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1. TOPOLOGY ON FINITE AND COUNTABLE DIMENSIONAL R−VECTOR
SPACE

1.1. Helping lemma I. Let V be a countable dimensional R-vectorspace. Let W
be a finite dimensional subspace. Fix a basis w1, . . . ,wn of W. The map

Φ :
∑

riwi 7→ (r1, . . . rn)

defines a vector space isomorphism W � Rn.
Let τ the pullback (induced by Φ) topology on W, i.e. a set in (W, τ) is open if it
is of the form Φ−1(U) with U ⊆ Rn open in the Euclidean topology.
(For simplicity we will write ET for Euclidean topology from now on.)

1. Note that the ET is convex because the open balls form a subbasis for the
topology. So τ is locally convex.

2. τ does not depend on the choice of the basis (Hint: a basis change produces
a linear change of coordinates i.e. a linear map L : Rn → Rn which is
continuous in the ET).

3. In particular if W1 ⊆ W2 are finite dimensional subspace of V , the ET on W1

is the same as the topology induced by the topology on W2, i.e. the same as
the relative topology.
(U1 ⊂ W1 is open in the ET iff U1 ⊂ W1 is open in the relative topology, i.e.
U1 is of the form U1 = W1 ∩ U2 with U2 open in W2.)
Now define the finite topology on V:
U ⊆ V open iff U ∩W in W is open for any finite dimensional subspace W.
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4. Fix a basis {v1, . . . , vn . . .}, and set Vn = Span{v1, . . . , vn} a sequence of finite
dimensional subspaces such that V = ∪iVi. We have V1 ⊆ . . . ⊆ Vn ⊆ . . . .
Then:

U ⊆ V is open in the finite topology iff U ∩ Vi is open in Vi for every i.

Proof. Clear (Hint: Use the fact that every finite dimensional subspace is
contained in a Vi and use 3. in particular.) �

Theorem 1.2. (Theorem 2.3 of last lecture) The open sets in V which are convex
form a basis for the topology (i.e. the finite topology is locally convex).

Proof. If V is finite dimensional⇒ ET is convex, so nothing to prove.
So assume without loss of generality V is infinite dimensional. Let {v1, . . . , vn, . . .}
be an R basis for V .
Set Vn =Span{v1, . . . , vn}. Now let U ⊂ V be open and x0 ∈ U.
We show that there exists convex and open U′ ⊂ U such that x0 ∈ U′.
Since Tx0 : V → V

v 7→ v − x0 are continuous translations,
it suffices to find a convex neighbourhood U′′ of 0 with U′′ ⊆ U − x0. Then
U′ = U′′ + x0 is the required convex neighbourhood of x0. In other words we are
reduced to the case when x0 = 0.
We proceed (by induction on n ∈ N) to construct an increasing sequence Cn ⊆

U ∩ Vn of convex subsets as follows:

• For n = 1: U ∩ V1 is open in V1 = Rv1 and 0 ∈ U ∩ V1. So there exists
a1 ∈ R, a1 > 0 such that C1 :=

{
y1v1 | −a1 ≤ y1 ≤ a1

}
:= [−a1, a1] ⊆ U ∩V1.

• By induction on n ∈ N: We assume we have found a1, . . . , an ∈ R+ such that

Cn :=
{
y1v1+. . .+ynvn |−ai ≤ yi ≤ ai ; i ∈ {1, . . . , n}

}
:=

n∏
i=1

[−ai, ai] ⊆ U∩Vn.

Note that Cn is closed (in Vn, as well as) in Vn+1; Cn ⊆ U∩Vn+1 and Vn+1 \U
is closed in Vn+1 (because Vn+1 ∩ U is open in Vn+1).

• For n + 1: We claim ∃ an+1 > 0, an+1 ∈ R such that

Cn+1 :=
{
y1v1 + . . . + ynvn + yn+1vn+1| − ai ≤ yi ≤ ai ; i ∈ {1, . . . , n + 1}

}
=

n+1∏
i=1

[−ai, ai] ⊆ U ∩ Vn+1.

