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1. TOPOLOGY ON FINITE AND COUNTABLE DIMENSIONAL R—-VECTOR
SPACE

1.1. Helping lemma 1. Let V be a countable dimensional R-vectorspace. Let W
be a finite dimensional subspace. Fix a basis wy, ..., w, of W. The map

d):Zr,-wiH(rl,...r,,)

defines a vector space isomorphism W = R".

Let 7 the pullback (induced by @) topology on W, i.e. a set in (W, 1) is open if it
is of the form ®~!(U) with U C R” open in the Euclidean topology.

(For simplicity we will write ET for Euclidean topology from now on.)

1. Note that the ET is convex because the open balls form a subbasis for the
topology. So 7 is locally convex.

2. 1 does not depend on the choice of the basis (Hint: a basis change produces
a linear change of coordinates i.e. a linear map L : R" — R" which is
continuous in the ET).

3. In particular if Wy € W, are finite dimensional subspace of V, the ET on W,
is the same as the topology induced by the topology on W,, i.e. the same as
the relative topology.

(U; c Wyisopeninthe ET iff U; ¢ W, is open in the relative topology, i.e.
U, is of the form U; = W; N U, with U, open in W,.)

Now define the finite topology on V:

U C Vopenift U N W in W is open for any finite dimensional subspace W.

1
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4. Fix a basis {v{,...,v,...}, and set V,, = Span{vy, ..., v,} a sequence of finite
dimensional subspaces such that V = U;V;,. Wehave V; C...CV, C... .
Then:

U C V is open in the finite topology iff U N V; is open in V; for every i.

Proof. Clear (Hint: Use the fact that every finite dimensional subspace is
contained in a V; and use 3. in particular.) O

Theorem 1.2. (Theorem 2.3 of last lecture) The open sets in V which are convex
form a basis for the topology (i.e. the finite topology is locally convex).

Proof. 1f V is finite dimensional = ET is convex, so nothing to prove.

So assume without loss of generality V is infinite dimensional. Let {vy,...,v,,...}
be an R basis for V.

Set V,, =Span{vy,...,v,}. Now let U C V be open and x, € U.

We show that there exists convex and open U’ C U such that xy € U’.

Since T,: V-V

VB v — Xy arecontinuous translations,
it suffices to find a convex neighbourhood U” of O with U” C U - xo. Then
U’ = U"” + xy is the required convex neighbourhood of x,. In other words we are
reduced to the case when xy = 0.
We proceed (by induction on n € N) to construct an increasing sequence C, C
U NV, of convex subsets as follows:

e Forn=1:UNnVyisopenin V; = Ry; and 0 € U N V;. So there exists
a; € R,a; > Osuchthat Cy :={y;vi| —a; <y < a1} :=[-a,a1] CUNV.

e By induction on n € N: We assume we have found a4, ..., a, € R, such that

Co:={yvi+.. 4y l—a; <y <a;sief{l,...,n}}:= l—[[—ai,ai] cunv,.

i=1
Note that C, is closed (in V,,, as wellas)in V,,;; C, c UNV,,and V., \U
is closed in V,,;; (because V,,; N U is openin V).

e Forn+ 1: We claim da,,; > 0, a,.; € R such that

Cn+1 = {y1v1 R ol V% T +y,,+1vn+1| —a; <y <aq; 11 € {1,...,I’l+ 1}}

Proof of claim by contradiction: If not, then ¥ N 3 x" € V,,,; such that
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V= YV YV F YpstVeer With —a; <y < a;3i € {1,...,n} and

_N < Vu+1 < N ;buth¢ U.

But x" has form xV = y1v; + ... + Y,V +Vpe1Vasts (%)
eC,

i.e. the sequence {x"} e € Vo1 \ U.
Now for each i € {1,...,n}, since x" has form (%):

the i”* coordinates of {x"} are bounded V N € N, i.e. {x"} is a bounded
sequence of reals.

So we can find a convergent sequence of i coordinate ¥ i € {1,...,n}, i.e.
there is a subsequence {x"/} jent € Visr \ U such that

(1) the firsti = 1,...,n coordinates sequences converge, and

(2) the (n + 1) coordinate sequence converges to 0.

So {x"i} converges (in V,,;) as j — oo to x € C, C U (since C, is closed
in V,.1). So the sequence {x"7} jen € Vi1 \ U converges to x € U. This
contradicts the fact that V,,; \ U is closed in V,,;. Hence the claim is
established.

Now consider D,, := l_[(—ai,ai) ={yvi+...+yavnl—a <y <ai;i€fl,...,n}},

i=1

then D, ¢ C, € U NV, is open convex in V,. Set U’ := U, oD, := (—a,, ay,).
n=1
Finally (verify that) 0 € U’. Then U’ is open, convex and U’ C U. O

Moreover, let V be a finite dimensional R vector space, 7 be a locally convex
topology on V and Z open in this locally convex topology. Then Z is open in the
finite topology.

Theorem 1.3. (Theorem 2.4 of last lecture) V is a topological vector space with
finite topology 7. Moreover (V, 1) is a topological R-algebra if V is a R-algebra.

1.4. Helping lemma II. Let V and V’ be vector spaces of countable dimension
each endowed with the corresponding locally convex (finite) topology. Then the
finite topology on V X V’ coincides with the product topology, i.e. 75,(V X V') =
Thin(V) X Tpn (V7).

Proof. (<) First observe that if a set is open in the product topology on V x V',
then it is open in finite topology on V X V’:

Fixabasis {vi,...,v,,...}of Vand {v},...,v,,.. .} of V'. Set V, = span{vi,...,v,}
and V, = span{v|,...,v,}. Then V. X V' = U,(V, X V}).
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Let U x U’ € V x V' be open in the product topology, where U open in finite
topology on V and U’ open in finite topology on V’.

We show U x U’ is open in the finite topology on V X V".

It is enough to verify that (U X U") N (V, X V))isopenin ETon V, X V,.

But (UxU )NV, xV):=UnV,)xU NnV,),where UNV,isopeninET on
V,and U’ X V) isopenin ET on V. 0(<)

(=) Conversely we show that open set in the finite topology on V X V’ implies
open in the product topology.

Wiog let U” be a convex open neighbourhood of zeroin V X V.

SetU :={xeV|2x,00 e U }and U :={y e V'|(0,2y) € U"}. U and U’
are convex open neighbourhoods of zero in V and V’ respectively. So U x U’ is
open in product topology. Also U X U’ € U"” because if (x,y) € U X U’ then

1 1
(x,y) = E(Zx, 0) + 5(0, 2y) € U”, since U” is convex. O



