POSITIVE POLYNOMIALS LECTURE NOTES (03: 20/04/10)

SALMA KUHLMANN

Contents

Geometric version of Positivstellensatz
 Exkurs in commutative algebra
 6

1. GEOMETRIC VERSION OF POSITIVSTELLENSATZ

Theorem 1.1. (Recall) (Positivstellensatz: Geometric Version) Let $A = \mathbb{R}[\underline{X}]$. Let $S = \{g_1, \dots, g_s\} \subseteq \mathbb{R}[\underline{X}], f \in \mathbb{R}[\underline{X}]$. Then

- (1) f > 0 on $K_S \Leftrightarrow \exists p, q \in T_S$ s.t. pf = 1 + q (Striktpositivstellensatz)
- (2) $f \ge 0$ on $K_S \Leftrightarrow \exists m \in \mathbb{Z}_+, \exists p, q \in T_S$ s.t. $pf = f^{2m} + q$ (Nonnegativstellensatz)
- (3) f = 0 on $K_S \Leftrightarrow \exists m \in \mathbb{Z}_+ \text{ s.t. } -f^{2m} \in T_S$ (Real Nullstellensatz (first form))
- (4) $K_S = \phi \Leftrightarrow -1 \in T_S$.

Proof. It consists of two parts:

- -Step I: prove that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$
- -Step II: prove (4) [using Tarski Transfer]

We will start with step II:

Clearly $K_S \neq \phi \Rightarrow -1 \notin T_S$ (since $-1 \in T_S \Rightarrow K_S = \phi$), so it only remains to prove the following proposition:

Proposition 1.2. (3.2 of last lecture) If $-1 \notin T_S$ (i.e. if T_S is a proper preordering), then $K_S \neq \phi$.

For proving this we need the following results:

Lemma 1.3.1. (3.4.1 of last lecture) Let A be a commutative ring with 1. Let P be a maximal proper preordering in A. Then P is an ordering.

Proof. We have to show:

- (i) $P \cup -P = A$, and
- (ii) $p := P \cap -P$ is a prime ideal of A.
- (i) Assume $a \in A$, but $a \notin P \cup -P$.

By maximality of P, we have: $-1 \in (P + aP)$ and $-1 \in (P - aP)$

Thus

$$-1 = s_1 + at_1$$
 and

$$-1 = s_2 - at_2 \; ; \; s_1, s_2, t_1, t_2 \in P$$

So (rewritting)

$$-at_1 = 1 + s_1$$
 and

$$at_2 = 1 + s_2$$

Multiplying we get:

$$-a^2t_1t_2 = 1 + s_1 + s_2 + s_1s_2$$

$$\Rightarrow$$
 -1 = $s_1 + s_2 + s_1 s_2 + a^2 t_1 t_2 \in P$, a contradiction.

(ii) Now consider $p := P \cap -P$, clearly it is an ideal.

We claim that p is prime.

Let $ab \in \mathfrak{p}$ and $a, b \notin \mathfrak{p}$.

Assume w.l.o.g. that $a, b \notin P$.

Then as above in (i), we get:

$$-1 \in (P + aP) \text{ and } -1 \in (P + bP)$$

So,
$$-1 = s_1 + at_1$$
 and

$$-1 = s_2 + bt_2$$
; $s_1, s_2, t_1, t_2 \in P$

Rearranging and multiplying we get:

$$(at_1)(bt_2) = (1 + s_1)(1 + s_2) = 1 + s_1 + s_2 + s_1s_2$$

$$\Rightarrow -1 = \underbrace{s_1 + s_2 + s_1 s_2}_{CP} \underbrace{-abt_1 t_2}_{CP}$$

$$\Rightarrow$$
 -1 \in P, a contradiction.

