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1. Topology on finite and countable dimensional R-vectorspace 1

1. TOPOLOGY ON FINITE AND COUNTABLE DIMENSIONAL R−VECTOR
SPACE (continued)

We want to prove Theorem 2.4 of Lecture 18, i.e.

Theorem 1.1. V is a topological vector space with finite topology τ. Moreover
(V, τ) is a topological R-algebra if V is endowed with R algebra structure.

We still need more helping lemmas (towards proof of 1.1):

Lemma 1.2. (About finite dimensional spaces with ET)

1. Finite dimensional R-vector spaces V with ET are topological spaces.

2. Linear functionals L : V → R are continuous. More generally,
let Vi,V j be finite dimensional vectorpaces with ET and L : Vi × Vi → V j

bilinear map, then L is continuous. �

1.3. Helping lemma III. Let V =
⋃

i

Vi be a countable dimensional vector space

with (finite topology) τfin(V), where Vi’s are finite dimensional. Let (χ, x) be a
topological space and f : V → χ be a map. Then f is continuous (with respect to
τfin(V) and χ) iff f |Vi is continuous (with respect to ET on Vi and χ) for each i ∈ N.

Proof. (⇒) Clear.
(⇐) Let X ⊆ (χ, x) be open. To show: f −1(X) is open in V . Using Hilfslemma I (4)
it is enough to show that f −1(X)∩Vi is open in Vi ∀ i. But f −1(X)∩Vi =

(
f |VI

)−1(X)
which is open in Vi ∀ i since f |Vi is assumed to be continuous ∀ i. �

1
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Corollary 1.4. Let V be countable dimensional with finite topology τfin(V) and
L : V → R be a linear functional. Then L is continuous. �

1.5. Proof of the theorem 1.1. Helping lemma I + II︸︷︷︸
(last lecture)

+ III implies the proof as

follows:
(i) We need to verify that + : (V×V, τfin(V) × τfin(V))︸              ︷︷              ︸

(product topology)

→ (V, τfin(V)) is continuous.

Using Helping lemma II, it is enough to verify that

+ : (V × V, τfin(V × V))→ (V, τfin(V)) is continuous.

Proof. Let V =
⋃
i∈N

Vi , then V × V =
⋃

i

(Vi × Vi). By Hilfslemma III, enough to

verify that
+ : (Vi × Vi, ET )→ (V, τfin(V)) is continuous.

Let U ⊆ V open in τfin(V). We show that (+)−1(U) ⊆ Vi × Vi is open in ET.
But Vi is a subspace so (+)−1(U) = (+)−1(U ∩ Vi). Now U ∩ Vi is open in Vi and
by lemma 1.2 we know that Vi is a topological vector space so (+)−1(U ∩ Vi) is
open. �

(ii) Scalar multiplication:
. : R × V → V; (r, v) 7→ rv is continuous.

Proof. Analogous. �

(iii) Multiplication: Let V be a R-algebra. Then

× : (V × V, τfin(V) × τfin(V))︸              ︷︷              ︸
(product topology)

→ (V, τfin(V) is continuous.

Proof. Observe that restriction of multiplication to the finite dimensional sub-
spaces Vi is not well defined i.e. Vi need not be a sub algebra, but
Claim 1: ∃ j large enough so that

× : Vi × Vi → V j is well defined.
Proof of claim 1: Let {v1, . . . , vi} be a basis of Vi. Let j be large enough so that the
product vectors vlvk ∈ V j for all 1 ≤ l, k ≤ i.
Claim 2: The mapping × : Vi × Vi → V j is bilinear and hence continuous by
lemma 1.2. �

��(proof of theorem 1.1)

Theorem 1.6. (Separation Theorem) (Theorem 2.5 of Lecture 18) Let V be a
countable dimensional vector space, U ⊆ V be open and convex, C ⊆ V be a cone
such that U,C , φ and U∩C = φ. Then there exists a linear functional L : V → R
such that L(U) < 0 and L(C) ≥ 0.
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Corollary 1.7. If C ⊆ V is closed cone and x0 < C then there exists L : V → R
such that L(x0) < 0 and L(C) ≥ 0.

Proof. ∃ U′ 3 x0 : U′ open and U′ ∩ C = φ. By theorem 2.3 of Lecture 18, let U
be an open convex subset of V with x0 ∈ U ⊆ U′ and U ∩C = φ. �

1.8. Proof of the theorem 1.6.
Consider {D | D is a cone in V,D ⊇ C; D ∩ U = φ}. This family is nonempty. By
Zorn’s lemma let D be the maximal element (with these properties).
Claim 1: −U ⊆ D.
If not let x ∈ −U, x < D. By maximality: (D + xR+) ∩ U , φ.
So ∃ y ∈ D; r ≥ 0; u ∈ U with y + rx = u. So y = r(−x) + u.

So
y

1 + r︸︷︷︸
∈ D since D is a cone

=
r

1 + r
(−x) +

1
1 + r

u︸                   ︷︷                   ︸
∈ U by convexity of U

∈ D ∩ U, a contradiction.

� (claim 1)

Claim 2: D ∪ −D = V .
Let x ∈ V and x < D. Then (D + R+x) ∩ U , φ. So ∃ u = d + rx such that

u ∈ U, r > 0, d ∈ D. Then −x =
1
r

(d − u) ∈
1
r

(D − U) ⊆︸︷︷︸
(by claim 1)

1
r

(D + D) ⊆ D.

� (claim 2)
Claim 3: D is closed.
If not, let di ∈ D such that lim

i→∞
di → x and x < D. Then (D + R+x) ∩ U , φ. So

∃ u = d + rx ; u ∈ U, r > 0, d ∈ D. Then u = d + r lim
i→∞

di = lim
i→∞

(d + rdi). So
d + rdi ∈ U for i sufficiently large (since U is open so complement of U is closed),
but also d + rdi ∈ D (since D is a cone). This contradicts U ∩ D = φ. � (claim 3)

Now let W := D ∩ −D. Fix x0 ∈ U. By previous claims we see that W is a
subspace. Further x0 ∈ U ⇒ x0 < D⇒ x0 < W.
Now consider the subspace W ⊕ Rx0.
Claim 4: V = W ⊕ Rx0 (i.e. W is a hyperplane in V i.e. has codimension 1 in V).
Let y ∈ V , w.l.o.g. y ∈ D (if y < D ; −y ∈ D same argument).
Consider

{
λx0 + (1 − λ)y | 0 ≤ λ ≤ 1

}
and the largest λ in the interval [0, 1] such

that z = λx0 + (1 − λ)y ∈ D. Then λ < 1; z ∈ D ∩ −D = W.

So y =
1

1 − λ
z +

−λ

1 − λ
x0 ∈ W + Rx0. � (claim 4)

Now let L : V → R be the uniquely determined functional defined by L(W) = 0
and L(x0) = −1.
Claim 5: L ≥ 0 on D.
Let y ∈ D. If y ∈ W then L(y) = 0, so done. If y < W then for some λ :
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λx0 + (1 − λ)y ∈ W; 0 < λ < 1. Applying L :
λL(x0) + (1 − λ)L(y) = −λ + (1 − λ)L(y) = 0.

So L(y) =
λ

1 − λ
> 0. � (claim 4)

�� (proof of theorem 1.6)


