POSITIVE POLYNOMIALS LECTURE NOTES (24: 08/07/10)

SALMA KUHLMANN

Contents

1. Topological \mathbb{R} -vector space

1. TOPOLOGICAL \mathbb{R} -VECTOR SPACE

1.1. Fix $E \mathbb{R}$ -vector space (no assumptions in the dimension) **Notation:** $\overline{0} \in E$, $0 \in \mathbb{R}$ (to distinguish them). Let τ be a topology on E making it a topological \mathbb{R} -vector space, i.e. the maps

> $E \times E \to E$ (x, y) $\mapsto x + y$, and $\mathbb{R} \times E \to E$ (λ, x) $\mapsto \lambda x$ are continuous,

where \mathbb{R} has Euclidean topology τ_E ,

 $E \times E$ has the product topology $\tau \times \tau$, and

 $\mathbb{R} \times E$ has the product topology $\tau_E \times \tau$.

Recall that $\{A_1 \times A_2 \mid A_1 \in \tau_1, A_2 \in \tau_2\}$ is a base for the product topology $\tau_1 \times \tau_2$. Let $\mathcal{U}_{\tau} = \{U \in \tau \mid \overline{0} \in U\} = \{\tau - \text{neighbourhood of } \overline{0}\}$. Since $\forall x \in E$ the map

$$E \to E, a \mapsto a + x$$

is a τ -homeomorphism,

 $\forall a \in E, a + \mathcal{U}_{\tau} = \{a + U \mid U \in \mathcal{U}_{\tau}\} = \{\tau - \text{ neighbourhood of } a \in E\}.$ Namely \mathcal{U}_{τ} determines all the topology τ .

We want to prove the following theorem:

Theorem 1.2. There is a finest locally convex topology τ_{max} on *E*. Moreover τ_{max} is Hausdorff.

1

Definition 1.3. Let (p, \leq) be a partial order.

- 1. $F \subseteq P$ is a **filter** if
 - $\forall x, y \in F, \exists z \in F \text{ such that } z \leq x \text{ and } z \leq y;$
 - $\forall x, \in F, \forall y \in P: x \le y \Rightarrow y \in F$
- 2. Let $F \subseteq P$ is a filter. Then $B \subseteq F$ is a **base** for the filter if $\forall x \in F \exists y \in B$ such that $y \leq x$.

Example 1.4. Let (X, τ) be a topological space and $x \in X$. Then

$$F_x = \{A \in \tau \mid x \in A\} = \{\tau - \text{ neighbourhoods of } x \in X\}$$

is a filter of the partial order (τ, \subseteq) :

- $A_1, A_2 \in F_x \Rightarrow A_1 \cap A_2 \in F_x$ and $A_1 \cap A_2 \subseteq A_1, A_1 \cap A_2 \subseteq A_2$.
- For $A \in F_x$, $U \in \tau$: $A \subseteq U \Rightarrow U \in F_x$.

In particular $\mathcal{U}_{\tau} = \{\tau - \text{ neighbourhoods of } \bar{0}\}$ is a filter of (τ, \subseteq)

Let $\mathcal{B} \subseteq \mathcal{U}_{\tau}$ be a base of the filter \mathcal{U}_{τ} (in sense of the above definition).

Definition 1.5. A topological space (X, τ) is said to be **locally convex** if $\forall x \in X$ and $\forall U_x \in \tau$ containing $x, \exists V \in \tau$ convex such that $x \in V \subset U_x$.

Remark 1.6. Let (E, τ) be a topological \mathbb{R} -vector space. In order to prove that (E, τ) is locally convex, it is enough to prove that the filter \mathcal{U}_{τ} of τ -neighbourhoods of $\overline{0}$ has a base *B* (in the sense of base of a filter) made of convex set:

Let \mathcal{B} be a base for the filter \mathcal{U}_{τ} such that each $U \in \mathcal{B}$ is convex. Let $x \in X$, $U_x \in \tau$ containing x. Then (see page 1) $U_x = x + U$ for some $U \in \mathcal{U}_{\tau}$. Let $C \in \mathcal{B}$ such that $C \subseteq U$ (\exists such C because \mathcal{B} is a base), then $x + C \subset U_x$ is convex and contains x.

1.7. Fact 1: $U \in \mathcal{U}_{\tau} \Rightarrow U$ is absorbing (i.e. $\forall x \in E, \exists \mu > 0$ such that $|\lambda| \ge \mu \Rightarrow x \in \lambda U$).

Proof. Fix $U \in \mathcal{U}_{\tau}$ and $x \in E$. The map

 $f_x : \mathbb{R} \to E; \lambda \mapsto \lambda x$

is continuous everywhere, in particular in $0 \in \mathbb{R}$.

So $f_x^{-1}(U) \subseteq \mathbb{R}$ is open and contains $0 \in \mathbb{R}$.

So $\exists \epsilon > 0$ such that $f_x(-\epsilon, \epsilon) \subseteq U$, (we can assume $\epsilon < 1$). In other words, $c < \epsilon \Rightarrow cx \in U \Leftrightarrow x \in c^{-1}U$. So we can take for instance $\mu = \epsilon^{-1} + 1$

1.8. Fact 2: $U \in \mathcal{U}_{\tau} \Rightarrow \exists V \in \mathcal{U}_{\tau}$ such that $V + V \subseteq U$.

Proof. The map

 $+: E \times E \rightarrow E; (x, y) \mapsto x + y$

is continuous in $(\overline{0}, \overline{0})$. So $+^{-1}(U)$ is open in $E \times E$. So there are $V_1, V_2 \in \mathcal{U}_{\tau}$ such that $V_1 + V_2 \subseteq U$ and we can take $V = V_1 \cap V_2$.

