POSITIVE POLYNOMIALS LECTURE NOTES (21: 29/06/10)

SALMA KUHLMANN

Contents

1. <i>K</i> -Moment problem	1
2. Closed finitely generated preorderings	2

1. K-MOMENT PROBLEM (continuation to Lecture 17)

1.1. Framework

$$A = \mathbb{R}[\underline{X}]$$

$$S = \{g_1, \dots, g_s\}$$

$$K = K_S; \text{ b.c.s.a.set}$$

$$T_S: \text{ f.g. preordering.}$$

We have the containment (recall 3.5 of Lecture 16)

$$T_S \subseteq \overline{T}_S \subseteq \operatorname{Psd}(K_S) \tag{1}$$

Remark 1.2. We have an interesting comparison between $Psd(K_S)$ and \overline{T}_S . One can show:

$$\operatorname{Psd}(K_{S}) = \bigcap_{\alpha:\mathbb{R}[\underline{X}] \to \mathbb{R} \text{ homomorphism of } \mathbb{R}-\text{algebra with } \alpha(T_{S}) \ge 0} \alpha^{-1}(\mathbb{R}_{+})$$
$$= \bigcap_{\alpha:\mathbb{R}[\underline{X}] \to \mathbb{R}, \ \alpha = ev_{\underline{x}}, \ \underline{x} \in K_{S}} \alpha^{-1}(\mathbb{R}_{+})$$

whereas

$$\overline{T}_S = T_S^{\text{vv}} = \bigcap_{L:\mathbb{R}[\underline{X}] \to \mathbb{R} \text{ linear homomorphism of } \mathbb{R} - \text{vector spaces with } L(T_S) \ge 0} L^{-1}(\mathbb{R}_+).$$

We Shall study the containment in (1).

1.3. Recall.

- (a) If $T_S = Psd(K_S)$, then T_S is saturated.
- (b) If $\overline{T}_S = \text{Psd}(K_S)$, then "S solves the K_S -MP".

Proposition 1.4. If $T_S \subseteq \mathbb{R}[\underline{X}]$ is closed then *S* solves the KMP if and only if T_S is saturated.

Proof. Immediate from (a) and (b) (of 1.3 above) and $T_s = \overline{T}_s$ if T_s is closed. \Box

We shall therefore study closed preorderings now:

2. CLOSED FINITELY GENERATED PREORDERINGS

Proposition 2.1. Let $A = \mathbb{R}[\underline{X}]$ endowed with finite topology and $A_d = \mathbb{R}[\underline{X}]_d = \{f \in A \mid \deg f \leq d\}; d \in \mathbb{Z}_+$. This subspace is finite dimensional generated by $\underline{X}^{\underline{\alpha}}$ of degree $|\underline{\alpha}| := \alpha_1 + \ldots + \alpha_n \leq d$.

 $\operatorname{Dim}(A_d) = \binom{n+d}{d}; \{A_d\}_{d \in \mathbb{N}}; A_d \subseteq A_{d+1}; A = \bigcup_d A_d.$

So $T \subseteq A$ is closed in A if and only if $T_d := T \cap A_d$ is closed in A_d for ET; for all $d \in \mathbb{Z}_+$.

Theorem 2.2. Let $\mathbb{R}[\underline{X}] = \mathbb{R}[X_1, \dots, X_n]$. Then

(i) $\sum \mathbb{R}[\underline{X}]^2$ is closed in $(\mathbb{R}[\underline{X}], \tau_{\text{fin}})$ (Berg et al; 1970).

(ii) Let $S = \{g_1, \ldots, g_s\}$ and $K = K_S \subseteq \mathbb{R}^n$ ba a b.c.s.a. set.

(K-M) If K_S contains a cone with nonempty interior (equivalently a cone of dimension *n*, equivalently just a non empty generating Cone *C*), then T_S is closed.

The proof of (i) will follow from a series of lemma:

Lemma 2.3. It is enough to show that $\sum_d := (\sum \mathbb{R}[\underline{X}]^2) \cap A_d$ is closed in $A_d \forall d \in 2\mathbb{Z}_+$.

Lemma 2.4. Let $f \in \sum_d$, d even.

1. if
$$f = \sum_{i=1}^{m} h_i^2$$
 then $\deg(f) = \max_{i=1,...,m} \{\deg h_i^2\}$

- 2. therefore for any representation $\sum_{i=1}^{m} h_i^2$ of f we must have $\deg(h_i) \le \frac{d}{2}$ for all i = 1, ..., m.
- 3. w.l.o.g. we may assume that $m \le N := \dim A_{d/2} = \binom{n + \frac{a}{2}}{\frac{d}{2}}$.
- 4. Therefore (for *d* even) $f \in \sum_{d}$ can be written as: $f = \sum_{i=1}^{N} h_i^2$ with deg $(h_i) \le \frac{d}{2} \forall i = 1, ..., n$.

Proof. (1) and (2): clear.

