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1. TOPOLOGICAL R−VECTOR SPACE

1.1. Fix E R -vector space (no assumptions in the dimension)
Notation: 0̄ ∈ E, 0 ∈ R (to distinguish them).
Let τ be a topology on E making it a topological R-vector space, i.e. the maps

E × E → E
(x, y) 7→ x + y, and

R × E → E
(λ, x) 7→ λx are continuous,

where R has Euclidean topology τE,
E × E has the product topology τ × τ, and
R × E has the product topology τE × τ.

Recall that {A1 × A2 | A1 ∈ τ1, A2 ∈ τ2} is a base for the product topology τ1 × τ2.
LetUτ = {U ∈ τ | 0̄ ∈ U} = {τ − neighbourhood of 0̄}.
Since ∀x ∈ E the map

E → E, a 7→ a + x

is a τ-homeomorphism,
∀a ∈ E, a +Uτ = {a + U | U ∈ Uτ} = {τ − neighbourhood of a ∈ E}.
NamelyUτ determines all the topology τ.

We want to prove the following theorem:

Theorem 1.2. There is a finest locally convex topology τmax on E. Moreover τmax

is Hausdorff.

1



POSITIVE POLYNOMIALS LECTURE NOTES (24: 08/07/10) 2

Definition 1.3. Let (p,≤) be a partial order.

1. F ⊆ P is a filter if

• ∀ x, y ∈ F,∃ z ∈ F such that z ≤ x and z ≤ y;

• ∀ x, ∈ F, ∀ y ∈ P: x ≤ y⇒ y ∈ F

2. Let F ⊆ P is a filter. Then B ⊆ F is a base for the filter if ∀ x ∈ F ∃ y ∈ B
such that y ≤ x.

Example 1.4. Let (X, τ) be a topological space and x ∈ X. Then

Fx = {A ∈ τ | x ∈ A} = {τ − neighbourhoods of x ∈ X}

is a filter of the partial order (τ,⊆):

• A1, A2 ∈ Fx ⇒ A1 ∩ A2 ∈ Fx and A1 ∩ A2 ⊆ A1, A1 ∩ A2 ⊆ A2.

• For A ∈ Fx,U ∈ τ: A ⊆ U ⇒ U ∈ Fx.

In particularUτ = {τ − neighbourhoods of 0̄} is a filter of (τ,⊆)

Let B ⊆ Uτ be a base of the filterUτ (in sense of the above definition).

Definition 1.5. A topological space (X, τ) is said to be locally convex if ∀x ∈ X
and ∀ Ux ∈ τ containing x, ∃ V ∈ τ convex such that x ∈ V ⊂ Ux.

Remark 1.6. Let (E, τ) be a topological R-vector space. In order to prove that
(E, τ) is locally convex, it is enough to prove that the filterUτ of τ-neighbourhoods
of 0̄ has a base B (in the sense of base of a filter) made of convex set:

Let B be a base for the filter Uτ such that each U ∈ B is convex. Let x ∈ X,
Ux ∈ τ containing x. Then (see page 1) Ux = x + U for some U ∈ Uτ. Let C ∈ B
such that C ⊆ U (∃ such C because B is a base), then x + C ⊂ Ux is convex and
contains x.

1.7. Fact 1: U ∈ Uτ ⇒ U is absorbing (i.e. ∀x ∈ E,∃ µ > 0 such that |λ| ≥ µ ⇒
x ∈ λU).

Proof. Fix U ∈ Uτ and x ∈ E. The map
fx : R→ E; λ 7→ λx

is continuous everywhere, in particular in 0 ∈ R.
So f −1

x (U) ⊆ R is open and contains 0 ∈ R.
So ∃ ε > 0 such that fx(−ε, ε) ⊆ U, (we can assume ε < 1). In other words,
c < ε ⇒ cx ∈ U ⇔ x ∈ c−1U. So we can take for instance µ = ε−1 + 1 �
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1.8. Fact 2: U ∈ Uτ ⇒ ∃ V ∈ Uτ such that V + V ⊆ U.

