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1. Topology on finite and countable dimensional R-vectorspace 1

1. TOPOLOGY ON FINITE AND COUNTABLE DIMENSIONAL R-VECTOR
SPACE (continued)

We want to prove Theorem 2.4 of Lecture 18, i.e.

Theorem 1.1. V is a topological vector space with finite topology 7. Moreover
(V,7) is a topological R-algebra if V is endowed with R algebra structure.

We still need more helping lemmas (towards proof of 1.1):
Lemma 1.2. (About finite dimensional spaces with ET)
1. Finite dimensional R-vector spaces V with ET are topological spaces.

2. Linear functionals L : V — R are continuous. More generally,
let V;, V; be finite dimensional vectorpaces with ET and L : V; X V; — V;
bilinear map, then L is continuous. m]

1.3. Helping lemma III. Let V = U V; be a countable dimensional vector space

with (finite topology) 75,(V), where V;’s are finite dimensional. Let (y, x) be a
topological space and f : V — y be a map. Then f is continuous (with respect to
Tan(V) and y) iff f|y. 1s continuous (with respect to ET on V; and y) for each i € N.

Proof. (=) Clear.

(&) Let X C (x, x) be open. To show: f~!(X)is openin V. Using Hilfslemma I (4)
it is enough to show that £~'(X)NV;is openin V; ¥ i. But f~'(X)NV; = (fly,)” (X)
which is open in V; V i since f]y, is assumed to be continuous V i. O
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Corollary 1.4. Let V be countable dimensional with finite topology 74,(V) and
L : V — R be a linear functional. Then L is continuous. O

1.5. Proof of the theorem 1.1. Helping lemma [+ II + III implies the proof as

(last lecture)
follows:

(i) We need to verify that + : (V XV, 74,(V) X 16,(V)) = (V, T4(V)) 1s continuous.

(product topology)
Using Helping lemma II, it is enough to verify that

+: (VX V,15,(V X V) = (V, 14,(V)) is continuous.

Proof. LetV = U Vi ,then VXV = U(Vi x V;). By Hilfslemma III, enough to
ieN i
verify that
+:(V; x Vi, ET) = (V, 14,(V)) is continuous.

Let U C V open in 14,(V). We show that (+)"}(U) C V; x V; is open in ET.

But V; is a subspace so (+)"'(U) = (+)"}(U N V;). Now U N V; is open in V; and
by lemma 1.2 we know that V; is a topological vector space so (+)"'(U N V;) is
open. O

(i1) Scalar multiplication:
.:RXxV — V;(r,v) — rvis continuous.
Proof. Analogous. O
(iii) Multiplication: Let V be a R-algebra. Then
X 1 (VX V, T5.(V) X (V) = (V, T5,(V) is continuous.

(product topology)

Proof. Observe that restriction of multiplication to the finite dimensional sub-

spaces V; is not well defined i.e. V; need not be a sub algebra, but

Claim 1: 3 j large enough so that

X : VixV; — V;is well defined.

Proof of claim 1: Let {vy, ..., v;} be a basis of V;. Let j be large enough so that the

product vectors vy, € V;forall 1 <[k <.

Claim 2: The mapping X : V; X V; — V; is bilinear and hence continuous by

lemma 1.2. U
od(proof of theorem 1.1)

Theorem 1.6. (Separation Theorem) (Theorem 2.5 of Lecture 18) Let V be a
countable dimensional vector space, U C V be open and convex, C C V be a cone
such that U, C # ¢ and UNC = ¢. Then there exists a linear functional L : V — R
such that L(U) < 0 and L(C) > 0.
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Corollary 1.7. If C C V is closed cone and xy ¢ C then there exists L : V — R
such that L(xp) < 0 and L(C) > 0.

Proof. AU’ 3 xy : U" open and U’ N C = ¢. By theorem 2.3 of Lecture 18, let U
be an open convex subset of V with xo € U C U and U N C = ¢. m|

1.8. Proof of the theorem 1.6.
Consider {D | Disaconein V,D 2 C; D N U = ¢}. This family is nonempty. By
Zorn’s lemma let D be the maximal element (with these properties).
Claim 1: -U C D.
If notlet x € —U, x ¢ D. By maximality: (D + xR,) N U # ¢.
So dyeD;r>0;uec Uwithy+rx=u.Soy=r(—x)+u.

y r

So = (=x) + u € DN U, acontradiction.
1+r 1 +7r l1+7r
——
€ D since D is a cone € U by convexity of U

O (claim 1)

Claim2: Du-D =1V,
Letx € Vand x ¢ D. Then (D +R,x) N U # ¢. So du = d + rx such that

1 1 1
ueUyr>0,deD. Then—-x=-(d-uwe-(D-U) < —-(D+D)CD.
r r —~r
(by claim 1)
O (claim 2)
Claim 3: D is closed.
If not, let d; € D such that limd; — xand x ¢ D. Then (D +R,x)NU # ¢. So

du=d+rx; ueUr>0,deD. Thenu =d+rlimd; = lim(d + rd;). So

i—00 i—00

d+rd; € U for i sufficiently large (since U is open so complement of U is closed),
but also d + rd; € D (since D is a cone). This contradicts U N D = ¢. O (claim 3)

Now let W := DN —-D. Fix xy € U. By previous claims we see that W is a
subspace. Further xo e U = xo ¢ D = xo ¢ W.
Now consider the subspace W @ Rx.

Claim 4: V = W & Rx, (i.e. W is a hyperplane in V i.e. has codimension 1 in V).
Letye V,wlo.g.ye D (ify ¢ D; —y € D same argument).
Consider {Axy + (1 = 2)y | 0 < A < 1} and the largest A in the interval [0, 1] such
thatz = Axg+ (1 —A)ye D. Thend< l;zeDN-D=W.
1 -1

So y=——z+

CYTITIAN T T
Now let L : V — R be the uniquely determined functional defined by L(W) = 0
and L(xg) = —1.
Claim S: L > Oon D.
Lety € D. If y € W then L(y) = 0, so done. If y ¢ W then for some A :

xg € W+ Ruxy. O (claim 4)
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Axg+ (1 -DyeW; 0<A<1. Applying L :
AL(xp) + (1 = DL(y) = -4+ (1 - AD)L(y) = 0.

A
So L(y) = m > 0. O (claim 4)

od (proof of theorem 1.6)



