POSITIVE POLYNOMIALS LECTURE NOTES (20: 24/06/10)

SALMA KUHLMANN

Contents

1. Topology on finite and countable dimensional R-vectorspace

1

1. TOPOLOGY ON FINITE AND COUNTABLE DIMENSIONAL \mathbb{R} -VECTOR SPACE (continued)

We want to prove Theorem 2.4 of Lecture 18, i.e.

Theorem 1.1. *V* is a topological vector space with finite topology τ . Moreover (V, τ) is a topological \mathbb{R} -algebra if *V* is endowed with \mathbb{R} algebra structure.

We still need more helping lemmas (towards proof of 1.1):

Lemma 1.2. (About finite dimensional spaces with ET)

- 1. Finite dimensional \mathbb{R} -vector spaces *V* with ET are topological spaces.
- 2. Linear functionals $L: V \to \mathbb{R}$ are continuous. More generally, let V_i, V_j be finite dimensional vector paces with ET and $L: V_i \times V_i \to V_j$ bilinear map, then *L* is continuous.

1.3. Helping lemma III. Let $V = \bigcup_{i} V_i$ be a countable dimensional vector space

with (finite topology) $\tau_{fin}(V)$, where V_i 's are finite dimensional. Let (χ, x) be a topological space and $f: V \to \chi$ be a map. Then f is continuous (with respect to $\tau_{fin}(V)$ and χ) iff $f|_{V_i}$ is continuous (with respect to ET on V_i and χ) for each $i \in \mathbb{N}$.

Proof. (\Rightarrow) Clear.

(⇐) Let $X \subseteq (\chi, x)$ be open. To show: $f^{-1}(X)$ is open in V. Using Hilfslemma I (4) it is enough to show that $f^{-1}(X) \cap V_i$ is open in $V_i \forall i$. But $f^{-1}(X) \cap V_i = (f|_{V_i})^{-1}(X)$ which is open in $V_i \forall i$ since $f|_{V_i}$ is assumed to be continuous $\forall i$. \Box

Corollary 1.4. Let *V* be countable dimensional with finite topology $\tau_{\text{fin}}(V)$ and $L: V \to \mathbb{R}$ be a linear functional. Then *L* is continuous.

1.5. *Proof of the theorem 1.1.* Helping lemma $\underbrace{I + II}_{(last lecture)}$ + III implies the proof as

follows:

(i) We need to verify that $+: (V \times V, \underbrace{\tau_{\text{fin}}(V) \times \tau_{\text{fin}}(V)}_{(\text{product topology})} \to (V, \tau_{\text{fin}}(V))$ is continuous.

Using Helping lemma II, it is enough to verify that

+ : $(V \times V, \tau_{fin}(V \times V)) \rightarrow (V, \tau_{fin}(V))$ is continuous.

Proof. Let $V = \bigcup_{i \in \mathbb{N}} V_i$, then $V \times V = \bigcup_i (V_i \times V_i)$. By Hilfslemma III, enough to verify that

$$H: (V_i \times V_i, ET) \to (V, \tau_{fin}(V))$$
 is continuous

Let $U \subseteq V$ open in $\tau_{\text{fin}}(V)$. We show that $(+)^{-1}(U) \subseteq V_i \times V_i$ is open in ET. But V_i is a subspace so $(+)^{-1}(U) = (+)^{-1}(U \cap V_i)$. Now $U \cap V_i$ is open in V_i and by lemma 1.2 we know that V_i is a topological vector space so $(+)^{-1}(U \cap V_i)$ is open.

(ii) Scalar multiplication:

$$: \mathbb{R} \times V \to V; (r, v) \mapsto rv$$
 is continuous.

Proof. Analogous.

(iii) Multiplication: Let V be a \mathbb{R} -algebra. Then

$$\times : (V \times V, \underbrace{\tau_{\text{fin}}(V) \times \tau_{\text{fin}}(V)}_{\text{(product topology)}} \to (V, \tau_{\text{fin}}(V) \text{ is continuous.}$$

Proof. Observe that restriction of multiplication to the finite dimensional subspaces V_i is not well defined i.e. V_i need not be a sub algebra, but

Claim 1: \exists *j* large enough so that

$$\times : V_i \times V_i \to V_i$$
 is well defined.

Proof of claim 1: Let $\{v_1, \ldots, v_i\}$ be a basis of V_i . Let *j* be large enough so that the product vectors $v_l v_k \in V_j$ for all $1 \le l, k \le i$.

Claim 2: The mapping $\times : V_i \times V_i \to V_j$ is bilinear and hence continuous by lemma 1.2.