Lemma 1.3.2. (3.4.2 of last lecture) Let A be a commutative ring with 1 and $P \subseteq A$ an ordering. Then P induces uniquely an ordering \leq_P on $F := ff(A/\mathfrak{p})$ defined by:

$$\forall \ a,b \in A, b \notin \mathfrak{p} : \frac{\overline{a}}{\overline{b}} \geq_P 0 \ (\text{in } F) \Leftrightarrow ab \in P, \text{ where } \overline{a} = a + \mathfrak{p}.$$

Recall 1.3.3. (Tarski Transfer Principle) Suppose $(\mathbb{R}, \leq) \subseteq (F, \leq)$ is an ordered field extension of \mathbb{R} . If $\underline{x} \in F^n$ satisfies a finite system of polynomial equations and inequalities with coefficients in \mathbb{R} , then $\exists r \in \mathbb{R}^n$ satisfying the same system.

Using lemma 1.3.1, lemma 1.3.2 and TTP (recall 1.3.3), we prove the proposition 1.2 as follows:

Proof of Propostion 1.2. **To show:** $-1 \notin T_S \Rightarrow K_S \neq \phi$.

Set
$$S = \{g_1, \dots, g_s\} \subseteq \mathbb{R}[X]$$

 $-1 \notin T_S \Rightarrow T_S$ is a proper preordering.

By Zorn, extend T_S to a maximal proper preordering P.

By lemma 1.3.1, *P* is an ordering on $\mathbb{R}[X]$; $\mathfrak{p} := P \cap -P$ is prime.

By lemma 1.3.2, let $(F, \leq_P) = (ff(\mathbb{R}[\underline{X}]/\mathfrak{p}), \leq_P)$ is an ordered field extension of (\mathbb{R}, \leq) .

Now consider the system $S := \begin{cases} g_1 \ge 0 \\ \vdots \\ g_s \ge 0. \end{cases}$

Claim: The system S has a solution in F^n , namely $\underline{X} := (\overline{X_1}, \dots, \overline{X_n})$,

i.e. to show: $g_i(\overline{X_1}, \dots, \overline{X_n}) \ge_P 0$; $i = 1, \dots, s$.

Indeed $g_i(\overline{X_1}, \dots, \overline{X_n}) = \overline{g_i(X_1, \dots, X_n)}$, and since $g_i \in T_S \subset P$, it follows by definition of \leq_P that $\overline{g_i} \geq_P 0$.

Now apply TTP (recall 1.3.3) to conclude that:

 $\exists \underline{r} \in \mathbb{R}^n$ satisfying the system S, i.e. $g_i(\underline{x}) \ge 0$; i = 1, ..., s.

$$\Rightarrow \underline{r} \in K_S \Rightarrow K_S \neq \phi$$
.

This completes step II.

Now we will do step I:

i.e. we show $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$

$(1) \Rightarrow (2)$

Let $f \ge 0$ on K_S , $f \not\equiv 0$.

Consider $S' \subseteq \mathbb{R}[\underline{X}, Y]$, $S' := S \cup \{Yf - 1, -Yf + 1\}$

So,
$$K_{S'} = \{(\underline{x}, y) \mid g_i(\underline{x}) \ge 0 ; yf(\underline{x}) = 1\}.$$

Thus $f(\underline{X}, Y) = f(\underline{X}) > 0$ on $K_{S'}$, so applying (1) $\exists p', q' \in T_{S'}$ s.t.

$$p'(X, Y) f(X) = 1 + q'(X, Y)$$

Substitute $Y := \frac{1}{f(\underline{X})}$ in above equation and clear denominators by multiplying both sides by $f(\underline{X})^{2m}$ for $m \in \mathbb{Z}_+$ sufficiently large to get:

$$p(X)f(X) = f(X)^{2m} + q(X).$$

with
$$p(\underline{X}) := f(\underline{X})^{2m} p'\left(\underline{X}, \frac{1}{f(\underline{X})}\right) \in \mathbb{R}[\underline{X}]$$
 and $q(\underline{X}) := f(\underline{X})^{2m} q'\left(\underline{X}, \frac{1}{f(\underline{X})}\right) \in \mathbb{R}[\underline{X}].$

To finish the proof we **claim** that: $p(\underline{X})$, $q(\underline{X}) \in T_S$ for sufficiently large m.

