POSITIVE POLYNOMIALS LECTURE NOTES (19: 22/06/10)

SALMA KUHLMANN

Contents

1. Topology on finite and countable dimensional R-vectorspace

1

1. TOPOLOGY ON FINITE AND COUNTABLE DIMENSIONAL $\mathbb{R}-VECTOR$ SPACE

1.1. Helping lemma I. Let V be a countable dimensional \mathbb{R} -vectorspace. Let W be a finite dimensional subspace. Fix a basis w_1, \ldots, w_n of W. The map

$$\Phi:\sum r_iw_i\mapsto (r_1,\ldots r_n)$$

defines a vector space isomorphism $W \cong \mathbb{R}^n$.

Let τ the pullback (induced by Φ) topology on W, i.e. a set in (W, τ) is open if it is of the form $\Phi^{-1}(U)$ with $U \subseteq \mathbb{R}^n$ open in the Euclidean topology. (For simplicity we will write ET for Euclidean topology from now on.)

- 1. Note that the ET is convex because the open balls form a subbasis for the topology. So τ is locally convex.
- 2. τ does not depend on the choice of the basis (Hint: a basis change produces a linear change of coordinates i.e. a linear map $L : \mathbb{R}^n \to \mathbb{R}^n$ which is continuous in the ET).
- 3. In particular if $W_1 \subseteq W_2$ are finite dimensional subspace of V, the ET on W_1 is the same as the topology induced by the topology on W_2 , i.e. the same as the relative topology.

 $(U_1 \subset W_1 \text{ is open in the ET iff } U_1 \subset W_1 \text{ is open in the relative topology, i.e.}$ $U_1 \text{ is of the form } U_1 = W_1 \cap U_2 \text{ with } U_2 \text{ open in } W_2.$ Now define the **finite topology** on *V*:

 $U \subseteq V$ open iff $U \cap W$ in W is open for any finite dimensional subspace W.

4. Fix a basis {v₁,..., v_n...}, and set V_n = Span{v₁,..., v_n} a sequence of finite dimensional subspaces such that V = ∪_iV_i. We have V₁ ⊆ ... ⊆ V_n ⊆ Then:

 $U \subseteq V$ is open in the finite topology iff $U \cap V_i$ is open in V_i for every *i*.

Proof. Clear (Hint: Use the fact that every finite dimensional subspace is contained in a V_i and use 3. in particular.)

Theorem 1.2. (Theorem 2.3 of last lecture) The open sets in *V* which are convex form a basis for the topology (i.e. the finite topology is locally convex).

Proof. If *V* is finite dimensional \Rightarrow ET is convex, so nothing to prove. So assume without loss of generality *V* is infinite dimensional. Let { v_1, \ldots, v_n, \ldots } be an \mathbb{R} basis for *V*.

Set $V_n = \text{Span}\{v_1, \dots, v_n\}$. Now let $U \subset V$ be open and $x_0 \in U$. We <u>show that</u> there exists convex and open $U' \subset U$ such that $x_0 \in U'$. Since T = V = V.

$$T_{x_0}: V \to V$$

 $v \mapsto v - x_0$ are continuous translations,

it suffices to find a convex neighbourhood U'' of 0 with $U'' \subseteq U - x_0$. Then $U' = U'' + x_0$ is the required convex neighbourhood of x_0 . In other words we are reduced to the case when $x_0 = 0$.

We proceed (by induction on $n \in \mathbb{N}$) to construct an increasing sequence $C_n \subseteq U \cap V_n$ of convex subsets as follows:

- For n = 1: $U \cap V_1$ is open in $V_1 = \mathbb{R}v_1$ and $0 \in U \cap V_1$. So there exists $a_1 \in \mathbb{R}, a_1 > 0$ such that $C_1 := \{y_1v_1 \mid -a_1 \leq y_1 \leq a_1\} := [-a_1, a_1] \subseteq U \cap V_1$.
- By induction on $n \in \mathbb{N}$: We assume we have found $a_1, \ldots, a_n \in \mathbb{R}_+$ such that

 $C_n := \{y_1v_1 + \ldots + y_nv_n \mid -a_i \le y_i \le a_i ; i \in \{1, \ldots, n\}\} := \prod_{i=1}^n [-a_i, a_i] \subseteq U \cap V_n.$ Note that C_n is closed (in V_n , as well as) in V_{n+1} ; $C_n \subseteq U \cap V_{n+1}$ and $V_{n+1} \setminus U$ is closed in V_{n+1} (because $V_{n+1} \cap U$ is open in V_{n+1}).

• <u>For n + 1</u>: We <u>claim</u> $\exists a_{n+1} > 0, a_{n+1} \in \mathbb{R}$ such that $C_{n+1} := \{y_1v_1 + \ldots + y_nv_n + y_{n+1}v_{n+1}| - a_i \le y_i \le a_i ; i \in \{1, \ldots, n+1\}\}$ $= \prod_{i=1}^{n+1} [-a_i, a_i] \subseteq U \cap V_{n+1}.$

Proof of claim by contradiction: If not, then $\forall N \exists x^N \in V_{n+1}$ such that

 $x^{N} = y_{1}v_{1} + \dots + y_{n}v_{n} + y_{n+1}v_{n+1} \text{ with } -a_{i} \leq y_{i} \leq a_{i} ; i \in \{1, \dots, n\} \text{ and}$ $-\frac{1}{N} \leq y_{n+1} \leq \frac{1}{N} \text{ ; but } x^{N} \notin U.$ But x^{N} has form $x^{N} = \underbrace{y_{1}v_{1} + \dots + y_{n}v_{n}}_{\in C_{n}} + y_{n+1}v_{n+1}, \qquad (\star)$ i.e. the sequence $\{x^{N}\}_{n \in \mathbb{N}} \subseteq V_{n+1} \setminus U.$

Now for each $i \in \{1, ..., n\}$, since x^N has form (\star) :

the i^{th} coordinates of $\{x^N\}$ are bounded $\forall N \in \mathbb{N}$, i.e. $\{x^N\}$ is a bounded sequence of reals.

So we can find a convergent sequence of i^{th} coordinate $\forall i \in \{1, ..., n\}$, i.e. there is a subsequence $\{x^{N_j}\}_{j \in \mathbb{N}} \subseteq V_{n+1} \setminus U$ such that

- (1) the first i = 1, ..., n coordinates sequences converge, and
- (2) the $(n + 1)^{th}$ coordinate sequence converges to 0.

So $\{x^{N_j}\}$ converges (in V_{n+1}) as $j \to \infty$ to $x \in C_n \subseteq U$ (since C_n is closed in V_{n+1}). So the sequence $\{x^{N_j}\}_{j \in \mathbb{N}} \subseteq V_{n+1} \setminus U$ converges to $x \in U$. This contradicts the fact that $V_{n+1} \setminus U$ is closed in V_{n+1} . Hence the claim is established.

Now consider
$$D_n := \prod_{i=1}^n (-a_i, a_i) = \{y_1 v_1 + \ldots + y_n v_n \mid -a_i < y_i < a_i ; i \in \{1, \ldots, n\}\},\$$

then $D_n \subset C_n \subseteq U \cap V_n$ is open convex in V_n . Set $U' := \bigcup_{n \in \mathbb{N}} D_n := \prod_{n=1}^{\infty} (-a_n, a_n)$. Finally (verify that) $0 \in U'$. Then U' is open, convex and $U' \subseteq U$.

Moreover, let V be a finite dimensional \mathbb{R} vector space, τ be a locally convex topology on V and Z open in this locally convex topology. Then Z is open in the finite topology.

Theorem 1.3. (Theorem 2.4 of last lecture) *V* is a topological vector space with finite topology τ . Moreover (V, τ) is a topological \mathbb{R} -algebra if *V* is a \mathbb{R} -algebra.

1.4. Helping lemma II. Let *V* and *V'* be vector spaces of countable dimension each endowed with the corresponding locally convex (finite) topology. Then the finite topology on $V \times V'$ coincides with the product topology, i.e. $\tau_{fin}(V \times V') = \tau_{fin}(V) \times \tau_{fin}(V')$.

Proof. (\Leftarrow) First observe that if a set is open in the product topology on $V \times V'$, then it is open in finite topology on $V \times V'$:

Fix a basis $\{v_1, ..., v_n, ...\}$ of *V* and $\{v'_1, ..., v'_n, ...\}$ of *V'*. Set $V_n = \text{span}\{v_1, ..., v_n\}$ and $V'_n = \text{span}\{v'_1, ..., v'_n\}$. Then $V \times V' = \bigcup_n (V_n \times V'_n)$. Let $U \times U' \subseteq V \times V'$ be open in the product topology, where U open in finite topology on V and U' open in finite topology on V'.

We show $U \times U'$ is open in the finite topology on $V \times V'$.

It is enough to verify that $(U \times U') \cap (V_n \times V'_n)$ is open in ET on $V_n \times V'_n$.

But $(U \times U') \cap (V_n \times V'_n) := (U \cap V_n) \times (U' \cap V'_n)$, where $U \cap V_n$ is open in ET on V_n and $U' \times V'_n$ is open in ET on V'_n . $\Box(\Leftarrow)$

 (\Rightarrow) Conversely we show that open set in the finite topology on $V \times V'$ implies open in the product topology.

Wlog let \mathcal{U}'' be a convex open neighbourhood of zero in $V \times V'$.

Set $\mathcal{U} := \{x \in V \mid (2x, 0) \in \mathcal{U}''\}$ and $\mathcal{U}' := \{y \in V' \mid (0, 2y) \in \mathcal{U}''\}$. \mathcal{U} and \mathcal{U}' are convex open neighbourhoods of zero in *V* and *V'* respectively. So $\mathcal{U} \times \mathcal{U}'$ is open in product topology. Also $\mathcal{U} \times \mathcal{U}' \subseteq \mathcal{U}''$ because if $(x, y) \in \mathcal{U} \times \mathcal{U}'$ then $(x, y) = \frac{1}{2}(2x, 0) + \frac{1}{2}(0, 2y) \in \mathcal{U}''$, since \mathcal{U}'' is convex.