Proof of claim by contradiction: If not, then ∀ N ∃ xN ∈ Vn+1 such that
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xN = y1v1 + . . . ynvn + yn+1vn+1 with −ai ≤ yi ≤ ai ; i ∈ {1, . . . , n} and

−
1
N
≤ yn+1 ≤

1
N

; but xN < U.

But xN has form xN = y1v1 + . . . + ynvn︸              ︷︷              ︸
∈ Cn

+yn+1vn+1, (?)

i.e. the sequence {xN}n∈N ⊆ Vn+1 \ U.

Now for each i ∈ {1, . . . , n}, since xN has form (?):

the ith coordinates of {xN} are bounded ∀ N ∈ N, i.e. {xN} is a bounded
sequence of reals.
So we can find a convergent sequence of ith coordinate ∀ i ∈ {1, . . . , n}, i.e.
there is a subsequence {xN j} j∈N ⊆ Vn+1 \ U such that

(1) the first i = 1, . . . , n coordinates sequences converge, and

(2) the (n + 1)th coordinate sequence converges to 0.

So {xN j} converges (in Vn+1) as j → ∞ to x ∈ Cn ⊆ U (since Cn is closed
in Vn+1). So the sequence {xN j} j∈N ⊆ Vn+1 \ U converges to x ∈ U. This
contradicts the fact that Vn+1 \ U is closed in Vn+1. Hence the claim is
established.

Now consider Dn :=
n∏

i=1

(−ai, ai) =
{
y1v1 + . . .+ynvn |−ai < yi < ai ; i ∈ {1, . . . , n}

}
,

then Dn ⊂ Cn ⊆ U ∩ Vn is open convex in Vn. Set U′ := ∪n∈NDn :=
∞∏

n=1

(−an, an).

Finally (verify that) 0 ∈ U′. Then U′ is open, convex and U′ ⊆ U. �

Moreover, let V be a finite dimensional R vector space, τ be a locally convex
topology on V and Z open in this locally convex topology. Then Z is open in the
finite topology.

Theorem 1.3. (Theorem 2.4 of last lecture) V is a topological vector space with
finite topology τ. Moreover (V, τ) is a topological R-algebra if V is a R-algebra.

1.4. Helping lemma II. Let V and V ′ be vector spaces of countable dimension
each endowed with the corresponding locally convex (finite) topology. Then the
finite topology on V × V ′ coincides with the product topology, i.e. τfin(V × V ′) =

τfin(V) × τfin(V ′).

Proof. (⇐) First observe that if a set is open in the product topology on V × V ′,
then it is open in finite topology on V × V ′:
Fix a basis {v1, . . . , vn, . . .} of V and {v′1, . . . , v

′
n, . . .} of V ′. Set Vn = span{v1, . . . , vn}

and V ′n = span{v′1, . . . , v
′
n}. Then V × V ′ = ∪n(Vn × V ′n).
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Let U × U′ ⊆ V × V ′ be open in the product topology, where U open in finite
topology on V and U′ open in finite topology on V ′.
We show U × U′ is open in the finite topology on V × V ′.
It is enough to verify that (U × U′) ∩ (Vn × V ′n) is open in ET on Vn × V ′n.
But (U ×U′)∩ (Vn × V ′n) := (U ∩ Vn) × (U′ ∩ V ′n), where U ∩ Vn is open in ET on
Vn and U′ × V ′n is open in ET on V ′n. �(⇐)

(⇒) Conversely we show that open set in the finite topology on V × V ′ implies
open in the product topology.
Wlog letU′′ be a convex open neighbourhood of zero in V × V ′.
Set U := {x ∈ V | (2x, 0) ∈ U′′} and U′ := {y ∈ V ′ | (0, 2y) ∈ U′′}. U and U′

are convex open neighbourhoods of zero in V and V ′ respectively. So U ×U′ is
open in product topology. Also U × U′ ⊆ U′′ because if (x, y) ∈ U × U′ then

(x, y) =
1
2

(2x, 0) +
1
2

(0, 2y) ∈ U′′, sinceU′′ is convex. �


