POSITIVE POLYNOMIALS LECTURE NOTES

 (20: 24/06/10)SALMA KUHLMANN

Contents

1. Topology on finite and countable dimensional \mathbb{R}-vectorspace

1. TOPOLOGY ON FINITE AND COUNTABLE DIMENSIONAL \mathbb{R}-VECTOR SPACE (continued)

We want to prove Theorem 2.4 of Lecture 18, i.e.
Theorem 1.1. V is a topological vector space with finite topology τ. Moreover (V, τ) is a topological \mathbb{R}-algebra if V is endowed with \mathbb{R} algebra structure.

We still need more helping lemmas (towards proof of 1.1):
Lemma 1.2. (About finite dimensional spaces with ET)

1. Finite dimensional \mathbb{R}-vector spaces V with ET are topological spaces.
2. Linear functionals $L: V \rightarrow \mathbb{R}$ are continuous. More generally, let V_{i}, V_{j} be finite dimensional vectorpaces with ET and $L: V_{i} \times V_{i} \rightarrow V_{j}$ bilinear map, then L is continuous.
1.3. Helping lemma III. Let $V=\bigcup_{i} V_{i}$ be a countable dimensional vector space with (finite topology) $\tau_{\text {fin }}(V)$, where V_{i} 's are finite dimensional. Let (χ, x) be a topological space and $f: V \rightarrow \chi$ be a map. Then f is continuous (with respect to $\tau_{\mathrm{fin}}(V)$ and χ) iff $\left.f\right|_{V_{i}}$ is continuous (with respect to ET on V_{i} and χ) for each $i \in \mathbb{N}$.

Proof. (\Rightarrow) Clear.
(\Leftarrow) Let $X \subseteq(\chi, x)$ be open. To show: $f^{-1}(X)$ is open in V. Using Hilfslemma I (4) it is enough to show that $f^{-1}(X) \cap V_{i}$ is open in $V_{i} \forall i$. But $f^{-1}(X) \cap V_{i}=\left(\left.f\right|_{V_{I}}\right)^{-1}(X)$ which is open in $V_{i} \forall i$ since $\left.f\right|_{V_{i}}$ is assumed to be continuous $\forall i$.

Corollary 1.4. Let V be countable dimensional with finite topology $\tau_{\text {fin }}(V)$ and $L: V \rightarrow \mathbb{R}$ be a linear functional. Then L is continuous.
1.5. Proof of the theorem 1.1. Helping lemma $\underbrace{\mathrm{I}+\mathrm{II}}_{\text {(last lecture) }}+\mathrm{III}$ implies the proof as follows:
(i) We need to verify that $+:(V \times V, \underbrace{\left.\tau_{\mathrm{fin}}(V) \times \tau_{\mathrm{fin}}(V)\right)}_{\text {(product topology) }} \rightarrow\left(V, \tau_{\mathrm{fin}}(V)\right)$ is continuous. Using Helping lemma II, it is enough to verify that

$$
+:\left(V \times V, \tau_{\mathrm{fin}}(V \times V)\right) \rightarrow\left(V, \tau_{\mathrm{fin}}(V)\right) \text { is continuous. }
$$

Proof. Let $V=\bigcup_{i \in \mathbb{N}} V_{i}$, then $V \times V=\bigcup_{i}\left(V_{i} \times V_{i}\right)$. By Hilfslemma III, enough to verify that

$$
+:\left(V_{i} \times V_{i}, E T\right) \rightarrow\left(V, \tau_{\mathrm{fin}}(V)\right) \text { is continuous. }
$$

Let $U \subseteq V$ open in $\tau_{\text {fin }}(V)$. We show that $(+)^{-1}(U) \subseteq V_{i} \times V_{i}$ is open in ET.
But V_{i} is a subspace so $(+)^{-1}(U)=(+)^{-1}\left(U \cap V_{i}\right)$. Now $U \cap V_{i}$ is open in V_{i} and by lemma 1.2 we know that V_{i} is a topological vector space so $(+)^{-1}\left(U \cap V_{i}\right)$ is open.
(ii) Scalar multiplication:

$$
.: \mathbb{R} \times V \rightarrow V ;(r, v) \mapsto r v \text { is continuous. }
$$

Proof. Analogous.
(iii) Multiplication: Let V be a \mathbb{R}-algebra. Then

$$
\times:(V \times V, \underbrace{\left.\tau_{\text {fin }}(V) \times \tau_{\text {fin }}(V)\right)}_{\text {(product topology) }} \rightarrow\left(V, \tau_{\text {fin }}(V)\right. \text { is continuous. }
$$

Proof. Observe that restriction of multiplication to the finite dimensional subspaces V_{i} is not well defined i.e. V_{i} need not be a sub algebra, but
Claim 1: $\exists j$ large enough so that

$$
\times: V_{i} \times V_{i} \rightarrow V_{j} \text { is well defined. }
$$

Proof of claim 1: Let $\left\{v_{1}, \ldots, v_{i}\right\}$ be a basis of V_{i}. Let j be large enough so that the product vectors $v_{l} v_{k} \in V_{j}$ for all $1 \leq l, k \leq i$.
Claim 2: The mapping $\times: V_{i} \times V_{i} \rightarrow V_{j}$ is bilinear and hence continuous by lemma 1.2.
$\square \square$ (proof of theorem 1.1)
Theorem 1.6. (Separation Theorem) (Theorem 2.5 of Lecture 18) Let V be a countable dimensional vector space, $U \subseteq V$ be open and convex, $C \subseteq V$ be a cone such that $U, C \neq \phi$ and $U \cap C=\phi$. Then there exists a linear functional $L: V \rightarrow \mathbb{R}$ such that $L(U)<0$ and $L(C) \geq 0$.

Corollary 1.7. If $C \subseteq V$ is closed cone and $x_{0} \notin C$ then there exists $L: V \rightarrow \mathbb{R}$ such that $L\left(x_{0}\right)<0$ and $L(C) \geq 0$.

Proof. $\exists U^{\prime} \ni x_{0}: U^{\prime}$ open and $U^{\prime} \cap C=\phi$. By theorem 2.3 of Lecture 18 , let U be an open convex subset of V with $x_{0} \in U \subseteq U^{\prime}$ and $U \cap C=\phi$.
1.8. Proof of the theorem 1.6.

Consider $\{D \mid D$ is a cone in $V, D \supseteq C ; D \cap U=\phi\}$. This family is nonempty. By Zorn's lemma let D be the maximal element (with these properties).
Claim 1: $-U \subseteq D$.
If not let $x \in-U, x \notin D$. By maximality: $\left(D+x \mathbb{R}_{+}\right) \cap U \neq \phi$.
So $\exists y \in D ; r \geq 0 ; u \in U$ with $y+r x=u$. So $y=r(-x)+u$.
So $\underbrace{\frac{y}{1+r}}_{\in D \text { since } D \text { is a cone }}=\underbrace{\frac{r}{1+r}(-x)+\frac{1}{1+r}}_{\in U \text { by convexity of } U} u \in D \cap U$, a contradiction.

Claim 2: $D \cup-D=V$.
Let $x \in V$ and $x \notin D$. Then $\left(D+\mathbb{R}_{+} x\right) \cap U \neq \phi$. So $\exists u=d+r x$ such that $u \in U, r>0, d \in D$. Then $-x=\frac{1}{r}(d-u) \in \frac{1}{r}(D-U) \underbrace{\subseteq}_{\text {(by claim 1) }} \frac{1}{r}(D+D) \subseteq D$. (claim 2)
Claim 3: D is closed.
If not, let $d_{i} \in D$ such that $\lim _{i \rightarrow \infty} d_{i} \rightarrow x$ and $x \notin D$. Then $\left(D+\mathbb{R}_{+} x\right) \cap U \neq \phi$. So $\exists u=d+r x ; u \in U, r>0, d \in D$. Then $u=d+r \lim _{i \rightarrow \infty} d_{i}=\lim _{i \rightarrow \infty}\left(d+r d_{i}\right)$. So $d+r d_{i} \in U$ for i sufficiently large (since U is open so complement of U is closed), but also $d+r d_{i} \in D$ (since D is a cone). This contradicts $U \cap D=\phi$. \square (claim 3)

Now let $W:=D \cap-D$. Fix $x_{0} \in U$. By previous claims we see that W is a subspace. Further $x_{0} \in U \Rightarrow x_{0} \notin D \Rightarrow x_{0} \notin W$.
Now consider the subspace $W \oplus \mathbb{R} x_{0}$.
Claim 4: $V=W \oplus \mathbb{R} x_{0}$ (i.e. W is a hyperplane in V i.e. has codimension 1 in V). Let $y \in V$, w.l.o.g. $y \in D$ (if $y \notin D ;-y \in D$ same argument).
Consider $\left\{\lambda x_{0}+(1-\lambda) y \mid 0 \leq \lambda \leq 1\right\}$ and the largest λ in the interval $[0,1]$ such that $z=\lambda x_{0}+(1-\lambda) y \in D$. Then $\lambda<1 ; z \in D \cap-D=W$.
So $y=\frac{1}{1-\lambda} z+\frac{-\lambda}{1-\lambda} x_{0} \in W+\mathbb{R} x_{0}$.
Now let $L: V \rightarrow \mathbb{R}$ be the uniquely determined functional defined by $L(W)=0$ and $L\left(x_{0}\right)=-1$.
Claim 5: $L \geq 0$ on D.
Let $y \in D$. If $y \in W$ then $L(y)=0$, so done. If $y \notin W$ then for some λ :

$$
\begin{aligned}
& \lambda x_{0}+(1-\lambda) y \in W ; 0<\lambda<1 \text {. Applying } L: \\
& \lambda L\left(x_{0}\right)+(1-\lambda) L(y)=-\lambda+(1-\lambda) L(y)=0 . \\
& \text { So } L(y)=\frac{\lambda}{1-\lambda}>0 .
\end{aligned}
$$

$$
\square(\text { claim 4) }
$$

