POSITIVE POLYNOMIALS LECTURE NOTES

(19: 22/06/10)

SALMA KUHLMANN

Contents

1. Topology on finite and countable dimensional \mathbb{R}-vectorspace

1. TOPOLOGY ON FINITE AND COUNTABLE DIMENSIONAL \mathbb{R}-VECTOR
 SPACE

1.1. Helping lemma I. Let V be a countable dimensional \mathbb{R}-vectorspace. Let W be a finite dimensional subspace. Fix a basis w_{1}, \ldots, w_{n} of W. The map

$$
\Phi: \sum r_{i} w_{i} \mapsto\left(r_{1}, \ldots r_{n}\right)
$$

defines a vector space isomorphism $W \cong \mathbb{R}^{n}$.
Let τ the pullback (induced by Φ) topology on W, i.e. a set in (W, τ) is open if it is of the form $\Phi^{-1}(U)$ with $U \subseteq \mathbb{R}^{n}$ open in the Euclidean topology.
(For simplicity we will write ET for Euclidean topology from now on.)

1. Note that the ET is convex because the open balls form a subbasis for the topology. So τ is locally convex.
2. τ does not depend on the choice of the basis (Hint: a basis change produces a linear change of coordinates i.e. a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which is continuous in the ET).
3. In particular if $W_{1} \subseteq W_{2}$ are finite dimensional subspace of V, the ET on W_{1} is the same as the topology induced by the topology on W_{2}, i.e. the same as the relative topology.
($U_{1} \subset W_{1}$ is open in the ET iff $U_{1} \subset W_{1}$ is open in the relative topology, i.e. U_{1} is of the form $U_{1}=W_{1} \cap U_{2}$ with U_{2} open in W_{2}.)
Now define the finite topology on V :
$U \subseteq V$ open iff $U \cap W$ in W is open for any finite dimensional subspace W.
4. Fix a basis $\left\{v_{1}, \ldots, v_{n} \ldots\right\}$, and set $V_{n}=\operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}$ a sequence of finite dimensional subspaces such that $V=\cup_{i} V_{i}$. We have $V_{1} \subseteq \ldots \subseteq V_{n} \subseteq \ldots$. Then:
$U \subseteq V$ is open in the finite topology iff $U \cap V_{i}$ is open in V_{i} for every i.
Proof. Clear (Hint: Use the fact that every finite dimensional subspace is contained in a V_{i} and use 3. in particular.)

Theorem 1.2. (Theorem 2.3 of last lecture) The open sets in V which are convex form a basis for the topology (i.e. the finite topology is locally convex).

Proof. If V is finite dimensional $\Rightarrow \mathrm{ET}$ is convex, so nothing to prove.
So assume without loss of generality V is infinite dimensional. Let $\left\{v_{1}, \ldots, v_{n}, \ldots\right\}$ be an \mathbb{R} basis for V.
Set $V_{n}=\operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}$. Now let $U \subset V$ be open and $x_{0} \in U$.
We show that there exists convex and open $U^{\prime} \subset U$ such that $x_{0} \in U^{\prime}$.
Since

$$
\begin{aligned}
T_{x_{0}}: V & \rightarrow V \\
& v \mapsto v-x_{0} \text { are continuous translations, }
\end{aligned}
$$

it suffices to find a convex neighbourhood $U^{\prime \prime}$ of 0 with $U^{\prime \prime} \subseteq U-x_{0}$. Then $U^{\prime}=U^{\prime \prime}+x_{0}$ is the required convex neighbourhood of x_{0}. In other words we are reduced to the case when $x_{0}=0$.
We proceed (by induction on $n \in \mathbb{N}$) to construct an increasing sequence $C_{n} \subseteq$ $U \cap V_{n}$ of convex subsets as follows:

