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1. CLOSED FINITELY GENERATED PREORDERINGS(continue)

Theorem 1.1. (Theorem 2.2 (ii) of last lecture) Let K be a basic closed semialge-
braic set. Assume C ⊆ K is a non empty open cone. Let S = {g1, . . . , gs} such that
K = KS . Then TS is closed.

Proof. It is enough to prove the following lemma, which is a generalization of
lemma 2.4 of last lecture. �

Lemma 1.2. Let S = {g1, . . . , gs} such that KS contains a non-empty open cone.
Let f ∈ Ad ∩ MS := Md; f = b0 + b1g1 + . . . + bsgs where bi ∈

∑
R[X]2, then

1. deg f = max
{
deg b0, deg(b1g1), . . . deg(bsgs)

}
2. If f =

m0∑
j=1

(h0 j)2 +

m1∑
j=1

(h1 j)2g1 + . . . +

ms∑
j=1

(hs j)2gs then deg h0 j ≤
d
2

and

deg(hi j) ≤
d − deg gi

2
; i = 1, . . . , s.

So w.l.o.g. f ∈ Md has the form

f =

m0∑
j=1

(h0 j)2 +

m1∑
j=1

(h1 j)2g1 + . . . +

ms∑
j=1

(hs j)2gs with deg(hi j) ≤
d
2

.

To prove 1.) of this lemma we need the following two propositions:
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Proposition 1.3. Let C ∈ Rn be a cone, h ∈ R[X] and h = h0 + . . . + hν be the
decomposition of h into homogeneous components, i.e. deg hi = i and deg h =

deg hν = ν. Write LT (h) = hν.
If h ≥ 0 in C then LT (h) ≥ 0 on C.

Proof. Let c ∈ C. We show that h + ν(c) ≥ 0. Wlog hν(c) , 0. Consider the
following variable in one real variable λ: Pc(λ) := h(λc) = h0 + h1(c)λ+ h2(c)λ2 +

. . . + hν(c)λν. For all λ > 0, λc ∈ C so Pc(λ) = h(λc) ≥ 0. So Pc(λ) ≥ 0
on [0,∞) ⊆ R. So it must have positive leading coefficient i.e. hν(c) > 0 as
required. �

Proposition 1.4. Let p0, . . . , ps ∈ R[X] and assume that there is a nonempty
open cone C such that pi ≥ 0 on C,∀i = 1, . . . s then deg(p0 + . . . + ps) =

max(deg p0, . . . , deg ps).

Proof. Let m = max(deg p0, . . . , deg ps). Let us gather those leading terms of
degree m say LT (p0), . . . , LT (pl)), l ≤ s. We want to show that LT (p0) + . . . +

LT (pl) . 0 (once this is shown we are done because this sum, if nonzero, is the
LT (p0 + . . .+ ps) and is of degree m so this will establish that deg(p0 + . . .+ ps) = m
indeed). Now LT (p1) , 0 so there is c ∈ C such that LT (p1) does not vanish at c
(a nonzero polynomial does not vanish on a nonempty open set). By proposition
1.3 we must have LT (p1) evaluated at c is > 0. Since LT (pi) evaluated at c for
i = 1, . . . , l are all ≥ 0 (again proposition 1.3), we se that there are no cancellations
and LT (p0) + . . .+ LT (pl) evaluated at c is > 0. So LT (p0) + . . .+ LT (pl) . 0 �

2. APPLICATIONS TO THE K-MOMENT PROBLEM

Corollary 2.1. K ⊆ Rn, n ≥ 3 bcsas. K contains a non empty open cone⇒ KMP
is not finitely solvable.

Proof. 1. Dim(K) ≥ 3; K = KS , S − finite⇒ TS is not saturated.

2. But TS is closed so S solves KMP iff TS is saturated.

3. So S does not solve KMP.
�

Corollary 2.2. K ⊆ Rn, n ≥ 2. If K contains cone of dimension 2 then KMP is
not finitely solvable. Note that we do not claim that T is closed.

Corollary 2.3. If K is non compact b.c.s.a. set K = KS , S any finite description.
Then TS is closed.

Proof. K contains an open infinite half line⇒ K contains open cone. �
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3. THE FINEST LOCALLY CONVEX TOPOLOGY ON A R-VECTOR SPACE

Recall:

1. Hausdorff: If x1 , x2,∃u1, u2 open such that u1 ∩ u2 = φ and xi ∈ ui.

2. Topological vector space: Topology continuous with + and scalar multipli-
cation.

3. A topology is locally convex if V is a topological vector space and has a
basis of convex open sets.

Theorem 3.1. Tychonoff theorem On a finite dimensional vector space there is
a unique topology making it into a Hausdorff topological vector space namely the
ET. (much stronger statement then the fact that all—-topologies are equivalent!)

Theorem 3.2. If V is a (Hausdorff) topological vector space and W is a subspace
then W is a (Hausdorff) topological vector space with the induced topology.

We first claim the following general fact:
Let X be a topological space and Y ⊆ X. Then the product topology of the induced
topologies on X on Y ×Y is induced topology of the product topology of X ×X on
Y × Y .

• Fact 1: Any vector space admits the finest topology (greatest number of
open sets) making it into a locally convex topological vector space.

• Fact 2: This finest locally convex topology is Haudorff.

Theorem 3.3. Let V be a countable dimensional real vector space. Then the finest
locally convex topology (from Fact 1) is the finite topology.

Proof. Let u ⊂ V be open in the finest locally convex topology then we want
to show that u is open in the finite topology. Let W ⊂ V be finite dimensional
subspace. We show that W ∩ u is open in W in ET. Now W inherits the finite
locally convex topology and W ∩ u is open in the inherited f.l.c. topology by
definition of relative topology. But the induced f.l.c. topology on W makes it into
a Hausdorff topological vectorspace by theorem 3.2 and therefore is the ET by
theorem 3.1. So W ∩ u is open in W for the ET.

Conversely, let u be an open set in the finite topology on V . it must be open in
the finest locally convex topology because finite topology on a countable dimen-
sional vector space is a locally convex topolgy. Therefore u is open in the finest
locally convex topology. �
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Remark 3.4. Let V be a real vector space of arbitrary dimension and define a
topology on V as follows: u ⊂ V is open iff u ∩ W is open for every finite di-
mensional subspace W of V . Then V need not to be a topological vector space as
addition as a binary map is not necessarily continuous. Furthermore the topology
need not be locally convex.


