POSITIVE POLYNOMIALS LECTURE NOTES (25: 13/07/10)

SALMA KUHLMANN

Contents

1. Topological \mathbb{R} -vector space (continued)

1

1. TOPOLOGICAL \mathbb{R} -VECTOR SPACE (continued)

Theorem 1.1. There is unique Hausdorff topology τ on a finite dimensional \mathbb{R} -vector space making it a topological \mathbb{R} -vector space.

Remark 1.2. Lets see why the discrete topology τ_D is not good. Let *V* be an \mathbb{R} -vector space. When we ask that the map

 $:: \mathbb{R} \times V \to V,$ $(\lambda, v) \longmapsto \lambda v$ is continuous,

we assume that \mathbb{R} is endowed with euclidean topology τ_E and $\mathbb{R} \times V$ with the product topology.

So, for instance, $\{\overline{0}\} \in \tau_D = \mathcal{P}(V)$,

and $\cdot^{-1}({\bar{0}}) = (\mathbb{R} \times {\bar{0}}) \cup ({0} \times V)$, which is not open in the product topology $\tau_E \times \tau_D$.

Remark 1.3. If we do not assume Hausdorffness, there are other topologies as $\tau_I = \{\phi, V\}$ (the indiscrete topology).

1.4. Let *V* be an \mathbb{R} -vector space, dim(*V*) = $n \in \mathbb{N}$. **Claim:** We may assume $V = \mathbb{R}^n$ Proof of claim: Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a base of *V* (as a \mathbb{R} -vector space). Let $\Phi_{\mathcal{B}} : V \to \mathbb{R}^n$ $\sum_{i=1}^n a_i v_i \mapsto (a_1, \dots, a_n)$ $\Phi_{\mathcal{B}}$ is an isomorphism of \mathbb{R} -vector space. We define:

$$A \subset V$$
 open $\Leftrightarrow \Phi_{\mathcal{B}}(A) \in \tau_E$ (the Euclidean topology on \mathbb{R}^n).

This defines a topology τ on V that does not depend on \mathcal{B} and such that (v, τ) is homeomorphic to (\mathbb{R}^n, τ_E) .

(25: 13/07/10)

Since (\mathbb{R}^n, τ_E) is a topological \mathbb{R} -vector space, also (V, τ) is a topological \mathbb{R} -vector space, and so Theorem 1.1 is equivalent to:

Theorem 1.5. The Euclidean topology τ_E on \mathbb{R}^n is the unique Hausdorff topology on \mathbb{R}^n such that the following maps are continuous:

 $\mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n; (\lambda, x) \mapsto \lambda x, \text{ and}$ $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n; (x, y) \mapsto x + y.$

Proposition 1.6. Let (P, \leq) be a partial order. Let F_1 , F_2 be a filter of P, and $B_1 \subseteq F_1$, $B_2 \subseteq F_2$ base. Suppose that

- (i) $\forall x \in B_1 \exists y \in B_2 \text{ s.t. } y \leq x.$
- (ii) $\forall x \in B_2 \exists y \in B_1 \text{ s.t. } y \leq x.$

Then we conclude that $F_1 = F_2$.

Proof. " $F_1 \subseteq F_2$ ": Let $z \in F_2$. B_2 base for $F_2 \Rightarrow \exists x \in B_2$ s.t. $x \leq z$. (ii) $\Rightarrow \exists y \in B_1$ s.t. $y \leq x \leq z$. F_1 filter, $B_1 \subseteq F_1 \Rightarrow z \in F_1$. " $F_2 \subseteq F_1$ " is symmetric using (i) instead of (ii).

1.7. Proof of Theorem 1.5:

Let τ be a topology on \mathbb{R}^n s.t. τ is Hausdorff and (\mathbb{R}^n, τ) is a topological \mathbb{R} -vector space.

We want to show that: $\tau = \tau_E$...(*) Since the topology is determined from what happens around $\overline{0} \in \mathbb{R}^n$, so $(\star) \Leftrightarrow \mathcal{U}_{\tau} = \mathcal{U}_{\tau_E}$.

Consider $F_{\tau} = \{X \subset \mathbb{R}^n \mid \overline{0} \in U \subset X, \text{ for some } U \in \tau\}$. Then F_{τ} is a filter. We will show that $F_{\tau} = F_{\tau_E}$, by applying Proposition 1.6, where $(P, \leq) = (\mathcal{P}(\mathbb{R}^n), \subseteq), F_1 = F_{\tau}, F_2 = F_{\tau_E}$, and B_1 and B_2 two bases for F_1 and F_2 with properties (i) and (ii). We will find next a good base for F_{τ} .

Definition 1.8. Let (E, τ) be a topological \mathbb{R} -vector space. $X \subset E$ is said to be **circled** if $\alpha \in \mathbb{R}, |\alpha| < 1, x \in X \Rightarrow \alpha x \in X$.

Proposition 1.9. Any topological \mathbb{R} -vector space (E, τ) has a base of circled neighbourhoods of $\overline{0} \in E$.

