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1. Topological R−vector space (continued) 1

1. TOPOLOGICAL R−VECTOR SPACE (continued)

Theorem 1.1. There is unique Hausdorff topology τ on a finite dimensional R-
vector space making it a topological R-vector space.

Remark 1.2. Lets see why the discrete topology τD is not good. Let V be an
R-vector space. When we ask that the map
· : R × V → V ,
(λ, v) 7−→ λv is continuous,

we assume that R is endowed with euclidean topology τE and R × V with the
product topology.
So, for instance, {0} ∈ τD = P(V),
and ·−1({0̄}) = (R × {0̄}) ∪ ({0} × V , which is not open in the product topology
τE × τD.

Remark 1.3. If we do not assume Hausdorffness, there are other topologies as
τI = {φ,V} (the indiscrete topology).

1.4. Let V be an R-vector space, dim(V) = n ∈ N.
Claim: We may assume V = Rn

Proof of claim: Let B = {v1, . . . , vn} be a base of V (as a R-vector space).
Let ΦB : V → Rn

n∑
i=1

aivi 7→ (a1, . . . , an)

ΦB is an isomorphism of R-vector space.
We define:

1
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A ⊂ V open⇔ ΦB(A) ∈ τE (the Euclidean topology on Rn).
This defines a topology τ on V that does not depend on B and such that (v, τ) is
homeomorphic to (Rn, τE).
Since (Rn, τE) is a topological R-vector space, also (V, τ) is a topological R-vector
space, and so Theorem 1.1 is equivalent to:

Theorem 1.5. The Euclidean topology τE on Rn is the unique Hausdorff topology
on Rn such that the following maps are continuous:
R × Rn → Rn; (λ, x) 7→ λx, and

Rn × Rn → Rn; (x, y) 7→ x + y.

Proposition 1.6. Let (P,≤) be a partial order. Let F1, F2 be a filter of P , and
B1 ⊆ F1, B2 ⊆ F2 base. Suppose that

(i) ∀ x ∈ B1 ∃ y ∈ B2 s.t. y ≤ x.

(ii) ∀ x ∈ B2 ∃ y ∈ B1 s.t. y ≤ x.

Then we conclude that F1 = F2.

Proof. “F1 ⊆ F2”: Let z ∈ F2. B2 base for F2 ⇒ ∃ x ∈ B2 s.t. x ≤ z.
(ii)⇒ ∃ y ∈ B1 s.t. y ≤ x ≤ z.
F1 filter, B1 ⊆ F1 ⇒ z ∈ F1.
“F2 ⊆ F1” is symmetric using (i) instead of (ii). �

1.7. Proof of Theorem 1.5:
Let τ be a topology on Rn s.t. τ is Hausdorff and (Rn, τ) is a topological R-vector
space.
We want to show that: τ = τE . . . (?)
Since the topology is determined from what happens around 0 ∈ Rn, so

(?)⇔Uτ = UτE .

Consider Fτ = {X ⊂ Rn | 0 ∈ U ⊂ X, for some U ∈ τ}. Then Fτ is a filter.
We will show that Fτ = FτE , by applying Proposition 1.6, where (P,≤) =(
P(Rn),⊆

)
, F1 = Fτ, F2 = FτE , and B1 and B2 two bases for F1 and F2 with

properties (i) and (ii). We will find next a good base for Fτ.

Definition 1.8. Let (E, τ) be a topological R-vector space. X ⊂ E is said to be
circled if α ∈ R, |α| < 1, x ∈ X ⇒ αx ∈ X.

Proposition 1.9. Any topological R-vector space (E, τ) has a base of circled
neighbourhoods of 0 ∈ E.
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Proof. Bτ =
{
∪|α|≤1 αV | V ∈ Uτ

}
is a base for Fτ.

(We will actually show that Bτ is a base forUτ, since it is equivalent)
Fix V ∈ Uτ. By continuity in (0, 0) of the product ∃ ε > 0, ∃ W ∈ Uτ s.t.
|λ| ≤ ε and x ∈ W ⇒ λx ∈ V .

Set U := εW. Then αV ⊂ U ∀ α, |α| ≤ 1.
So, ∪|α|≤1αV ⊆ U. �

1.10. Topological fact: Let (X, τ) be a topological space, K ⊆ X. Then
x ∈ K ⇔ ∀ Vx τ− open containing x, Vx ∩ K , φ.

Proof. “⇒” Suppose, for a contradiction Vx τ− open containing x, with Vx∩K =

φ. Then x < K, and A = (X \ K) ∪ Vx is open, so A ∩ K = φ in contradiction
with the fact that X \ K is the biggest open set disjoint from K (because K is the
smallest closed set containing K).
“⇐” Suppose x < K, so x ∈ X \ K which is open. Then ∃ Vx open containing x
s.t. Vx ⊂ V \ K, contradiction. �

Lemma 1.11. Let (X, τ) be a Hausdorff topological space. If K ⊆ X is τ-compact,
then K is τ-closed.

Proof. Let x ∈ K. We want x ∈ K. Suppose on contrary x < K.
x ∈ K ⇔ ∀ Vx τ− open containing x, Vx ∩ K , φ.
X Hausdorff⇒ ∀ a ∈ K : ∃ τ− open Va 3 a,V x

a 3 x such that Va ∩ V x
a = φ.

{Va | a ∈ K} is an open covering of K.
K compact→ ∃ finite subcovering {Va1 , . . . ,Van}. Set Vx := V x

a1
∩ . . . ∩ V x

an
.

Then Vx is τ−open (since finite intersection of open sets is open) containing x and
Vx ∩ K = φ, a contradiction(
otherwise if e ∈ Vx ∩ K, then ∃ i = 1, . . . , n s.t. e ∈ Vx ∩ V x

ai
= φ

)
. �

1.12. Proof of Theorem 1.5 continued:
To prove: τ = τE

“τ ⊆ τE ” : Let U be circled τ−neighbourhood of 0, and let V be a circled τ−
neighbourhood of 0 s.t. V + . . . + V︸        ︷︷        ︸

n− times

⊆ U.

V absorbing (see Fact 1 of last lecture)⇒ ∃ k > 0 s.t. kei ∈ V ∀ i = 1, . . . , n.

⇒ k
n∑

i=1

αiei ∈ U if
∑

i

|αi|
2 ≤ 1.

Therefore Bk := {x ∈ Rn | ||x||2 < k} ⊂ U.

“τE ⊆ τ ” : Let B = {x ∈ Rn | ||x||2 < 1} and S := {x ∈ Rn | ||x||2 = 1}.
S τE−compact, τ ⊆ τE ⇒ S is τ−compact.
By Lemma 1.11, S is τ− closed.
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0 < S ⇒ ∃ a circled τ−neighbourhood V of 0 s.t. V ∩ S = φ.
We want V ⊂ B. Suppose not: ∃ x ∈ V s.t. ||x||2 ≥ 1

(
⇔ x < B

)
,

then
x
||x||2

∈ V ∩ S = φ, a contradiction.

Thus B is a τ− neighbourhood of 0. Multipying by scalars we have a τ− neigh-
bourhood base at 0, so τE ⊆ τ.

Remark 1.13. The hypothesis that dimV = n ∈ N cannot be avoided. Consider
for instance V = RN:
We saw that τfin is a topology on RN making it a topological R−vector space. τfin

is Hausdorff.
It is not the only use !
Consider for instance the product topology τ on RN. τ is Hausdorff and makes RN

a topological R− vectore space.
τ ⊆ τfin, but τ , τfin. For instance: (0, 1)N ∈ τfin \ τ.