Observe that $p'(\underline{X}, Y) \in T_{S'}$, so p' is a sum of terms of the form:

$$\underbrace{\sigma(\underline{X},Y)}_{\in \Sigma \mathbb{R}[\underline{X},Y]^2} g_1^{e_1} \dots g_s^{e_s} (Yf(\underline{X})-1)^{e_{s+1}} (-Yf(\underline{X})+1)^{e_{s+2}} ; e_1,\dots,e_s,e_{s+1},e_{s+2} \in \{0,1\}$$

say
$$\sigma(\underline{X}, Y) = \sum_{j} h_{j}(\underline{X}, Y)^{2}$$
.

Now when we substitute Y by $\frac{1}{f(\underline{X})}$ in $p'(\underline{X}, Y)$, all terms with e_{s+1} or e_{s+2} equal to 1 vanish.

So, the remaining terms are of the form

$$\sigma\left(\underline{X}, \frac{1}{f(\underline{X})}\right) g_1^{e_1} \dots g_s^{e_s} = \left(\sum_j \left[h_j\left(\underline{X}, \frac{1}{f(\underline{X})}\right)\right]^2\right) g_1^{e_1} \dots g_s^{e_s}$$

So, we want to choose *m* large enough so that $f(\underline{X})^{2m} \sigma(\underline{X}, \frac{1}{f(\underline{X})}) \in \Sigma \mathbb{R}[\underline{X}]^2$.

Write
$$h_j(\underline{X}, Y) = \sum_i h_{ij}(\underline{X})Y^i$$

Let $m \ge \deg (h_j(\underline{X}, Y))$ in Y, for all j.

Substituting $Y = \frac{1}{f(\underline{X})}$ in $h_j(\underline{X}, Y)$ and multiplying by $f(\underline{X})^m$, we get:

$$f(\underline{X})^m h_j(\underline{X}, \frac{1}{f(\underline{X})}) = \sum_i h_{ij}(\underline{X}) f(\underline{X})^{m-i}, \text{ with } (m-i) \ge 0 \ \forall i$$

so that $f(\underline{X})^m h_j(\underline{X}, \frac{1}{f(\underline{X})}) \in \mathbb{R}[\underline{X}]$, for all j.

So
$$f(\underline{X})^{2m} \sigma\left(\underline{X}, \frac{1}{f(\underline{X})}\right) = f(\underline{X})^{2m} \left(\sum_{j} \left[h_{j}\left(\underline{X}, \frac{1}{f(\underline{X})}\right)\right]^{2}\right)$$
$$= \sum_{j} \left[f(\underline{X})^{m} h_{j}\left(\underline{X}, \frac{1}{f(\underline{X})}\right)\right]^{2} \in \Sigma \mathbb{R}[\underline{X}]^{2}$$

Thus p and (similarly) $q \in T_S$, which proves our claim and hence $(1) \Rightarrow (2)$. \Box

$(2) \Rightarrow (3)$

Assume
$$f = 0$$
 on K_S . Apply (2) to f and $-f$ to get:
 $p_1 f = f^{2m_1} + q_1$ and
 $-p_2 f = f^{2m_2} + q_2$; where $p_1, p_2, q_1, q_2 \in T_S$, $m_i \in \mathbb{Z}_+$

Multiplying yields:

$$-p_1 p_2 f^2 = f^{2(m_1 + m_2)} + f^{2m_1} q_2 + f^{2m_2} q_1 + q_1 q_2$$

$$\Rightarrow -f^{2(m_1 + m_2)} = \underbrace{p_1 p_2 f^2 + f^{2m_1} q_2 + f^{2m_2} q_1 + q_1 q_2}_{\in T_S}$$
i.e. $-f^{2m} \in T_S$, $m \in \mathbb{Z}_+$

$(3) \Rightarrow (4)$

Assume $K_S = \phi$

⇒ the constant polynomial $f(\underline{X}) \equiv 1$ vanishes on K_S . Applying (3), gives $-1 \in T_S$.