(25: 13/07/10)

Proof. $\mathcal{B}_{\tau} = \{ \bigcup_{|\alpha| \le 1} \alpha V \mid V \in \mathcal{U}_{\tau} \}$ is a base for F_{τ} . (We will actually show that \mathcal{B}_{τ} is a base for \mathcal{U}_{τ} , since it is equivalent) Fix $V \in \mathcal{U}_{\tau}$. By continuity in $(\overline{0}, 0)$ of the product $\exists \epsilon > 0, \exists W \in \mathcal{U}_{\tau}$ s.t. $|\lambda| \le \epsilon$ and $x \in W \Rightarrow \lambda x \in V$.

Set $U := \epsilon W$. Then $\alpha V \subset U \forall \alpha, |\alpha| \le 1$. So, $\bigcup_{|\alpha| \le 1} \alpha V \subseteq U$.

1.10. Topological fact: Let (X, τ) be a topological space, $K \subseteq X$. Then $x \in \overline{K} \Leftrightarrow \forall V_x \tau$ - open containing $x, V_x \cap K \neq \phi$.

Proof. " \Rightarrow " Suppose, for a contradiction $V_x \tau$ - open containing x, with $V_x \cap K = \phi$. Then $x \notin K$, and $A = (X \setminus \overline{K}) \cup V_x$ is open, so $A \cap K = \phi$ in contradiction with the fact that $X \setminus \overline{K}$ is the biggest open set disjoint from K (because \overline{K} is the smallest closed set containing K).

"⇐" Suppose $x \notin \overline{K}$, so $x \in X \setminus \overline{K}$ which is open. Then $\exists V_x$ open containing x s.t. $V_x \subset V \setminus \overline{K}$, contradiction.

Lemma 1.11. Let (X, τ) be a Hausdorff topological space. If $K \subseteq X$ is τ -compact, then K is τ -closed.

Proof. Let $x \in \overline{K}$. We want $x \in K$. Suppose on contrary $x \notin K$. $x \in \overline{K} \Leftrightarrow \forall V_x \tau$ - open containing $x, V_x \cap K \neq \phi$. X Hausdorff $\Rightarrow \forall a \in K : \exists \tau$ - open $V_a \ni a, V_a^x \ni x$ such that $V_a \cap V_a^x = \phi$. $\{V_a \mid a \in K\}$ is an open covering of K. K compact $\rightarrow \exists$ finite subcovering $\{V_{a_1}, \ldots, V_{a_n}\}$. Set $V_x := V_{a_1}^x \cap \ldots \cap V_{a_n}^x$. Then V_x is τ -open (since finite intersection of open sets is open) containing x and $V_x \cap K = \phi$, a contradiction (otherwise if $e \in V_x \cap K$, then $\exists i = 1, \ldots, n$ s.t. $e \in V_x \cap V_{a_i}^x = \phi$).

1.12. Proof of Theorem 1.5 continued:

To prove: $\tau = \tau_E$

" $\tau \subseteq \tau_E$ ": Let U be circled τ -neighbourhood of $\overline{0}$, and let V be a circled τ -neighbourhood of $\overline{0}$ s.t. $V + \ldots + V \subseteq U$.

 $V \text{ absorbing (see Fact 1 of last lecture)} \Rightarrow \exists k > 0 \text{ s.t. } ke_i \in V \forall i = 1, \dots, n.$ $\Rightarrow k \sum_{i=1}^n \alpha_i e_i \in U \text{ if } \sum_i |\alpha_i|^2 \leq 1.$ Therefore $B_k := \{x \in \mathbb{R}^n \mid ||x||_2 < k\} \subset U.$ $``\tau_E \subseteq \tau ``: \text{ Let } B = \{x \in \mathbb{R}^n \mid ||x||_2 < 1\} \text{ and } S := \{x \in \mathbb{R}^n \mid ||x||_2 = 1\}.$ $S \tau_E - \text{compact}, \tau \subseteq \tau_E \Rightarrow S \text{ is } \tau - \text{compact}.$

By Lemma 1.11, S is τ - closed.

 $\overline{0} \notin S \Rightarrow \exists \text{ a circled } \tau - \text{neighbourhood } V \text{ of } \overline{0} \text{ s.t. } V \cap S = \phi.$ We want $V \subset B$. Suppose not: $\exists x \in V \text{ s.t. } ||x||_2 \ge 1 \ (\Leftrightarrow x \notin B \),$ then $\frac{x}{||x||_2} \in V \cap S = \phi$, a contradiction.

Thus B is a τ - neighbourhood of $\overline{0}$. Multipying by scalars we have a τ - neighbourhood base at $\overline{0}$, so $\tau_E \subseteq \tau$.

Remark 1.13. The hypothesis that dim $V = n \in \mathbb{N}$ cannot be avoided. Consider for instance $V = \mathbb{R}^{\mathbb{N}}$:

We saw that τ_{fin} is a topology on $\mathbb{R}^{\mathbb{N}}$ making it a topological \mathbb{R} -vector space. τ_{fin} is Hausdorff.

It is not the only use !

Consider for instance the product topology τ on $\mathbb{R}^{\mathbb{N}}$. τ is Hausdorff and makes $\mathbb{R}^{\mathbb{N}}$ a topological \mathbb{R} - vectore space.

 $\tau \subseteq \tau_{\text{fin}}$, but $\tau \neq \tau_{\text{fin}}$. For instance: $(0, 1)^{\mathbb{N}} \in \tau_{\text{fin}} \setminus \tau$.