
POSITIVE POLYNOMIALS LECTURE NOTES
(21: 29/06/10)

SALMA KUHLMANN

Contents

1. K-Moment problem 1
2. Closed finitely generated preorderings 2

1. K-MOMENT PROBLEM (continuation to Lecture 17)

1.1. Framework

A = R[X]
S = {g1, . . . , gs}

K = KS ; b.c.s.a.set
TS : f.g. preordering.

We have the containment (recall 3.5 of Lecture 16)

TS ⊆ T S ⊆ Psd(KS ) (1)

Remark 1.2. We have an interesting comparison between Psd(KS ) and T S . One
can show:

Psd(KS ) =
⋂

α:R[X]→R homomorphism of R−algebra with α(TS )≥0

α−1(R+)

=
⋂

α:R[X]→R, α=evx, x ∈KS

α−1(R+)

whereas

T S = T vv
S =

⋂
L:R[X]→R linear homomorphism of R−vector spaces with L(TS )≥0

L−1(R+).

1
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We Shall study the containment in (1).

1.3. Recall.

(a) If TS =Psd(KS ), then TS is saturated.

(b) If T S = Psd(KS ), then “S solves the KS -MP ”.

Proposition 1.4. If TS ⊆ R[X] is closed then S solves the KMP if and only if TS

is saturated.

Proof. Immediate from (a) and (b) (of 1.3 above) and TS = T S if TS is closed. �

We shall therefore study closed preorderings now:

2. CLOSED FINITELY GENERATED PREORDERINGS

Proposition 2.1. Let A = R[X] endowed with finite topology and Ad = R[X]d =

{ f ∈ A | deg f ≤ d}; d ∈ Z+. This subspace is finite dimensional generated by Xα

of degree |α| := α1 + . . . + αn ≤ d.

Dim(Ad) =

(
n + d

d

)
; {Ad}d∈N; Ad ⊆ Ad+1; A =

⋃
d Ad.

So T ⊆ A is closed in A if and only if Td := T ∩ Ad is closed in Ad for ET; for all
d ∈ Z+.

Theorem 2.2. Let R[X] = R[X1, . . . , Xn]. Then

(i)
∑
R[X]2 is closed in

(
R[X], τfin

)
(Berg et al; 1970).

(ii) Let S = {g1, . . . , gs} and K = KS ⊆ R
n ba a b.c.s.a. set.

(K-M) If KS contains a cone with nonempty interior (equivalently a cone of

dimension n, equivalently just a non empty generating Cone C), then TS is

closed.

The proof of (i) will follow from a series of lemma:

Lemma 2.3. It is enough to show that
∑

d := (
∑
R[X]2)∩ Ad is closed in Ad ∀ d ∈

2Z+. �

Lemma 2.4. Let f ∈
∑

d, d even.

1. if f =

m∑
i=1

h2
i then deg( f ) = max

i=1,...,m
{deg h2

i }
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2. therefore for any representation
m∑

i=1

h2
i of f we must have deg(hi) ≤

d
2

for

all i = 1, . . . ,m.

3. w.l.o.g. we may assume that m ≤ N := dim Ad/2 =

(
n + d

2
d
2

)
.

4. Therefore (for d even) f ∈
∑

d can be written as: f =

N∑
i=1

h2
i with deg(hi) ≤

d
2
∀ i = 1, . . . , n.

Proof. (1) and (2): clear.

Proof of (3): Let f ∈ R[X], d = deg f = 2q. Set N =

(
n + q

q

)
.

Claim: f ∈ R[X2] iff there exists an N × N psd symmetric matrix M ∈ S N×N(R)

such that f (x) = YT MY , where Y =


Y1
...

yN

 where {Y1, . . . ,YN} is an enumeration

of all possible monomials xα = xα1
1 . . . xαn

n with α = (α1, . . . , αn) ∈ Zn
+ and |α| :=

α1 + . . . + αn ≤ q.

In particular: f ∈
∑
R[X]2 iff f =

N∑
i=1

h2
i

Proof of the claim:

(⇒) Assume f ∈ R[X2] and f =
∑

h2
i where hi ∈ Aq. Write hi =


ai1
...

aiN

 ∈ RN and

define Mαβ :=
∑

i

aiαaiβ the αβth coefficient of the matrix M for α, β ∈ {1, . . . ,N}.

Obviously it is symmetric. Check that M is PSD and that f = YT MY .
(⇐) Conversely if f = YT MY with M symmetric and psd; i.e. M ∈ S N×N(R). By
spectral theorem write

M = BT B, where B ∈ MN×N

So f = (YT BT )(BY) = (BY)T (BY) =

N∑
α=1

(BY)2
α. �

Lemma 2.5. Fix a set D of d + 1 distinct real numbers and set ∆ := Dn ⊆ Rn.
Consider the map

Ψ : Ad → R
∆

g(X) 7→ (g(a))a∈∆
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Then Ψ is linear and Ψ(g) = 0 iff g ≡ 0
(
i.e. Ker(Ψ) = {0}

)
. So Ψ is homomor-

phism onto a closed subspace of R∆.

Proof. The only thing to verify is Ker(Ψ) = {0}.
By induction on n.
If n = 1 and g is a polynomial of degree ≤ d that has d + 1 roots is identically the
zero polynomial i.e. g ≡ 0. So on it follows for all n. �

Corollary 2.6. Let { f j} j ⊆ Ad; f ∈ Ad. Then

1. f j → f in Ad if and only if f j(a) → f (a) in R for each a ∈ ∆ (i.e. point
wise convergence on ∆).

2. More generally { f j} j ⊆ Ad is a convergent in Ad iff { f j(a)} j is convergent
sequence in R for each a ∈ ∆.

Proof. Proof of 2:
(⇐) From assumption Ψ( f j) converges to a point γ ∈ R∆. But since Im Ψ is a
subspace of R∆ it is closed so γ ∈ ImΨ. So lim

j→∞
f j = Ψ−1(γ) ∈ Ad. �

2.7. Proof of Theorem 2.2 (i).
We want to show that

∑
d is closed in Ad in the Euclidean topology (i.e. conver-

gence of coefficients).
Let f ∈ Ad ; f j ∈

∑
d so that f j → f coefficientwise in Ad (?)

To show: f ∈
∑

d

Write without loss of generality: f j =

N∑
i=1

h2
i j, deg hi j ≤

d
2
∀ j; N =

(
n+d/2

d/2

)
.

(?)⇒ f j(a)→ f (a) ∀ a ∈ ∆ as j→ ∞

i.e.
N∑
i

(hi j(a))2 → f (a) in R ∀ a ∈ ∆.

So ∃ δ > 0 s.t.
h2

i j(a) ≤ f j(a) ≤ δ ∀ a ∈ ∆,∀ j ∈ N,∀ i = 1, . . . ,N
So for each fixed a ∈ ∆ and each fixed i ∈ {1, . . . ,N}, {hi j(a)} j∈N is a bounded
sequence of reals so has a convergent subsequence.
Also since ∆ is finite there is therefore a subsequence {hi jk}k∈N of {hi j} for each
fixed i ∈ {1, . . . ,N} such that {hi jk(a)}k∈N is convergent for each a ∈ ∆. So by
Corollary 2.6 above:
for each i ∈ {1, . . . ,N} : {hi jk}k∈N is convergent in Ad/2 say to hi.

So
N∑

i=1

h2
i = lim

k→∞

N∑
i=1

hi j
2
k = lim

k→∞
f jk = f .

So f ∈
∑

d as required. �(proof of theorem 2.2 (i))


