POSITIVE POLYNOMIALS LECTURE NOTES

(24: 08/07/10)

SALMA KUHLMANN

Contents

1. Topological \mathbb{R}-vector space

1. TOPOLOGICAL \mathbb{R}-VECTOR SPACE

1.1. Fix $E \mathbb{R}$-vector space (no assumptions in the dimension)

Notation: $\overline{0} \in E, 0 \in \mathbb{R}$ (to distinguish them).
Let τ be a topology on E making it a topological \mathbb{R}-vector space, i.e. the maps

$$
\begin{aligned}
E \times E & \rightarrow E \\
(x, y) & \mapsto x+y, \text { and } \\
\mathbb{R} \times E & \rightarrow E \\
(\lambda, x) & \mapsto \lambda x \text { are continuous, }
\end{aligned}
$$

where \mathbb{R} has Euclidean topology τ_{E},
$E \times E$ has the product topology $\tau \times \tau$, and
$\mathbb{R} \times E$ has the product topology $\tau_{E} \times \tau$.
Recall that $\left\{A_{1} \times A_{2} \mid A_{1} \in \tau_{1}, A_{2} \in \tau_{2}\right\}$ is a base for the product topology $\tau_{1} \times \tau_{2}$. Let $\mathcal{U}_{\tau}=\{U \in \tau \mid \overline{0} \in U\}=\{\tau-$ neighbourhood of $\overline{0}\}$.
Since $\forall x \in E$ the map

$$
E \rightarrow E, a \mapsto a+x
$$

is a τ-homeomorphism, $\forall a \in E, a+\mathcal{U}_{\tau}=\left\{a+U \mid U \in \mathcal{U}_{\tau}\right\}=\{\tau$ - neighbourhood of $a \in E\}$.
Namely \mathcal{U}_{τ} determines all the topology τ.
We want to prove the following theorem:
Theorem 1.2. There is a finest locally convex topology $\tau_{\max }$ on E. Moreover $\tau_{\max }$ is Hausdorff.

Definition 1.3. Let (p, \leq) be a partial order.

1. $F \subseteq P$ is a filter if

- $\forall x, y \in F, \exists z \in F$ such that $z \leq x$ and $z \leq y$;
- $\forall x, \in F, \forall y \in P: x \leq y \Rightarrow y \in F$

2. Let $F \subseteq P$ is a filter. Then $B \subseteq F$ is a base for the filter if $\forall x \in F \exists y \in B$ such that $y \leq x$.

Example 1.4. Let (X, τ) be a topological space and $x \in X$. Then

$$
F_{x}=\{A \in \tau \mid x \in A\}=\{\tau-\text { neighbourhoods of } x \in X\}
$$

is a filter of the partial order (τ, \subseteq) :

- $A_{1}, A_{2} \in F_{x} \Rightarrow A_{1} \cap A_{2} \in F_{x}$ and $A_{1} \cap A_{2} \subseteq A_{1}, A_{1} \cap A_{2} \subseteq A_{2}$.
- For $A \in F_{x}, U \in \tau: A \subseteq U \Rightarrow U \in F_{x}$.

In particular $\mathcal{U}_{\tau}=\{\tau-$ neighbourhoods of $\overline{0}\}$ is a filter of (τ, \subseteq)
Let $\mathcal{B} \subseteq \mathcal{U}_{\tau}$ be a base of the filter \mathcal{U}_{τ} (in sense of the above definition).
Definition 1.5. A topological space (X, τ) is said to be locally convex if $\forall x \in X$ and $\forall U_{x} \in \tau$ containing $x, \exists V \in \tau$ convex such that $x \in V \subset U_{x}$.

