POSITIVE POLYNOMIALS LECTURE NOTES

(03: 20/04/10)

SALMA KUHLMANN

Contents

1. Geometric version of Positivstellensatz 1
2. Exkurs in commutative algebra

1. GEOMETRIC VERSION OF POSITIVSTELLENSATZ

Theorem 1.1. (Recall) (Positivstellensatz: Geometric Version) Let $A=\mathbb{R}[\underline{X}]$. Let $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[\underline{X}], f \in \mathbb{R}[\underline{X}]$. Then
(1) $f>0$ on $K_{S} \Leftrightarrow \exists p, q \in T_{S}$ s.t. $p f=1+q$ (Striktpositivstellensatz)
(2) $f \geq 0$ on $K_{S} \Leftrightarrow \exists m \in \mathbb{Z}_{+}, \exists p, q \in T_{S}$ s.t. $p f=f^{2 m}+q$ (Nonnegativstellensatz)
(3) $f=0$ on $K_{S} \Leftrightarrow \exists m \in \mathbb{Z}_{+}$s.t. $-f^{2 m} \in T_{S}$ (Real Nullstellensatz (first form))
(4) $K_{S}=\phi \Leftrightarrow-1 \in T_{S}$.

Proof. It consists of two parts:
-Step I: prove that $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(1)$
-Step II: prove (4) [using Tarski Transfer]
We will start with step II:
Clearly $K_{S} \neq \phi \Rightarrow-1 \notin T_{S}$ (since $-1 \in T_{S} \Rightarrow K_{S}=\phi$), so it only remains to prove the following proposition:

Proposition 1.2. (3.2 of last lecture) If $-1 \notin T_{S}$ (i.e. if T_{S} is a proper preordering), then $K_{S} \neq \phi$.

For proving this we need the following results:
Lemma 1.3.1. (3.4.1 of last lecture) Let A be a commutative ring with 1 . Let P be a maximal proper preordering in A. Then P is an ordering.
Proof. We have to show:
(i) $P \cup-P=A$, and
(ii) $\mathfrak{p}:=P \cap-P$ is a prime ideal of A.
(i) Assume $a \in A$, but $a \notin P \cup-P$.

By maximality of P, we have: $-1 \in(P+a P)$ and $-1 \in(P-a P)$
Thus

$$
\begin{aligned}
& -1=s_{1}+a t_{1} \quad \text { and } \\
& -1=s_{2}-a t_{2} ; s_{1}, s_{2}, t_{1}, t_{2} \in P
\end{aligned}
$$

So (rewritting)

$$
\begin{aligned}
-a t_{1} & =1+s_{1} \text { and } \\
a t_{2} & =1+s_{2}
\end{aligned}
$$

Multiplying we get:

$$
\begin{aligned}
& -a^{2} t_{1} t_{2}=1+s_{1}+s_{2}+s_{1} s_{2} \\
& \Rightarrow-1=s_{1}+s_{2}+s_{1} s_{2}+a^{2} t_{1} t_{2} \in P, \text { a contradiction. }
\end{aligned}
$$

(ii) Now consider $\mathfrak{p}:=P \cap-P$, clearly it is an ideal.

We claim that \mathfrak{p} is prime.
Let $a b \in \mathfrak{p}$ and $a, b \notin \mathfrak{p}$.
Assume w.l.o.g. that $a, b \notin P$.
Then as above in (i), we get:
$-1 \in(P+a P)$ and $-1 \in(P+b P)$
So, $-1=s_{1}+a t_{1}$ and
$-1=s_{2}+b t_{2} ; s_{1}, s_{2}, t_{1}, t_{2} \in P$
Rearranging and multiplying we get:

$$
\begin{aligned}
& \left(a t_{1}\right)\left(b t_{2}\right)=\left(1+s_{1}\right)\left(1+s_{2}\right)=1+s_{1}+s_{2}+s_{1} s_{2} \\
& \Rightarrow-1=\underbrace{s_{1}+s_{2}+s_{1} s_{2}}_{\in P} \underbrace{-a b t_{1} t_{2}}_{\in \mathfrak{p} \subset P} \\
& \Rightarrow-1 \in P, \text { a contradiction. }
\end{aligned}
$$

Lemma 1.3.2. (3.4.2 of last lecture) Let A be a commutative ring with 1 and $P \subseteq A$ an ordering. Then P induces uniquely an ordering \leq_{P} on $F:=f f(A / \mathfrak{p})$ defined by:

$$
\forall a, b \in A, b \notin \mathfrak{p}: \frac{\bar{a}}{\bar{b}} \geq_{P} 0(\text { in } F) \Leftrightarrow a b \in P \text {, where } \bar{a}=a+\mathfrak{p} \text {. }
$$

Recall 1.3.3. (Tarski Transfer Principle) Suppose $(\mathbb{R}, \leq) \subseteq(F, \leq)$ is an ordered field extension of \mathbb{R}. If $\underline{x} \in F^{n}$ satisfies a finite system of polynomial equations and inequalities with coefficients in \mathbb{R}, then $\exists \underline{r} \in \mathbb{R}^{n}$ satisfying the same system.

Using lemma 1.3.1, lemma 1.3.2 and TTP (recall 1.3.3), we prove the proposition 1.2 as follows:

Proof of Propostion 1.2. To show: $-1 \notin T_{S} \Rightarrow K_{S} \neq \phi$.
Set $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[\underline{X}]$
$-1 \notin T_{S} \Rightarrow T_{S}$ is a proper preordering.
By Zorn, extend T_{S} to a maximal proper preordering P.
By lemma 1.3.1, P is an ordering on $\mathbb{R}[\underline{X}] ; \mathfrak{p}:=P \cap-P$ is prime.
By lemma 1.3.2, let $\left(F, \leq_{P}\right)=\left(f f(\mathbb{R}[\underline{X}] / \mathfrak{p}), \leq_{P}\right)$ is an ordered field extension of (\mathbb{R}, \leq).
Now consider the system $\mathcal{S}:=\left\{\begin{array}{c}g_{1} \geq 0 \\ \vdots \\ g_{s} \geq 0 .\end{array}\right.$
Claim: The system \mathcal{S} has a solution in F^{n}, namely $\underline{X}:=\left(\overline{X_{1}}, \ldots, \overline{X_{n}}\right)$,
i.e. to show: $g_{i}\left(\overline{X_{1}}, \ldots, \overline{X_{n}}\right) \geq_{P} 0 ; i=1, \ldots, s$.

Indeed $g_{i}\left(\overline{X_{1}}, \ldots, \overline{X_{n}}\right)=\overline{g_{i}\left(X_{1}, \ldots, X_{n}\right)}$, and since $g_{i} \in T_{S} \subset P$, it follows by definition of \leq_{P} that $\overline{g_{i}} \geq_{P} 0$.

Now apply TTP (recall 1.3.3) to conclude that:
$\exists \underline{r} \in \mathbb{R}^{n}$ satisfying the system \mathcal{S}, i.e. $g_{i}(\underline{x}) \geq 0 ; i=1, \ldots, s$.
$\Rightarrow \underline{r} \in K_{S} \Rightarrow K_{S} \neq \phi$.
This completes step II.
Now we will do step I:
i.e. we show $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(1)$
(1) $\Rightarrow(2)$

Let $f \geq 0$ on $K_{S}, f \not \equiv 0$.
Consider $S^{\prime} \subseteq \mathbb{R}[\underline{X}, Y], S^{\prime}:=S \cup\{Y f-1,-Y f+1\}$
So, $K_{S^{\prime}}=\left\{(\underline{x}, y) \mid g_{i}(\underline{x}) \geq 0 ; y f(\underline{x})=1\right\}$.

Thus $f(\underline{X}, Y)=f(\underline{X})>0$ on $K_{S^{\prime}}$, so applying (1) $\exists p^{\prime}, q^{\prime} \in T_{S^{\prime}}$ s.t.

$$
p^{\prime}(\underline{X}, Y) f(\underline{X})=1+q^{\prime}(\underline{X}, Y)
$$

Substitute $Y:=\frac{1}{f(\underline{X})}$ in above equation and clear denominators by multiplying both sides by $f(\underline{X})^{2 m}$ for $m \in \mathbb{Z}_{+}$sufficiently large to get:

$$
p(\underline{X}) f(\underline{X})=f(\underline{X})^{2 m}+q(\underline{X}),
$$

with $p(\underline{X}):=f(\underline{X})^{2 m} p^{\prime}\left(\underline{X}, \frac{1}{f(\underline{X})}\right) \in \mathbb{R}[\underline{X}]$ and

$$
q(\underline{X}):=f(\underline{X})^{2 m} q^{\prime}\left(\underline{X}, \frac{1}{f(\underline{X})}\right) \in \mathbb{R}[\underline{X}] .
$$