Proof. The map
+ : E × E → E; (x, y) 7→ x + y

is continuous in (0̄, 0̄). So +−1(U) is open in E × E. So there are V1,V2 ∈ Uτ such
that V1 + V2 ⊆ U and we can take V = V1 ∩ V2. �

1.9. Fact 3: Let U ∈ Uτ. Set b(U) :=
⋂
|µ|≥1

µU. Then b(U) ⊆ U, b(U) ∈ Uτ, and

b(U) is balanced (i.e. λb(U) ⊆ b(U) ∀ λ ∈ R, |λ| ≤ 1).

Proof. The map
R × E → E, (λ, x) 7→ λx

is continuous at (0, 0̄). So ∃ ε > 0,∃ V ∈ Uτ such that λV ⊆ U ∀ λ ∈ R, |λ| ≤ ε.
Claim: εV ⊆ b(U).

Let |µ| ≥ 1, we want εV ⊆ µU. We can take λ :=
|ε |

|µ|
< ε and λV ⊆ U ⇒ εV ⊆

µU. �

Proposition 1.10. If (E, τ) is locally convex then ∃ B ⊆ Uτ base for the filterUτ

with the following properties:

1. Every U ∈ B is absorbing and absolutely convex (i.e. convex and balanced).

2. If U ∈ B and λ , 0, then λU ∈ B.

Conversely, given a base B for a filter on E with above properties (1.) and (2.)
above, there is a unique topology on E such that E is a (locally convex) topological
vector space with B as a base for the filter of neighbourhoods of 0̄ ∈ E.

Proof. U convex neighborhood of 0̄ ∈ E ⇒ b(U) is absolutely convex. If B0 is a
base of convex neighbourhoods, then

B := {λb(U) | U ∈ B0, λ , 0}

has properties (1.) and (2.) above.
Conversely, Let B be a base for a filter F on E satisfying properties (1.) and

(2.). Then U ∈ F ⇒ 0̄ ∈ U.
The only topology which makes E a topological R-vector space and such that
F = Uτ, has a + F as a filter of a ∈ E (see again page 1).
Setting G ⊆ E open if ∀ a ∈ G ∃ U ∈ B such that a + U ∈ G, we define a topology
such that a + F is the filter of neighbourhoods of a and E is a topological R-vector
space. �
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Definition 1.11. p : E → [0,∞[ is a seminorm if

1. p(λx) = |λ|p(x),∀x ∈ E,∀λ ∈ R;

2. p(x + y) ≤ p(x) + p(y),∀x, y ∈ E

If p−1({0}) = {0} then p is a norm.

Proposition 1.12. Let (pi)i∈I be a family of seminorms on E. Then ∃ a coarsest
topology τC on E such that

(a) E is a topological R-vector space.

(b) pi is τC-continuous ∀ i ∈ I.

(E, τC) is locally convex and the family of sets of the form{
x ∈ E | pi1(x) < ε, . . . , pin(x) < ε

}
; i1, . . . , in ∈ I, n ∈ N, ε > 0

is a base forUτC (the τC-neighbourhood of 0̄).

Proof. Let B be the above family of sets. Then B is a base for a filter on E having
properties (1.) and (2.) of Proposition 1.10 and the unique topology asserted
in Proposition 1.10 is the coarsest topology on E making E a topological vector
space in which each pi is continuous. �

The topology given by Proposition 1.12 is said to be the topology induced by
the family (pi)i∈I of seminorms.

Lemma 1.13. Let τC be the topology induced by the family of seminorms (pi)i∈I

on E. Suppose that ∀x ∈ E \ {0̄},∃ i ∈ I such that pi(x) , 0. Then τC is Hausdorff.

Proof. Let x, y ∈ E, x , y. Then ∃ i ∈ I,∃ ε > 0 such that pi(x − y) = 2ε. So
Ux := {u ∈ E | pi(x − u) < ε} and Uy := {u ∈ E | pi(y − u) < ε} are open disjoint
neighbourhoods of x and y respectively. �

1.14. Proof of Theorem 1.2:
If we take the topology induced by the family of all seminorms on E, then we
obtain the finest locally convex topology on E such that E is a topological R-
vector space. We denote it by τmax. We want to see that τmax is Hausdorff.
We need to verify the hypothesis of above lemma, for the family of all seminorms
on E. Let x ∈ E \ {0̄}. Complete {x} to a base B of E as a R-vector space. Define
a linear functional

χ : E → R

x 7→ 1

y 7→ 0,∀ y ∈ B \ {x}.

Then p := |χ| is a semi norm on E and p(x) , 0. �


