POSITIVE POLYNOMIALS LECTURE NOTES

 (25: 13/07/10)SALMA KUHLMANN

Contents

1. Topological \mathbb{R}-vector space (continued)

1. TOPOLOGICAL \mathbb{R}-VECTOR SPACE (continued)

Theorem 1.1. There is unique Hausdorff topology τ on a finite dimensional \mathbb{R} vector space making it a topological \mathbb{R}-vector space.

Remark 1.2. Lets see why the discrete topology τ_{D} is not good. Let V be an \mathbb{R}-vector space. When we ask that the map
$\cdot: \mathbb{R} \times V \rightarrow V$,
$(\lambda, v) \longmapsto \lambda v \quad$ is continuous,
we assume that \mathbb{R} is endowed with euclidean topology τ_{E} and $\mathbb{R} \times V$ with the product topology.
So, for instance, $\{\overline{0}\} \in \tau_{D}=\mathcal{P}(V)$,
and $\cdot^{-1}(\{\overline{0}\})=(\mathbb{R} \times\{\overline{0}\}) \cup(\{0\} \times V$, which is not open in the product topology $\tau_{E} \times \tau_{D}$.

Remark 1.3. If we do not assume Hausdorffness, there are other topologies as $\tau_{I}=\{\phi, V\}$ (the indiscrete topology).
1.4. Let V be an \mathbb{R}-vector space, $\operatorname{dim}(V)=n \in \mathbb{N}$.

Claim: We may assume $V=\mathbb{R}^{n}$
Proof of claim: Let $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a base of V (as a \mathbb{R}-vector space).
Let $\Phi_{\mathcal{B}}: V \rightarrow \mathbb{R}^{n}$
$\sum_{i=1}^{n} a_{i} v_{i} \mapsto\left(a_{1}, \ldots, a_{n}\right)$
$\Phi_{\mathcal{B}}$ is an isomorphism of \mathbb{R}-vector space.
We define:

$$
A \subset V \text { open } \Leftrightarrow \Phi_{\mathcal{B}}(A) \in \tau_{E}\left(\text { the Euclidean topology on } \mathbb{R}^{n}\right) .
$$

This defines a topology τ on V that does not depend on \mathcal{B} and such that (v, τ) is homeomorphic to (\mathbb{R}^{n}, τ_{E}).
Since $\left(\mathbb{R}^{n}, \tau_{E}\right)$ is a topological \mathbb{R}-vector space, also (V, τ) is a topological \mathbb{R}-vector space, and so Theorem 1.1 is equivalent to:

Theorem 1.5. The Euclidean topology τ_{E} on \mathbb{R}^{n} is the unique Hausdorff topology on \mathbb{R}^{n} such that the following maps are continuous:
$\mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} ;(\lambda, x) \mapsto \lambda x$, and

$$
\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} ;(x, y) \mapsto x+y
$$

Proposition 1.6. Let (P, \leq) be a partial order. Let F_{1}, F_{2} be a filter of P, and $B_{1} \subseteq F_{1}, B_{2} \subseteq F_{2}$ base. Suppose that
(i) $\forall x \in B_{1} \exists y \in B_{2}$ s.t. $y \leq x$.
(ii) $\forall x \in B_{2} \exists y \in B_{1}$ s.t. $y \leq x$.

Then we conclude that $F_{1}=F_{2}$.
Proof. " $F_{1} \subseteq F_{2}$ ": Let $z \in F_{2}$. B_{2} base for $F_{2} \Rightarrow \exists x \in B_{2}$ s.t. $x \leq z$.
(ii) $\Rightarrow \exists y \in B_{1}$ s.t. $y \leq x \leq z$.
F_{1} filter, $B_{1} \subseteq F_{1} \Rightarrow z \in F_{1}$.
" $F_{2} \subseteq F_{1}$ " is symmetric using (i) instead of (ii).

1.7. Proof of Theorem 1.5:

Let τ be a topology on \mathbb{R}^{n} s.t. τ is Hausdorff and $\left(\mathbb{R}^{n}, \tau\right)$ is a topological \mathbb{R}-vector space.
We want to show that: $\tau=\tau_{E}$
Since the topology is determined from what happens around $\overline{0} \in \mathbb{R}^{n}$, so

$$
(\star) \Leftrightarrow \mathcal{U}_{\tau}=\mathcal{U}_{\tau_{E}} .
$$

Consider $F_{\tau}=\left\{X \subset \mathbb{R}^{n} \mid \overline{0} \in U \subset X\right.$, for some $\left.U \in \tau\right\}$. Then F_{τ} is a filter.
We will show that $F_{\tau}=F_{\tau_{E}}$, by applying Proposition 1.6, where $(P, \leq)=$ $\left(\mathcal{P}\left(\mathbb{R}^{n}\right) \subseteq\right), F_{1}=F_{\tau}, F_{2}=F_{\tau_{E}}$, and B_{1} and B_{2} two bases for F_{1} and F_{2} with properties (i) and (ii). We will find next a good base for F_{τ}.

Definition 1.8. Let (E, τ) be a topological \mathbb{R}-vector space. $X \subset E$ is said to be circled if $\alpha \in \mathbb{R},|\alpha|<1, x \in X \Rightarrow \alpha x \in X$.

Proposition 1.9. Any topological \mathbb{R}-vector space (E, τ) has a base of circled neighbourhoods of $\overline{0} \in E$.