 $\Box\Box$ (proof of theorem 1.1)

Theorem 1.6. (Separation Theorem) (Theorem 2.5 of Lecture 18) Let *V* be a countable dimensional vector space, $U \subseteq V$ be open and convex, $C \subseteq V$ be a cone such that $U, C \neq \phi$ and $U \cap C = \phi$. Then there exists a linear functional $L : V \to \mathbb{R}$ such that L(U) < 0 and $L(C) \ge 0$.

Corollary 1.7. If $C \subseteq V$ is closed cone and $x_0 \notin C$ then there exists $L : V \to \mathbb{R}$ such that $L(x_0) < 0$ and $L(C) \ge 0$.

Proof. $\exists U' \ni x_0 : U'$ open and $U' \cap C = \phi$. By theorem 2.3 of Lecture 18, let U be an open convex subset of V with $x_0 \in U \subseteq U'$ and $U \cap C = \phi$. \Box

1.8. *Proof of the theorem 1.6.*

Consider $\{D \mid D \text{ is a cone in } V, D \supseteq C; D \cap U = \phi\}$. This family is nonempty. By Zorn's lemma let *D* be the maximal element (with these properties). **Claim 1:** $-U \subseteq D$. If not let $x \in -U, x \notin D$. By maximality: $(D + x\mathbb{R}_+) \cap U \neq \phi$. So $\exists y \in D; r \ge 0; u \in U$ with y + rx = u. So y = r(-x) + u.

So
$$\underbrace{\frac{y}{1+r}}_{\in D \text{ since } D \text{ is a cone}} = \underbrace{\frac{r}{1+r}(-x) + \frac{1}{1+r}u}_{\in U \text{ by convexity of } U} \in D \cap U$$
, a contradiction.
 \Box (claim 1)

Claim 2:
$$D \cup -D = V$$
.

Let $x \in V$ and $x \notin D$. Then $(D + \mathbb{R}_+ x) \cap U \neq \phi$. So $\exists u = d + rx$ such that $u \in U, r > 0, d \in D$. Then $-x = \frac{1}{r}(d-u) \in \frac{1}{r}(D-U) \underbrace{\subseteq}_{\text{(by claim 1)}} \frac{1}{r}(D+D) \subseteq D$. \Box (claim 2)

Claim 3: D is closed.

If not, let $d_i \in D$ such that $\lim_{i \to \infty} d_i \to x$ and $x \notin D$. Then $(D + \mathbb{R}_+ x) \cap U \neq \phi$. So $\exists u = d + rx ; u \in U, r > 0, d \in D$. Then $u = d + r \lim_{i \to \infty} d_i = \lim_{i \to \infty} (d + rd_i)$. So $d + rd_i \in U$ for *i* sufficiently large (since *U* is open so complement of *U* is closed), but also $d + rd_i \in D$ (since *D* is a cone). This contradicts $U \cap D = \phi$. \Box (claim 3)

Now let $W := D \cap -D$. Fix $x_0 \in U$. By previous claims we see that W is a subspace. Further $x_0 \in U \Rightarrow x_0 \notin D \Rightarrow x_0 \notin W$. Now consider the subspace $W \oplus \mathbb{R}x_0$.

Claim 4: $V = W \oplus \mathbb{R}x_0$ (i.e. *W* is a hyperplane in *V* i.e. has codimension 1 in *V*). Let $y \in V$, w.l.o.g. $y \in D$ (if $y \notin D$; $-y \in D$ same argument).

Consider $\{\lambda x_0 + (1 - \lambda)y \mid 0 \le \lambda \le 1\}$ and the largest λ in the interval [0, 1] such that $z = \lambda x_0 + (1 - \lambda)y \in D$. Then $\lambda < 1; z \in D \cap -D = W$.

So
$$y = \frac{1}{1-\lambda}z + \frac{-\lambda}{1-\lambda}x_0 \in W + \mathbb{R}x_0.$$
 \Box (claim 4)

Now let $L : V \to \mathbb{R}$ be the uniquely determined functional defined by L(W) = 0and $L(x_0) = -1$.

Claim 5: $L \ge 0$ on D.

Let $y \in D$. If $y \in W$ then L(y) = 0, so done. If $y \notin W$ then for some λ :

$$\lambda x_0 + (1 - \lambda)y \in W; \ 0 < \lambda < 1. \text{ Applying } L:$$

$$\lambda L(x_0) + (1 - \lambda)L(y) = -\lambda + (1 - \lambda)L(y) = 0.$$

So $L(y) = \frac{\lambda}{1 - \lambda} > 0.$

 \Box (claim 4)

 $\Box\Box$ (proof of theorem 1.6)