$(4) \Rightarrow (1)$

Let
$$S' = S \cup \{-f\}$$

Since $f > 0$ on K_S we have $K_{S'} = \phi$, so $-1 \in T_{S'}$ by (4).
Moreover from $S' = S \cup \{-f\}$, we have $T'_S = T_S - fT_S$
 $\Rightarrow -1 = q - pf$; for some $p, q \in T_S$
i.e. $pf = 1 + q$

This completes step I and hence the proof of Positivstellensatz.

We will now study other forms of the Real Nullstellensatz that will relate it to Hilbert's Nullstellensatz.

2. EXKURS IN COMMUTATIVE ALGEBRA

Recall 2.1. Let *K* be a field, $S \subseteq K[X]$. Define

$$\mathcal{Z}(S) := \{x \in K^n \mid g(x) = 0 \ \forall g \in S\}, \text{ the zero set of } S.$$

Proposition 2.2. Let $V \subseteq K^n$. Then the following are equivalent:

- (1) $V = \mathcal{Z}(S)$; for some finite $S \subseteq K[X]$
- (2) $V = \mathcal{Z}(S)$; for some set $S \subseteq K[X]$
- (3) $V = \mathcal{Z}(I)$; for some ideal $I \subseteq K[X]$

Proof. $(1) \Rightarrow (2)$ Clear.

- $(2) \Rightarrow (3)$ Take $I := \langle S \rangle$, the ideal generated by S.
- $(3) \Rightarrow (1)$ Using Hilbert Basis Theorem (i.e. for a field K, every ideal in $K[\underline{X}]$ is finitely generated):

$$I = \langle S \rangle$$
, S finite
 $\Rightarrow \mathcal{Z}(I) = \mathcal{Z}(S)$.

Definition 2.3. $V \subseteq K^n$ is an **algebraic set** if V satisfies one of the equivalent conditions of Proposition 2.2.

Definition 2.4. Given a subset $A \subseteq K^n$, we form:

$$I(A) := \{ f \in K[\underline{X}] \mid f(\underline{a}) = 0 \ \forall \ \underline{a} \in A \}.$$

Proposition 2.5. Let $A \subseteq K^n$. Then

- (1) I(A) is an ideal called the **ideal of vanishing polynomials** on A.
- (2) If A = V is an algebraic set in K^n , then $\mathcal{Z}(\mathcal{I}(V)) = V$
- (3) the map $V \mapsto \mathcal{I}(V)$ is a 1-1 map from the set of algebraic sets in K^n into the set of ideals of K[X].

Remark 2.6. Note that for an ideal I of $K[\underline{X}]$, the inclusion $I \subseteq \mathcal{I}(\mathcal{Z}(I))$ is always true.

[Proof. Say (by Hilbert Basis Theorem)
$$I = \langle g_1, \dots, g_s \rangle, g_i \in K[\underline{X}]$$
. Then $\mathcal{Z}(I) = \{\underline{x} \in K^n \mid g_i(\underline{x}) = 0 \ \forall \ i = 1, \dots, s\},$

$$I(\mathcal{Z}(I)) = \{ f \in K[\underline{X}] \mid f(\underline{x}) = 0 \ \forall \ \underline{x} \in \mathcal{Z}(I) \}.$$

Assume
$$f = h_1 g_1 + \ldots + h_s g_s \in I$$
, then $f(\underline{x}) = 0 \ \forall \ \underline{x} \in \mathcal{Z}(I)$ [since by definition $\underline{x} \in \mathcal{Z}(I) \Rightarrow g_i(\underline{x}) = 0 \ \forall \ i = 1, \ldots, s$] $\Rightarrow f \in I(\mathcal{Z}(I))$.

But in general it is false that I(Z(I)) = I. Hilbert's Nullstellensatz studies necessary and sufficient conditions on K and I so that this identity holds.