- For $n=1: U \cap V_{1}$ is open in $V_{1}=\mathbb{R} v_{1}$ and $0 \in U \cap V_{1}$. So there exists $a_{1} \in \mathbb{R}, a_{1}>0$ such that $C_{1}:=\left\{y_{1} v_{1} \mid-a_{1} \leq y_{1} \leq a_{1}\right\}:=\left[-a_{1}, a_{1}\right] \subseteq U \cap V_{1}$.
- By induction on $n \in \mathbb{N}$: We assume we have found $a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}$such that $C_{n}:=\left\{y_{1} v_{1}+\ldots+y_{n} v_{n} \mid-a_{i} \leq y_{i} \leq a_{i} ; i \in\{1, \ldots, n\}\right\}:=\prod_{i=1}^{n}\left[-a_{i}, a_{i}\right] \subseteq U \cap V_{n}$. Note that C_{n} is closed (in V_{n}, as well as) in $V_{n+1} ; C_{n} \subseteq U \cap V_{n+1}$ and $V_{n+1} \backslash U$ is closed in V_{n+1} (because $V_{n+1} \cap U$ is open in V_{n+1}).
- For $n+1$: We claim $\exists a_{n+1}>0, a_{n+1} \in \mathbb{R}$ such that
$C_{n+1}:=\left\{y_{1} v_{1}+\ldots+y_{n} v_{n}+y_{n+1} v_{n+1} \mid-a_{i} \leq y_{i} \leq a_{i} ; i \in\{1, \ldots, n+1\}\right\}$
$=\prod_{i=1}^{n+1}\left[-a_{i}, a_{i}\right] \subseteq U \cap V_{n+1}$.
Proof of claim by contradiction: If not, then $\forall N \exists x^{N} \in V_{n+1}$ such that
$x^{N}=y_{1} v_{1}+\ldots y_{n} v_{n}+y_{n+1} v_{n+1}$ with $-a_{i} \leq y_{i} \leq a_{i} ; i \in\{1, \ldots, n\}$ and $-\frac{1}{N} \leq y_{n+1} \leq \frac{1}{N} ;$ but $x^{N} \notin U$.
But x^{N} has form $x^{N}=\underbrace{y_{1} v_{1}+\ldots+y_{n} v_{n}}_{\in C_{n}}+y_{n+1} v_{n+1}$,
i.e. the sequence $\left\{x^{N}\right\}_{n \in \mathbb{N}} \subseteq V_{n+1} \backslash U$.

Now for each $i \in\{1, \ldots, n\}$, since x^{N} has form (\star):
the $i^{\text {th }}$ coordinates of $\left\{x^{N}\right\}$ are bounded $\forall N \in \mathbb{N}$, i.e. $\left\{x^{N}\right\}$ is a bounded sequence of reals.
So we can find a convergent sequence of $i^{t h}$ coordinate $\forall i \in\{1, \ldots, n\}$, i.e. there is a subsequence $\left\{x^{N_{j}}\right\}_{j \in \mathbb{N}} \subseteq V_{n+1} \backslash U$ such that
(1) the first $i=1, \ldots, n$ coordinates sequences converge, and
(2) the $(n+1)^{\text {th }}$ coordinate sequence converges to 0 .

So $\left\{x^{N_{j}}\right\}$ converges (in V_{n+1}) as $j \rightarrow \infty$ to $x \in C_{n} \subseteq U$ (since C_{n} is closed in V_{n+1}). So the sequence $\left\{x^{N_{j}}\right\}_{j \in \mathbb{N}} \subseteq V_{n+1} \backslash U$ converges to $x \in U$. This contradicts the fact that $V_{n+1} \backslash U$ is closed in V_{n+1}. Hence the claim is established.
Now consider $D_{n}:=\prod_{i=1}^{n}\left(-a_{i}, a_{i}\right)=\left\{y_{1} v_{1}+\ldots+y_{n} v_{n} \mid-a_{i}<y_{i}<a_{i} ; i \in\{1, \ldots, n\}\right\}$, then $D_{n} \subset C_{n} \subseteq U \cap V_{n}$ is open convex in V_{n}. Set $U^{\prime}:=\cup_{n \in \mathbb{N}} D_{n}:=\prod_{n=1}^{\infty}\left(-a_{n}, a_{n}\right)$. Finally (verify that) $0 \in U^{\prime}$. Then U^{\prime} is open, convex and $U^{\prime} \subseteq U$.