Remark 1.6. Let (E, τ) be a topological \mathbb{R}-vector space. In order to prove that (E, τ) is locally convex, it is enough to prove that the filter \mathcal{U}_{τ} of τ-neighbourhoods of $\overline{0}$ has a base B (in the sense of base of a filter) made of convex set:

Let \mathcal{B} be a base for the filter \mathcal{U}_{τ} such that each $U \in \mathcal{B}$ is convex. Let $x \in X$, $U_{x} \in \tau$ containing x. Then (see page 1) $U_{x}=x+U$ for some $U \in \mathcal{U}_{\tau}$. Let $C \in \mathcal{B}$ such that $C \subseteq U$ (\exists such C because \mathcal{B} is a base), then $x+C \subset U_{x}$ is convex and contains x.
1.7. Fact 1: $U \in \mathcal{U}_{\tau} \Rightarrow U$ is absorbing (i.e. $\forall x \in E, \exists \mu>0$ such that $|\lambda| \geq \mu \Rightarrow$ $x \in \lambda U$).

Proof. Fix $U \in \mathcal{U}_{\tau}$ and $x \in E$. The map

$$
f_{x}: \mathbb{R} \rightarrow E ; \lambda \mapsto \lambda x
$$

is continuous everywhere, in particular in $0 \in \mathbb{R}$.
So $f_{x}^{-1}(U) \subseteq \mathbb{R}$ is open and contains $0 \in \mathbb{R}$.
So $\exists \epsilon>0$ such that $f_{x}(-\epsilon, \epsilon) \subseteq U$, (we can assume $\epsilon<1$). In other words, $c<\epsilon \Rightarrow c x \in U \Leftrightarrow x \in c^{-1} U$. So we can take for instance $\mu=\epsilon^{-1}+1$
1.8. Fact 2: $U \in \mathcal{U}_{\tau} \Rightarrow \exists V \in \mathcal{U}_{\tau}$ such that $V+V \subseteq U$.

Proof. The map

$$
+: E \times E \rightarrow E ;(x, y) \mapsto x+y
$$

is continuous in $(\overline{0}, \overline{0})$. So $+^{-1}(U)$ is open in $E \times E$. So there are $V_{1}, V_{2} \in \mathcal{U}_{\tau}$ such that $V_{1}+V_{2} \subseteq U$ and we can take $V=V_{1} \cap V_{2}$.
1.9. Fact 3: Let $U \in \mathcal{U}_{\tau}$. Set $b(U):=\bigcap_{|\mu| \geq 1} \mu U$. Then $b(U) \subseteq U, b(U) \in \mathcal{U}_{\tau}$, and $b(U)$ is balanced (i.e. $\lambda b(U) \subseteq b(U) \forall \lambda \in \mathbb{R},|\lambda| \leq 1)$.

Proof. The map

$$
\mathbb{R} \times E \rightarrow E,(\lambda, x) \mapsto \lambda x
$$

is continuous at $(0, \overline{0})$. So $\exists \epsilon>0, \exists V \in \mathcal{U}_{\tau}$ such that $\lambda V \subseteq U \forall \lambda \in \mathbb{R},|\lambda| \leq \epsilon$.
Claim: $\epsilon V \subseteq b(U)$.
Let $|\mu| \geq 1$, we want $\epsilon V \subseteq \mu U$. We can take $\lambda:=\frac{|\epsilon|}{|\mu|}<\epsilon$ and $\lambda V \subseteq U \Rightarrow \epsilon V \subseteq$ μU.

Proposition 1.10. If (E, τ) is locally convex then $\exists \mathcal{B} \subseteq \mathcal{U}_{\tau}$ base for the filter \mathcal{U}_{τ} with the following properties:

1. Every $U \in \mathcal{B}$ is absorbing and absolutely convex (i.e. convex and balanced).
2. If $U \in \mathcal{B}$ and $\lambda \neq 0$, then $\lambda U \in \mathcal{B}$.

Conversely, given a base \mathcal{B} for a filter on E with above properties (1.) and (2.) above, there is a unique topology on E such that E is a (locally convex) topological vector space with \mathcal{B} as a base for the filter of neighbourhoods of $\overline{0} \in E$.

Proof. U convex neighborhood of $\overline{0} \in E \Rightarrow b(U)$ is absolutely convex. If \mathcal{B}_{0} is a base of convex neighbourhoods, then

$$
\mathcal{B}:=\left\{\lambda b(U) \mid U \in \mathcal{B}_{0}, \lambda \neq 0\right\}
$$

has properties (1.) and (2.) above.
Conversely, Let \mathcal{B} be a base for a filter F on E satisfying properties (1.) and (2.). Then $U \in F \Rightarrow \overline{0} \in U$.

The only topology which makes E a topological \mathbb{R}-vector space and such that $F=\mathcal{U}_{\tau}$, has $a+F$ as a filter of $a \in E$ (see again page 1).
Setting $G \subseteq E$ open if $\forall a \in G \exists U \in \mathcal{B}$ such that $a+U \in G$, we define a topology such that $a+F$ is the filter of neighbourhoods of a and E is a topological \mathbb{R}-vector space.

Definition 1.11. $p: E \rightarrow[0, \infty[$ is a seminorm if

1. $p(\lambda x)=|\lambda| p(x), \forall x \in E, \forall \lambda \in \mathbb{R}$;
2. $p(x+y) \leq p(x)+p(y), \forall x, y \in E$

If $p^{-1}(\{0\})=\{0\}$ then p is a norm.
Proposition 1.12. Let $\left(p_{i}\right)_{i \in I}$ be a family of seminorms on E. Then \exists a coarsest topology τ_{C} on E such that
(a) E is a topological \mathbb{R}-vector space.
(b) p_{i} is τ_{C}-continuous $\forall i \in I$.
(E, τ_{C}) is locally convex and the family of sets of the form

$$
\left\{x \in E \mid p_{i_{1}}(x)<\epsilon, \ldots, p_{i_{n}}(x)<\epsilon\right\} ; i_{1}, \ldots, i_{n} \in I, n \in \mathbb{N}, \epsilon>0
$$

is a base for $\mathcal{U}_{\tau_{C}}$ (the τ_{C}-neighbourhood of $\overline{0}$).
Proof. Let \mathcal{B} be the above family of sets. Then \mathcal{B} is a base for a filter on E having properties (1.) and (2.) of Proposition 1.10 and the unique topology asserted in Proposition 1.10 is the coarsest topology on E making E a topological vector space in which each p_{i} is continuous.

The topology given by Proposition 1.12 is said to be the topology induced by the family $\left(p_{i}\right)_{i \in I}$ of seminorms.
Lemma 1.13. Let τ_{C} be the topology induced by the family of seminorms $\left(p_{i}\right)_{i \in I}$ on E. Suppose that $\forall x \in E \backslash\{\overline{0}\}, \exists i \in I$ such that $p_{i}(x) \neq 0$. Then τ_{C} is Hausdorff.

Proof. Let $x, y \in E, x \neq y$. Then $\exists i \in I, \exists \epsilon>0$ such that $p_{i}(x-y)=2 \epsilon$. So $U_{x}:=\left\{u \in E \mid p_{i}(x-u)<\epsilon\right\}$ and $U_{y}:=\left\{u \in E \mid p_{i}(y-u)<\epsilon\right\}$ are open disjoint neighbourhoods of x and y respectively.

1.14. Proof of Theorem 1.2:

If we take the topology induced by the family of all seminorms on E, then we obtain the finest locally convex topology on E such that E is a topological \mathbb{R} vector space. We denote it by $\tau_{\max }$. We want to see that $\tau_{\max }$ is Hausdorff. We need to verify the hypothesis of above lemma, for the family of all seminorms on E. Let $x \in E \backslash\{\overline{0}\}$. Complete $\{x\}$ to a base \mathcal{B} of E as a \mathbb{R}-vector space. Define a linear functional

$$
\begin{aligned}
x: & E \rightarrow \mathbb{R} \\
x & \mapsto 1 \\
y & \mapsto 0, \forall y \in B \backslash\{x\} .
\end{aligned}
$$

Then $p:=|\chi|$ is a semi norm on E and $p(x) \neq 0$.