Proof. $\mathcal{B}_{\tau}=\left\{\cup_{|\alpha| \leq 1} \alpha V \mid V \in \mathcal{U}_{\tau}\right\}$ is a base for F_{τ}.
(We will actually show that \mathcal{B}_{τ} is a base for \mathcal{U}_{τ}, since it is equivalent)
Fix $V \in \mathcal{U}_{\tau}$. By continuity in $(\overline{0}, 0)$ of the product $\exists \epsilon>0$, $\exists W \in \mathcal{U}_{\tau}$ s.t. $|\lambda| \leq \epsilon$ and $x \in W \Rightarrow \lambda x \in V$.
Set $U:=\epsilon W$. Then $\alpha V \subset U \forall \alpha,|\alpha| \leq 1$.
So, $\cup_{|\alpha| \leq 1} \alpha V \subseteq U$.
1.10. Topological fact: Let (X, τ) be a topological space, $K \subseteq X$. Then $x \in \bar{K} \Leftrightarrow \forall V_{x} \tau$ - open containing $x, V_{x} \cap K \neq \phi$.

Proof. " \Rightarrow " Suppose, for a contradiction $V_{x} \tau$ - open containing x, with $V_{x} \cap K=$ ϕ. Then $x \notin K$, and $A=(X \backslash \bar{K}) \cup V_{x}$ is open, so $A \cap K=\phi$ in contradiction with the fact that $X \backslash \bar{K}$ is the biggest open set disjoint from K (because \bar{K} is the smallest closed set containing K).
" \Leftarrow " Suppose $x \notin \bar{K}$, so $x \in X \backslash \bar{K}$ which is open. Then $\exists V_{x}$ open containing x s.t. $V_{x} \subset V \backslash \bar{K}$, contradiction.

Lemma 1.11. Let (X, τ) be a Hausdorff topological space. If $K \subseteq X$ is τ-compact, then K is τ-closed.

Proof. Let $x \in \bar{K}$. We want $x \in K$. Suppose on contrary $x \notin K$.
$x \in \bar{K} \Leftrightarrow \forall V_{x} \tau$ - open containing $x, V_{x} \cap K \neq \phi$.
X Hausdorff $\Rightarrow \forall a \in K: \exists \tau$ - open $V_{a} \ni a, V_{a}^{x} \ni x$ such that $V_{a} \cap V_{a}^{x}=\phi$.
$\left\{V_{a} \mid a \in K\right\}$ is an open covering of K.
K compact $\rightarrow \exists$ finite subcovering $\left\{V_{a_{1}}, \ldots, V_{a_{n}}\right\}$. Set $V_{x}:=V_{a_{1}}^{x} \cap \ldots \cap V_{a_{n}}^{x}$.
Then V_{x} is τ-open (since finite intersection of open sets is open) containing x and $V_{x} \cap K=\phi$, a contradiction
(otherwise if $e \in V_{x} \cap K$, then $\exists i=1, \ldots, n$ s.t. $e \in V_{x} \cap V_{a_{i}}^{x}=\phi$).

1.12. Proof of Theorem 1.5 continued:

To prove: $\tau=\tau_{E}$
" $\tau \subseteq \tau_{E}$ ": Let U be circled τ-neighbourhood of $\overline{0}$, and let V be a circled τ neighbourhood of $\overline{0}$ s.t. $\underbrace{V+\ldots+V}_{n-\text { times }} \subseteq U$.
V absorbing (see Fact 1 of last lecture) $\Rightarrow \exists k>0$ s.t. $k e_{i} \in V \forall i=1, \ldots, n$.
$\Rightarrow k \sum_{i=1}^{n} \alpha_{i} e_{i} \in U$ if $\sum_{i}\left|\alpha_{i}\right|^{2} \leq 1$.
Therefore $B_{k}:=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2}<k\right\} \subset U$.
" $\tau_{E} \subseteq \tau$ ": Let $B=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2}<1\right\}$ and $S:=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2}=1\right\}$.
$S \tau_{E}$-compact, $\tau \subseteq \tau_{E} \Rightarrow S$ is τ-compact.
By Lemma 1.11, S is τ - closed.
$\overline{0} \notin S \Rightarrow \exists \mathrm{a}$ circled τ-neighbourhood V of $\overline{0}$ s.t. $V \cap S=\phi$.
We want $V \subset B$. Suppose not: $\exists x \in V$ s.t. $\|x\|_{2} \geq 1(\Leftrightarrow x \notin B)$, then $\frac{x}{\|x\|_{2}} \in V \cap S=\phi$, a contradiction.
Thus B is a τ - neighbourhood of $\overline{0}$. Multipying by scalars we have a τ - neighbourhood base at $\overline{0}$, so $\tau_{E} \subseteq \tau$.

Remark 1.13. The hypothesis that $\operatorname{dim} V=n \in \mathbb{N}$ cannot be avoided. Consider for instance $V=\mathbb{R}^{\mathbb{N}}$:
We saw that $\tau_{\text {fin }}$ is a topology on $\mathbb{R}^{\mathbb{N}}$ making it a topological \mathbb{R}-vector space. $\tau_{\text {fin }}$ is Hausdorff.
It is not the only use !
Consider for instance the product topology τ on $\mathbb{R}^{\mathbb{N}}$. τ is Hausdorff and makes $\mathbb{R}^{\mathbb{N}}$ a topological \mathbb{R} - vectore space.
$\tau \subseteq \tau_{\text {fin }}$, but $\tau \neq \tau_{\text {fin }}$. For instance: $(0,1)^{\mathbb{N}} \in \tau_{\text {fin }} \backslash \tau$.

