# POSITIVE POLYNOMIALS LECTURE NOTES 

## (21: 29/06/10)

## SALMA KUHLMANN

## Contents

1. $K$-Moment problem 1
2. Closed finitely generated preorderings 2
3. $K$-MOMENT PROBLEM (continuation to Lecture 17)

### 1.1. Framework

$$
\begin{gathered}
A=\mathbb{R}[\underline{X}] \\
S=\left\{g_{1}, \ldots, g_{s}\right\} \\
K=K_{S} ; \text { b.c.s.a.set } \\
T_{S}: \text { f.g. preordering. }
\end{gathered}
$$

We have the containment (recall 3.5 of Lecture 16)

$$
\begin{equation*}
T_{S} \subseteq \bar{T}_{S} \subseteq \operatorname{Psd}\left(K_{S}\right) \tag{1}
\end{equation*}
$$

Remark 1.2. We have an interesting comparison between $\operatorname{Psd}\left(K_{S}\right)$ and $\bar{T}_{S}$. One can show:

$$
\begin{aligned}
& \operatorname{Psd}\left(K_{S}\right)= \bigcap_{\alpha: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R}} \bigcap_{\alpha: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R},} \bigcap_{\alpha=e v_{\underline{x}}, \underline{x} \in K_{S}} \alpha^{-1}\left(\mathbb{R}_{+}\right) \\
& \alpha^{-1}\left(\mathbb{R}_{+}\right) \\
&
\end{aligned}
$$

whereas

$$
\bar{T}_{S}=T_{S}^{\mathrm{vv}}=\bigcap_{L: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R} \text { linear homomorphism of } \mathbb{R} \text {-vector spaces with } L\left(T_{S}\right) \geq 0} L^{-1}\left(\mathbb{R}_{+}\right)
$$

We Shall study the containment in (1).

### 1.3. Recall.

(a) If $T_{S}=\operatorname{Psd}\left(K_{S}\right)$, then $T_{S}$ is saturated.
(b) If $\bar{T}_{S}=\operatorname{Psd}\left(K_{S}\right)$, then " $S$ solves the $K_{S}-\mathrm{MP}$ ".

Proposition 1.4. If $T_{S} \subseteq \mathbb{R}[\underline{X}]$ is closed then $S$ solves the KMP if and only if $T_{S}$ is saturated.

Proof. Immediate from (a) and (b) (of 1.3 above) and $T_{S}=\bar{T}_{S}$ if $T_{S}$ is closed.
We shall therefore study closed preorderings now:

## 2. CLOSED FINITELY GENERATED PREORDERINGS

Proposition 2.1. Let $A=\mathbb{R}[\underline{X}]$ endowed with finite topology and $A_{d}=\mathbb{R}[\underline{X}]_{d}=$ $\{f \in A \mid \operatorname{deg} f \leq d\} ; d \in \mathbb{Z}_{+}$. This subspace is finite dimensional generated by $\underline{X}^{\underline{\alpha}}$ of degree $|\underline{\alpha}|:=\alpha_{1}+\ldots+\alpha_{n} \leq d$.
$\operatorname{Dim}\left(A_{d}\right)=\binom{n+d}{d} ;\left\{A_{d}\right\}_{d \in \mathbb{N}} ; A_{d} \subseteq A_{d+1} ; A=\bigcup_{d} A_{d}$.
So $T \subseteq A$ is closed in $A$ if and only if $T_{d}:=T \cap A_{d}$ is closed in $A_{d}$ for ET; for all $d \in \mathbb{Z}_{+}$.

Theorem 2.2. Let $\mathbb{R}[\underline{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$. Then
(i) $\sum \mathbb{R}[\underline{X}]^{2}$ is closed in $\left(\mathbb{R}[\underline{X}], \tau_{\text {fin }}\right)$ (Berg et al; 1970).
(ii) Let $S=\left\{g_{1}, \ldots, g_{s}\right\}$ and $K=K_{S} \subseteq \mathbb{R}^{n}$ ba a b.c.s.a. set.
(K-M) If $K_{S}$ contains a cone with nonempty interior (equivalently a cone of dimension $n$, equivalently just a non empty generating Cone $C$ ), then $T_{S}$ is closed.

The proof of (i) will follow from a series of lemma:
Lemma 2.3. It is enough to show that $\sum_{d}:=\left(\sum \mathbb{R}[\underline{X}]^{2}\right) \cap A_{d}$ is closed in $A_{d} \forall d \in$ $2 \mathbb{Z}_{+}$.

Lemma 2.4. Let $f \in \sum_{d}, d$ even.

1. if $f=\sum_{i=1}^{m} h_{i}^{2}$ then $\operatorname{deg}(f)=\max _{i=1, \ldots, m}\left\{\operatorname{deg} h_{i}^{2}\right\}$
2. therefore for any representation $\sum_{i=1}^{m} h_{i}^{2}$ of $f$ we must have $\operatorname{deg}\left(h_{i}\right) \leq \frac{d}{2}$ for all $i=1, \ldots, m$.
3. w.l.o.g. we may assume that $m \leq N:=\operatorname{dim} A_{d / 2}=\binom{n+\frac{d}{2}}{\frac{d}{2}}$.
4. Therefore (for $d$ even) $f \in \sum_{d}$ can be written as: $f=\sum_{i=1}^{N} h_{i}^{2}$ with $\operatorname{deg}\left(h_{i}\right) \leq$ $\frac{d}{2} \forall i=1, \ldots, n$.
Proof. (1) and (2): clear.
Proof of (3): Let $f \in \mathbb{R}[\underline{X}], d=\operatorname{deg} f=2 q$. Set $N=\binom{n+q}{q}$.
Claim: $f \in \mathbb{R}\left[\underline{X}^{2}\right]$ iff there exists an $N \times N$ psd symmetric matrix $M \in S_{N \times N}(\mathbb{R})$ such that $f(\underline{x})=Y^{T} M Y$, where $Y=\left(\begin{array}{c}Y_{1} \\ \vdots \\ y_{N}\end{array}\right)$ where $\left\{Y_{1}, \ldots, Y_{N}\right\}$ is an enumeration of all possible monomials $\underline{x}^{\underline{\underline{\alpha}}}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ with $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n}$ and $|\underline{\alpha}|:=$ $\alpha_{1}+\ldots+\alpha_{n} \leq q$.
In particular: $f \in \sum \mathbb{R}[\underline{X}]^{2}$ iff $f=\sum_{i=1}^{N} h_{i}^{2}$
Proof of the claim:
Proof of the claim:
$(\Rightarrow)$ Assume $f \in \mathbb{R}\left[\underline{X}^{2}\right]$ and $f=\sum h_{i}^{2}$ where $h_{i} \in A_{q}$. Write $h_{i}=\left(\begin{array}{c}a_{i 1} \\ \vdots \\ a_{i N}\end{array}\right) \in \mathbb{R}^{N}$ and define $M_{\alpha \beta}:=\sum_{i} a_{i \alpha} a_{i \beta}$ the $\alpha \beta^{\text {th }}$ coefficient of the matrix $M$ for $\alpha, \beta \in\{1, \ldots, N\}$. Obviously it is symmetric. Check that $M$ is PSD and that $f=Y^{T} M Y$.
$(\Leftarrow)$ Conversely if $f=Y^{T} M Y$ with $M$ symmetric and psd; i.e. $M \in S_{N \times N}(\mathbb{R})$. By spectral theorem write

$$
M=B^{T} B, \text { where } B \in M_{N \times N}
$$

So $f=\left(Y^{T} B^{T}\right)(B Y)=(B Y)^{T}(B Y)=\sum_{\alpha=1}^{N}(B Y)_{\alpha}^{2}$.
Lemma 2.5. Fix a set $D$ of $d+1$ distinct real numbers and set $\Delta:=D^{n} \subseteq \mathbb{R}^{n}$. Consider the map

$$
\begin{aligned}
\Psi: A_{d} & \rightarrow \mathbb{R}^{\Delta} \\
g(\underline{X}) & \mapsto\left(g^{(a)}\right)_{\underline{a} \in \Delta}
\end{aligned}
$$

Then $\Psi$ is linear and $\Psi(g)=\underline{0}$ iff $g \equiv 0$ (i.e. $\operatorname{Ker}(\Psi)=\{0\})$. So $\Psi$ is homomorphism onto a closed subspace of $\mathbb{R}^{\Delta}$.
Proof. The only thing to verify is $\operatorname{Ker}(\Psi)=\{0\}$.
By induction on $n$.
If $n=1$ and $g$ is a polynomial of degree $\leq d$ that has $d+1$ roots is identically the zero polynomial i.e. $g \equiv 0$. So on it follows for all $n$.
Corollary 2.6. Let $\left\{f_{j}\right\}_{j} \subseteq A_{d} ; f \in A_{d}$. Then

1. $f_{j} \rightarrow f$ in $A_{d}$ if and only if $f_{j}(\underline{a}) \rightarrow f(\underline{a})$ in $\mathbb{R}$ for each $\underline{a} \in \Delta$ (i.e. point wise convergence on $\Delta$ ).
2. More generally $\left\{f_{j}\right\}_{j} \subseteq A_{d}$ is a convergent in $A_{d}$ iff $\left\{f_{j}(\underline{a})\right\}_{j}$ is convergent sequence in $\mathbb{R}$ for each $\underline{a} \in \Delta$.

## Proof. Proof of 2:

$(\Leftarrow)$ From assumption $\Psi\left(f_{j}\right)$ converges to a point $\gamma \in \mathbb{R}^{\Delta}$. But since $\operatorname{Im} \Psi$ is a subspace of $\mathbb{R}^{\Delta}$ it is closed so $\gamma \in \operatorname{Im} \Psi$. So $\lim _{j \rightarrow \infty} f_{j}=\Psi^{-1}(\gamma) \in A_{d}$.
2.7. Proof of Theorem 2.2 (i).

We want to show that $\sum_{d}$ is closed in $A_{d}$ in the Euclidean topology (i.e. convergence of coefficients).
Let $f \in A_{d} ; f_{j} \in \sum_{d}$ so that $f_{j} \rightarrow f$ coefficientwise in $A_{d}$
To show: $f \in \sum_{d}$
Write without loss of generality: $f_{j}=\sum_{i=1}^{N} h_{i j}^{2}, \operatorname{deg} h_{i j} \leq \frac{d}{2} \forall j ; N=\binom{n+d / 2}{d / 2}$.
$(\star) \Rightarrow f_{j}(\underline{a}) \rightarrow f(\underline{a}) \forall \underline{a} \in \Delta$ as $j \rightarrow \infty$
i.e. $\sum_{i}^{N}\left(h_{i j}(\underline{a})\right)^{2} \rightarrow f(\underline{a})$ in $\mathbb{R} \forall \underline{a} \in \Delta$.

So $\exists \delta>0$ s.t.

$$
h_{i j}^{2}(\underline{a}) \leq f_{j}(\underline{a}) \leq \delta \forall \underline{a} \in \Delta, \forall j \in \mathbb{N}, \forall i=1, \ldots, N
$$

So for each fixed $\underline{a} \in \Delta$ and each fixed $i \in\{1, \ldots, N\},\left\{h_{i j}(\underline{a})\right\}_{j \in \mathbb{N}}$ is a bounded sequence of reals so has a convergent subsequence.
Also since $\Delta$ is finite there is therefore a subsequence $\left\{h_{i j_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{h_{i j}\right\}$ for each fixed $i \in\{1, \ldots, N\}$ such that $\left\{h_{i_{k}}(\underline{a})\right\}_{k \in \mathbb{N}}$ is convergent for each $\underline{a} \in \Delta$. So by Corollary 2.6 above:
for each $i \in\{1, \ldots, N\}:\left\{h_{i j_{k}}\right\}_{k \in \mathbb{N}}$ is convergent in $A_{d / 2}$ say to $h_{i}$.
So $\sum_{i=1}^{N} h_{i}^{2}=\lim _{k \rightarrow \infty} \sum_{i=1}^{N} h_{i j_{k}}^{2}=\lim _{k \rightarrow \infty} f_{j_{k}}=f$.
So $f \in \sum_{d}$ as required.