Moreover, let V be a finite dimensional \mathbb{R} vector space, τ be a locally convex topology on V and Z open in this locally convex topology. Then Z is open in the finite topology.

Theorem 1.3. (Theorem 2.4 of last lecture) V is a topological vector space with finite topology τ. Moreover (V, τ) is a topological \mathbb{R}-algebra if V is a \mathbb{R}-algebra.
1.4. Helping lemma II. Let V and V^{\prime} be vector spaces of countable dimension each endowed with the corresponding locally convex (finite) topology. Then the finite topology on $V \times V^{\prime}$ coincides with the product topology, i.e. $\tau_{\text {fin }}\left(V \times V^{\prime}\right)=$ $\tau_{\text {fin }}(V) \times \tau_{\text {fin }}\left(V^{\prime}\right)$.

Proof. (\Leftarrow) First observe that if a set is open in the product topology on $V \times V^{\prime}$, then it is open in finite topology on $V \times V^{\prime}$:
Fix a basis $\left\{v_{1}, \ldots, v_{n}, \ldots\right\}$ of V and $\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}, \ldots\right\}$ of V^{\prime}. Set $V_{n}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ and $V_{n}^{\prime}=\operatorname{span}\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$. Then $V \times V^{\prime}=\cup_{n}\left(V_{n} \times V_{n}^{\prime}\right)$.

Let $U \times U^{\prime} \subseteq V \times V^{\prime}$ be open in the product topology, where U open in finite topology on V and U^{\prime} open in finite topology on V^{\prime}.
We show $U \times U^{\prime}$ is open in the finite topology on $V \times V^{\prime}$.
It is enough to verify that $\left(U \times U^{\prime}\right) \cap\left(V_{n} \times V_{n}^{\prime}\right)$ is open in ET on $V_{n} \times V_{n}^{\prime}$.
But $\left(U \times U^{\prime}\right) \cap\left(V_{n} \times V_{n}^{\prime}\right):=\left(U \cap V_{n}\right) \times\left(U^{\prime} \cap V_{n}^{\prime}\right)$, where $U \cap V_{n}$ is open in ET on V_{n} and $U^{\prime} \times V_{n}^{\prime}$ is open in ET on V_{n}^{\prime}.
$\square(\Leftarrow)$
(\Rightarrow) Conversely we show that open set in the finite topology on $V \times V^{\prime}$ implies open in the product topology.
Wlog let $\mathcal{U}^{\prime \prime}$ be a convex open neighbourhood of zero in $V \times V^{\prime}$.
Set $\mathcal{U}:=\left\{x \in V \mid(2 x, 0) \in \mathcal{U}^{\prime \prime}\right\}$ and $\mathcal{U}^{\prime}:=\left\{y \in V^{\prime} \mid(0,2 y) \in \mathcal{U}^{\prime \prime}\right\}$. \mathcal{U} and \mathcal{U}^{\prime} are convex open neighbourhoods of zero in V and V^{\prime} respectively. So $\mathcal{U} \times \mathcal{U}^{\prime}$ is open in product topology. Also $\mathcal{U} \times \mathcal{U}^{\prime} \subseteq \mathcal{U}^{\prime \prime}$ because if $(x, y) \in \mathcal{U} \times \mathcal{U}^{\prime}$ then $(x, y)=\frac{1}{2}(2 x, 0)+\frac{1}{2}(0,2 y) \in \mathcal{U}^{\prime \prime}$, since $\mathcal{U}^{\prime \prime}$ is convex.

