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1. CLOSED FINITELY GENERATED PREORDERINGS (continue)

Theorem 1.1. (Theorem 2.2 (ii) of last lecture) Let K be a basic closed semialge-
braic set. Assume C C K is a non empty open cone. Let S = {gy, ..., g} such that
K = Ks. Then Ty is closed.

Proof. 1t is enough to prove the following lemma, which is a generalization of
lemma 2.4 of last lecture. O

Lemma 1.2. Let S = {gy,..., g} such that Kg contains a non-empty open cone.
Letf eA;, N Mg =My, f = bo + blgl +...+ bsgs where b,’ S ZR[)_(]Z, then

1. deg f = max {deg by, deg(b,g1),...deg(b,g;)}

U

mg mi My
2 0F f = ) (hop)? + D (hYg1 + ...+ ) (hy)’gs then deghy; < 5 and

J=1 J=1 J=1

d—degg;
deg(h;j) < 1 (P

; I...,s.
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So w.l.o.g. f € M, has the form
mo mj U ) d
f = jz:;(hoj)z + jzz;(hlj)zgl + ...+ ;(hsj)zgs with deg(h[j) < 5

To prove 1.) of this lemma we need the following two propositions:
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Proposition 1.3. Let C € R" be acone, h € R[X] and h = hy + ... + h, be the
decomposition of 4 into homogeneous components, i.e. degh; = i and degh =
degh, = v. Write LT (h) = h,,.

If h>0in C then LT (h) > 0O on C.

Proof. Let ¢ € C. We show that & + v(c) > 0. Wlog h,(c) # 0. Consider the
following variable in one real variable A: P.(A) := h(Ac) = hy + hi(c)A + hy(c)A* +
...+ h(c)l”. Forall 4 > 0, Ac € C so P.(1) = (Ac) > 0. So P.(1) > 0
on [0,00) € R. So it must have positive leading coeflicient i.e. h,(c) > 0 as
required. O

Proposition 1.4. Let py,...,p; € R[X] and assume that there is a nonempty
open cone C such that p; > 0 on C,Vi = 1,...s then deg(py + ... + p;) =
max(deg po, . .., deg py).

Proof. Let m = max(deg po, ...,deg py). Let us gather those leading terms of
degree m say LT (py),...,LT(p;)),l < s. We want to show that LT (py) + ... +
LT (p;) # 0O (once this is shown we are done because this sum, if nonzero, is the
LT (po+...+ps) and is of degree m so this will establish that deg(po+...+ps) =m
indeed). Now LT (p;) # 0 so there is ¢ € C such that LT (p,) does not vanish at ¢
(a nonzero polynomial does not vanish on a nonempty open set). By proposition
1.3 we must have LT (p;) evaluated at ¢ is > 0. Since LT (p;) evaluated at ¢ for
i=1,...,lareall > 0 (again proposition 1.3), we se that there are no cancellations
and LT (pg) + ...+ LT(p;) evaluated at cis > 0. So LT (po) +...+LT(p) #0 O

2. APPLICATIONS TO THE K-MOMENT PROBLEM
Corollary 2.1. K C R",n > 3 besas. K contains a non empty open cone = KMP
is not finitely solvable.
Proof. 1. Dim(K) > 3; K = K, S — finite = T is not saturated.
2. But T is closed so S solves KMP iff T is saturated.

3. So S does not solve KMP.
O

Corollary 2.2. K C R",n > 2. If K contains cone of dimension 2 then KMP is
not finitely solvable. Note that we do not claim that 7 is closed.

Corollary 2.3. If K is non compact b.c.s.a. set K = Ky, S any finite description.
Then T is closed.

Proof. K contains an open infinite half line = K contains open cone. |
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3. THE FINEST LOCALLY CONVEX TOPOLOGY ON A R-VECTOR SPACE

Recall:
1. Hausdorft: If x; # x5, duy, u, open such that u; Nu, = ¢ and x; € u;.

2. Topological vector space: Topology continuous with + and scalar multipli-
cation.

3. A topology is locally convex if V is a topological vector space and has a
basis of convex open sets.

Theorem 3.1. Tychonoff theorem On a finite dimensional vector space there is
a unique topology making it into a Hausdorff topological vector space namely the
ET. (much stronger statement then the fact that all—-topologies are equivalent!)

Theorem 3.2. If V is a (Hausdorfl) topological vector space and W is a subspace
then W is a (Hausdorff) topological vector space with the induced topology.

We first claim the following general fact:

Let X be a topological space and Y C X. Then the product topology of the induced
topologies on X on Y X Y is induced topology of the product topology of X X X on
YxY.

e Fact 1: Any vector space admits the finest topology (greatest number of
open sets) making it into a locally convex topological vector space.

e Fact 2: This finest locally convex topology is Haudorff.

Theorem 3.3. Let V be a countable dimensional real vector space. Then the finest
locally convex topology (from Fact 1) is the finite topology.

Proof. Let u C V be open in the finest locally convex topology then we want
to show that u is open in the finite topology. Let W C V be finite dimensional
subspace. We show that W N u is open in W in ET. Now W inherits the finite
locally convex topology and W N u is open in the inherited f.l.c. topology by
definition of relative topology. But the induced f.l.c. topology on W makes it into
a Hausdorft topological vectorspace by theorem 3.2 and therefore is the ET by
theorem 3.1. So W N u is open in W for the ET.

Conversely, let u be an open set in the finite topology on V. it must be open in
the finest locally convex topology because finite topology on a countable dimen-
sional vector space is a locally convex topolgy. Therefore u is open in the finest
locally convex topology. O
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Remark 3.4. Let V be a real vector space of arbitrary dimension and define a
topology on V as follows: u C V is open iff u N W is open for every finite di-
mensional subspace W of V. Then V need not to be a topological vector space as
addition as a binary map is not necessarily continuous. Furthermore the topology
need not be locally convex.



