤ f on χ , fk = f on χ′k and fk = 0 off χ′k+1. In particular
Supp( f ) ⊆ χ′k+1 is compact (because closed subset of a compact set is compact),
so indeed fk ∈ Cc(χ). �(Subclaim 1)

Subclaim 2: L̄( f ) = lim
k→∞

L̄( fk)

Note that once the subclaim 2 is proved we are done because:∫
f dµ = lim

k→∞

∫
fkdµ = lim

k→∞
L̄( fk) = L̄( f ).

Proof of subclaim 2. Observe that the inequality
q2

k
≥ f − fk ≥ 0 on χ, holds ∀ k ∈ N.

To see this first of all f = fk on χ′k, so clearly
q2

k
≥ f − fk ≥ 0 on χ′k.

Now we consider the complement of χ′k, there q(α) > k for α ∈ complement of χ′k.
So

q2(α) > kq(α) = k
(
f (α) + p̂(α)

)
≥ k f (α)

≥ k
(
f (α) − fk(α)

)
[Since fk(α) ≥ 0 ∀ α ∈ χ]

Hence
q2(α)

k
≥ ( f − fk)(α) for all α ∈ (χ′k)

compliment.
So,

q2

k
≥ f − fk ≥ 0 on χ ∀ k ∈ N.

So,

L̄(
q2

k
) ≥ L̄( f − fk) ≥ 0.

Now let k → ∞ to get
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lim
k→∞

L̄(
q2

k
) = 0⇒ lim

k→∞
L̄( fk) = L̄( f ). �(Subclaim 2)

�

2. R[X] AS TOPOLOGICAL R-VECTOR SPACE

Let A = R[X] be a countable dimensional R-algebra.
Every finite dimensional subspace has the Euclidean Topology (ET on RN: open
balls are a basis. If W is a finite dimensional subspace, fix B = {w1, . . . ,wN}

basis and get an isomorphism W � RN; pullback the ET from RN to W. This
topology on W is uniquely determined and does not depend on the choice of the
basis because a change of basis results in a linear change of coordinates and linear
transformations x 7→ ax ; det(A) , 0 are continuous).

Definition 2.1. Define a topology on A := R[X] as:
U ⊆ A is open (respectively closed) iff U ∩W is open (respectively closed) in W,
for every finite dimensional subspace W of A.
This is called direct limit topology on A.
Equivalently, take Ad = { f ∈ A| deg f ≤ d}, d ∈ Z+. Then A = ∪d≥1Ad, ask for:
U ⊆ A is open (respectively closed) iff U ∩ Ad is open (respectively closed) in Ad

for all d ≥ 1.

We now list the important properties of this topology. We first need to recall
the following definitions:

Definition 2.2. (i) C ⊆ A is called a cone if C is closed under addition and scalar
multiplication by (nonnegetive) positive real numbers.

(ii) C ⊆ A is convex if ∀ a, b ∈ C;∀ λ ∈ [0, 1] : λa + (1 − λ)b ∈ C.

Note that a cone is automatically convex.

Theorem 2.3. 1. The open convex sets of A form a basis for the topology,
i.e. A is with locally convex topology,
i.e. x ∈ U and U open subset of A =⇒ there is a convex neighbourhood
U′ of x such that U′ ⊆ U.

2. This topology is the finest non-trivial locally convex topology on A.

Proof. Later (in next lecture as theorem 1.2). �

Theorem 2.4. 1. A endowed with this topology is a topological R−algebra,
i.e. the topology is (Hausdorff) comparable with addition, scalar multipli-
cation and multiplication, i.e.
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+ : A × A→ A,

× : A × A→ A, and

. : R × A→ A

are all continuous.

2. Every linear functional is continuous in this finest locally convex topology.

Proof. Later (1.5 of Lecture 20). �

Theorem 2.5. (Separation Theorem) Let C ⊆ A be a closed cone in A and let
a0 ∈ A \ C. Then there is a linear functional L : A → R such that L(C) ≥ 0 but
L(a0) < 0.
(Equivalent statement: Let C ⊆ A be a cone and U ⊆ A be an open convex set
such that U ∩ C = φ; U,C , φ. Then ∃ a linear functional L : A → R such that
L(U) < 0 and L(C) ≥ 0).

Proof. Later (1.8 of Lecture 20). �

Corollary 2.6. For any cone C ⊆ A with C , φ, we have

C = Cvv := {a ∈ A | L(a) ≥ 0 for any linear functional L such that L(C) ≥ 0}

= {a ∈ A | L(a) ≥ 0 ∀ L ∈ Cv}.

Proof. Clearly C ⊆ Cvv: since C ⊆ Cvv (from definition), and Cvv is closed
(because L ∈ Cv is continuous), so C ⊆ Cvv.
Conversely apply separation theorem ( theorem 2.5): if a0 < C, there exists L ∈ Cv

(i.e. L(C) ≥ 0) with L(a0) < 0. So, a0 < Cvv. �

Corollary 2.7. Let A = R[X], M ⊆ A be a quadratic module. Then M = Mvv and
M is a quadratic module.

Proposition 2.8. (i) Every cone C is convex.

(ii) Every quadratic module M is a cone.

(iii) If C is a cone, then C is a cone.