1.9. Fact 3: Let $U \in \mathcal{U}_{\tau}$. Set $b(U) := \bigcap_{|\mu| \ge 1} \mu U$. Then $b(U) \subseteq U, b(U) \in \mathcal{U}_{\tau}$, and b(U) is **balanced** (i.e. $\lambda b(U) \subseteq b(U) \forall \lambda \in \mathbb{R}, |\lambda| \le 1$).

Proof. The map

$$\mathbb{R} \times E \to E, (\lambda, x) \mapsto \lambda x$$

is continuous at $(0, \overline{0})$. So $\exists \epsilon > 0, \exists V \in \mathcal{U}_{\tau}$ such that $\lambda V \subseteq U \forall \lambda \in \mathbb{R}, |\lambda| \leq \epsilon$. **Claim:** $\epsilon V \subseteq b(U)$.

Let $|\mu| \ge 1$, we want $\epsilon V \subseteq \mu U$. We can take $\lambda := \frac{|\epsilon|}{|\mu|} < \epsilon$ and $\lambda V \subseteq U \Rightarrow \epsilon V \subseteq \mu U$.

Proposition 1.10. If (E, τ) is locally convex then $\exists \mathcal{B} \subseteq \mathcal{U}_{\tau}$ base for the filter \mathcal{U}_{τ} with the following properties:

- 1. Every $U \in \mathcal{B}$ is absorbing and absolutely convex (i.e. convex and balanced).
- 2. If $U \in \mathcal{B}$ and $\lambda \neq 0$, then $\lambda U \in \mathcal{B}$.

Conversely, given a base \mathcal{B} for a filter on E with above properties (1.) and (2.) above, there is a unique topology on E such that E is a (locally convex) topological vector space with \mathcal{B} as a base for the filter of neighbourhoods of $\overline{0} \in E$.

Proof. U convex neighborhood of $\overline{0} \in E \Rightarrow b(U)$ is absolutely convex. If \mathcal{B}_0 is a base of convex neighbourhoods, then

$$\mathcal{B} := \{ \lambda b(U) \mid U \in \mathcal{B}_0, \lambda \neq 0 \}$$

has properties (1.) and (2.) above.

Conversely, Let \mathcal{B} be a base for a filter F on E satisfying properties (1.) and (2.). Then $U \in F \Rightarrow \overline{0} \in U$.

The only topology which makes E a topological \mathbb{R} -vector space and such that $F = \mathcal{U}_{\tau}$, has a + F as a filter of $a \in E$ (see again page 1).

Setting $G \subseteq E$ open if $\forall a \in G \exists U \in \mathcal{B}$ such that $a + U \in G$, we define a topology such that a + F is the filter of neighbourhoods of a and E is a topological \mathbb{R} -vector space.

Definition 1.11. $p : E \rightarrow [0, \infty]$ is a seminorm if

- 1. $p(\lambda x) = |\lambda| p(x), \forall x \in E, \forall \lambda \in \mathbb{R};$
- 2. $p(x + y) \le p(x) + p(y), \forall x, y \in E$

If $p^{-1}(\{0\}) = \{0\}$ then p is a **norm**.

Proposition 1.12. Let $(p_i)_{i \in I}$ be a family of seminorms on *E*. Then \exists a coarsest topology τ_C on *E* such that

(24: 08/07/10)

- (a) *E* is a topological \mathbb{R} -vector space.
- (b) p_i is τ_C -continuous $\forall i \in I$.

 (E, τ_C) is locally convex and the family of sets of the form

$$\{x \in E \mid p_{i_1}(x) < \epsilon, \dots, p_{i_n}(x) < \epsilon\}; i_1, \dots, i_n \in I, n \in \mathbb{N}, \epsilon > 0$$

is a base for \mathcal{U}_{τ_C} (the τ_C -neighbourhood of $\overline{0}$).

Proof. Let \mathcal{B} be the above family of sets. Then \mathcal{B} is a base for a filter on E having properties (1.) and (2.) of Proposition 1.10 and the unique topology asserted in Proposition 1.10 is the coarsest topology on E making E a topological vector space in which each p_i is continuous.

The topology given by Proposition 1.12 is said to be the topology induced by the family $(p_i)_{i \in I}$ of seminorms.

Lemma 1.13. Let τ_C be the topology induced by the family of seminorms $(p_i)_{i \in I}$ on *E*. Suppose that $\forall x \in E \setminus \{\overline{0}\}, \exists i \in I$ such that $p_i(x) \neq 0$. Then τ_C is Hausdorff.

Proof. Let $x, y \in E, x \neq y$. Then $\exists i \in I, \exists \epsilon > 0$ such that $p_i(x - y) = 2\epsilon$. So $U_x := \{u \in E \mid p_i(x - u) < \epsilon\}$ and $U_y := \{u \in E \mid p_i(y - u) < \epsilon\}$ are open disjoint neighbourhoods of x and y respectively.

1.14. Proof of Theorem 1.2:

If we take the topology induced by the family of all seminorms on E, then we obtain the finest locally convex topology on E such that E is a topological \mathbb{R} -vector space. We denote it by τ_{max} . We want to see that τ_{max} is Hausdorff.

We need to verify the hypothesis of above lemma, for the family of all seminorms on *E*. Let $x \in E \setminus \{\overline{0}\}$. Complete $\{x\}$ to a base \mathcal{B} of *E* as a \mathbb{R} -vector space. Define a linear functional

$$\chi : E \to \mathbb{R}$$
$$x \mapsto 1$$
$$y \mapsto 0, \forall y \in B \setminus \{x\}$$

Then $p := |\chi|$ is a semi norm on *E* and $p(x) \neq 0$.