To finish the proof we claim that: $p(\underline{X}), q(\underline{X}) \in T_{S}$ for sufficiently large m.
Observe that $p^{\prime}(\underline{X}, Y) \in T_{S^{\prime}}$, so p^{\prime} is a sum of terms of the form:

$$
\underbrace{\sigma(\underline{X}, Y)}_{\in \mathbb{R}[\underline{X}, Y]^{2}} g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}(Y f(\underline{X})-1)^{e_{s+1}}(-Y f(\underline{X})+1)^{e_{s+2}} ; e_{1}, \ldots, e_{s}, e_{s+1}, e_{s+2} \in\{0,1\}
$$

say $\sigma(\underline{X}, Y)=\sum_{j} h_{j}(\underline{X}, Y)^{2}$.
Now when we substitute Y by $\frac{1}{f(\underline{X})}$ in $p^{\prime}(\underline{X}, Y)$, all terms with e_{s+1} or e_{s+2} equal to 1 vanish.
So, the remaining terms are of the form

$$
\sigma\left(\underline{X}, \frac{1}{f(\underline{X})}\right) g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}=\left(\sum_{j}\left[h_{j}\left(\underline{X}, \frac{1}{f(\underline{X})}\right)\right]^{2}\right) g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}
$$

So, we want to choose m large enough so that $f(\underline{X})^{2 m} \sigma\left(\underline{X}, \frac{1}{f(\underline{X})}\right) \in \Sigma \mathbb{R}[\underline{X}]^{2}$.
Write $h_{j}(\underline{X}, Y)=\sum_{i} h_{i j}(\underline{X}) Y^{i}$
Let $m \geq \operatorname{deg}\left(h_{j}(\underline{X}, Y)\right)$ in Y, for all j.
Substituting $Y=\frac{1}{f(\underline{X})}$ in $h_{j}(\underline{X}, Y)$ and multiplying by $f(\underline{X})^{m}$, we get:

$$
f(\underline{X})^{m} h_{j}\left(\underline{X}, \frac{1}{f(\underline{X})}\right)=\sum_{i} h_{i j}(\underline{X}) f(\underline{X})^{m-i}, \text { with }(m-i) \geq 0 \forall i
$$

so that $f(\underline{X})^{m} h_{j}\left(\underline{X}, \frac{1}{f(\underline{X})}\right) \in \mathbb{R}[\underline{X}]$, for all j.

$$
\text { So } \begin{aligned}
& f(\underline{X})^{2 m} \sigma\left(\underline{X}, \frac{1}{f(\underline{X})}\right)=f(\underline{X})^{2 m}\left(\sum_{j}\left[h_{j}\left(\underline{X}, \frac{1}{f(\underline{X})}\right)\right]^{2}\right) \\
& =\sum_{j}\left[f(\underline{X})^{m} h_{j}\left(\underline{X}, \frac{1}{f(\underline{X})}\right)\right]^{2} \in \Sigma \mathbb{R}[\underline{X}]^{2}
\end{aligned}
$$

Thus p and (similarly) $q \in T_{S}$, which proves our claim and hence (1) \Rightarrow (2).
(2) $\Rightarrow(3)$

Assume $f=0$ on K_{S}. Apply (2) to f and $-f$ to get:

$$
\begin{aligned}
p_{1} f & =f^{2 m_{1}}+q_{1} \\
-p_{2} f & =f^{2 m_{2}}+q_{2} ; \text { where } p_{1}, p_{2}, q_{1}, q_{2} \in T_{S}, m_{i} \in \mathbb{Z}_{+}
\end{aligned}
$$