Proof of (1) and (2). Claim: Proof of (3): Let $f \in \mathbb{R}[\underline{X}]$, $d = \deg f = 2q$. Set $N = \binom{n+q}{q}$. Claim: $f \in \mathbb{R}[\underline{X}^2]$ iff there exists an $N \times N$ psd symmetric matrix $M \in S_{N \times N}(\mathbb{R})$ such that $f(\underline{x}) = Y^T M Y$, where $Y = \binom{Y_1}{\bigcup_{y_N}}$ where $\{Y_1, \dots, Y_N\}$ is an enumeration of all possible monomials $\underline{x}^{\underline{\alpha}} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$ with $\underline{\alpha} = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_+^n$ and $|\underline{\alpha}| := \alpha_1 + \dots + \alpha_n \leq q$. In particular: $f \in \sum \mathbb{R}[\underline{X}]^2$ iff $f = \sum_{i=1}^N h_i^2$ <u>Proof of the claim:</u> (\Rightarrow) Assume $f \in \mathbb{R}[\underline{X}^2]$ and $f = \sum h_i^2$ where $h_i \in A_q$. Write $h_i = \binom{a_{i1}}{\vdots a_{iN}} \in \mathbb{R}^N$ and define $M_{\alpha\beta} := \sum_i a_{i\alpha}a_{i\beta}$ the $\alpha\beta^{ih}$ coefficient of the matrix M for $\alpha, \beta \in \{1, \dots, N\}$. Obviously it is symmetric. Check that M is PSD and that $f = Y^T M Y$. (\Leftarrow) Conversely if $f = Y^T M Y$ with M symmetric and psd; i.e. $M \in S_{N \times N}(\mathbb{R})$. By spectral theorem write $M = B^T B$, where $B \in M_{N \times N}$

So
$$f = (Y^T B^T)(BY) = (BY)^T (BY) = \sum_{\alpha=1}^{\infty} (BY)_{\alpha}^2$$
.

Lemma 2.5. Fix a set D of d + 1 distinct real numbers and set $\Delta := D^n \subseteq \mathbb{R}^n$. Consider the map

$$\begin{split} \Psi : A_d &\to \mathbb{R}^{\Delta} \\ g(\underline{X}) &\mapsto (g^{(\underline{a})})_{\underline{a} \in \Delta} \end{split}$$

(21: 29/06/10)

Then Ψ is linear and $\Psi(g) = \underline{0}$ iff $g \equiv 0$ (i.e. $Ker(\Psi) = \{0\}$). So Ψ is homomorphism onto a closed subspace of \mathbb{R}^{Δ} .

Proof. The only thing to verify is $Ker(\Psi) = \{0\}$.

By induction on *n*.

If n = 1 and g is a polynomial of degree $\leq d$ that has d + 1 roots is identically the zero polynomial i.e. $g \equiv 0$. So on it follows for all n.

Corollary 2.6. Let $\{f_j\}_j \subseteq A_d$; $f \in A_d$. Then

- 1. $f_j \to f$ in A_d if and only if $f_j(\underline{a}) \to f(\underline{a})$ in \mathbb{R} for each $\underline{a} \in \Delta$ (i.e. point wise convergence on Δ).
- 2. More generally $\{f_j\}_j \subseteq A_d$ is a convergent in A_d iff $\{f_j(\underline{a})\}_j$ is convergent sequence in \mathbb{R} for each $\underline{a} \in \Delta$.

Proof. Proof of 2:

(⇐) From assumption $\Psi(f_j)$ converges to a point $\gamma \in \mathbb{R}^{\Delta}$. But since Im Ψ is a subspace of \mathbb{R}^{Δ} it is closed so $\gamma \in \text{Im}\Psi$. So $\lim_{i\to\infty} f_j = \Psi^{-1}(\gamma) \in A_d$. \Box

2.7. *Proof of Theorem 2.2 (i).*

We want to show that \sum_d is closed in A_d in the Euclidean topology (i.e. convergence of coefficients).

Let $f \in A_d$; $f_j \in \sum_d$ so that $f_j \to f$ coefficientwise in A_d (*)

To show: $f \in \sum_d$

Write without loss of generality:
$$f_j = \sum_{i=1}^N h_{ij}^2$$
, $\deg h_{ij} \le \frac{d}{2} \quad \forall j; N = \binom{n+d/2}{d/2}$.
 $(\star) \Rightarrow f_j(\underline{a}) \to f(\underline{a}) \forall \underline{a} \in \Delta \text{ as } j \to \infty$
i.e. $\sum_{i=1}^N (h_{ij}(\underline{a}))^2 \to f(\underline{a}) \text{ in } \mathbb{R} \forall \underline{a} \in \Delta$.
So $\exists \delta > 0$ s.t.
 $h_{ii}^2(\underline{a}) \le f_j(\underline{a}) \le \delta \forall a \in \Delta, \forall j \in \mathbb{N}, \forall i = 1, ..., N$

So for each fixed $\underline{a} \in \Delta$ and each fixed $i \in \{1, ..., N\}$, $\{h_{ij}(\underline{a})\}_{j \in \mathbb{N}}$ is a bounded sequence of reals so has a convergent subsequence.

Also since Δ is finite there is therefore a subsequence $\{h_{ij_k}\}_{k \in \mathbb{N}}$ of $\{h_{ij}\}$ for each fixed $i \in \{1, ..., N\}$ such that $\{h_{ij_k}(\underline{a})\}_{k \in \mathbb{N}}$ is convergent for each $\underline{a} \in \Delta$. So by Corollary 2.6 above:

for each
$$i \in \{1, ..., N\}$$
: $\{h_{ij_k}\}_{k \in \mathbb{N}}$ is convergent in $A_{d/2}$ say to h_i .
So $\sum_{i=1}^{N} h_i^2 = \lim_{k \to \infty} \sum_{i=1}^{N} h_{ij_k^2} = \lim_{k \to \infty} f_{j_k} = f$.
So $f \in \sum_d$ as required. \Box (proof of theorem 2.2 (i))