Multiplying yields:

$$
\begin{aligned}
& -p_{1} p_{2} f^{2}=f^{2\left(m_{1}+m_{2}\right)}+f^{2 m_{1}} q_{2}+f^{2 m_{2}} q_{1}+q_{1} q_{2} \\
\Rightarrow & -f^{2\left(m_{1}+m_{2}\right)}=\underbrace{p_{1} p_{2} f^{2}+f^{2 m_{1}} q_{2}+f^{2 m_{2}} q_{1}+q_{1} q_{2}}_{\in T_{S}}
\end{aligned}
$$

i.e. $-f^{2 m} \in T_{S}, m \in \mathbb{Z}_{+}$
(3) \Rightarrow (4)

Assume $K_{S}=\phi$
\Rightarrow the constant polynomial $f(\underline{X}) \equiv 1$ vanishes on K_{S}.
Applying (3), gives $-1 \in T_{S}$.
$(4) \Rightarrow(1)$
Let $S^{\prime}=S \cup\{-f\}$
Since $f>0$ on K_{S} we have $K_{S^{\prime}}=\phi$, so $-1 \in T_{S^{\prime}}$ by (4).
Moreover from $S^{\prime}=S \cup\{-f\}$, we have $T_{S}^{\prime}=T_{S}-f T_{S}$
$\Rightarrow-1=q-p f$; for some $p, q \in T_{S}$
i.e. $p f=1+q$

This completes step I and hence the proof of Positivstellensatz.
We will now study other forms of the Real Nullstellensatz that will relate it to Hilbert's Nullstellensatz.

2. EXKURS IN COMMUTATIVE ALGEBRA

Recall 2.1. Let K be a field, $S \subseteq K[\underline{X}]$. Define
$\mathcal{Z}(S):=\left\{\underline{x} \in K^{n} \mid g(\underline{x})=0 \forall g \in S\right\}$, the zero set of S.
Proposition 2.2. Let $V \subseteq K^{n}$. Then the following are equivalent:
(1) $V=\mathcal{Z}(S)$; for some finite $S \subseteq K[\underline{X}]$
(2) $V=\mathcal{Z}(S)$; for some set $S \subseteq K[\underline{X}]$
(3) $V=\mathcal{Z}(I)$; for some ideal $I \subseteq K[\underline{X}]$

Proof. (1) \Rightarrow (2) Clear.
(2) \Rightarrow (3) Take $I:=<S>$, the ideal generated by S.
(3) \Rightarrow (1) Using Hilbert Basis Theorem (i.e. for a field K, every ideal in $K[\underline{X}]$ is finitely generated):

$$
\begin{aligned}
& I=\langle S\rangle, S \text { finite } \\
& \Rightarrow \mathcal{Z}(I)=\mathcal{Z}(S) .
\end{aligned}
$$

Definition 2.3. $V \subseteq K^{n}$ is an algebraic set if V satisfies one of the equivalent conditions of Proposition 2.2.

Definition 2.4. Given a subset $A \subseteq K^{n}$, we form:
$\mathcal{I}(A):=\{f \in K[\underline{X}] \mid f(\underline{a})=0 \forall \underline{a} \in A\}$.
Proposition 2.5. Let $A \subseteq K^{n}$. Then
(1) $I(A)$ is an ideal called the ideal of vanishing polynomials on A.
(2) If $A=V$ is an algebraic set in K^{n}, then $\mathcal{Z}(\mathcal{I}(V))=V$
(3) the map $V \longmapsto I(V)$ is a 1-1 map from the set of algebraic sets in K^{n} into the set of ideals of $K[\underline{X}]$.

Remark 2.6. Note that for an ideal I of $K[\underline{X}]$, the inclusion $I \subseteq \mathcal{I}(\mathcal{Z}(I))$ is always true.
[Proof. Say (by Hilbert Basis Theorem) $I=<g_{1}, \ldots, g_{s}>, g_{i} \in K[\underline{X}]$. Then $\mathcal{Z}(I)=\left\{\underline{x} \in K^{n} \mid g_{i}(\underline{x})=0 \forall i=1, \ldots, s\right\}$,

$$
\mathcal{I}(\mathcal{Z}(I))=\{f \in K[\underline{X}] \mid f(\underline{x})=0 \quad \forall \underline{x} \in \mathcal{Z}(I)\} .
$$

Assume $f=h_{1} g_{1}+\ldots+h_{s} g_{s} \in I$, then $f(\underline{x})=0 \forall \underline{x} \in \mathcal{Z}(I)$
[since by definition $\underline{x} \in \mathcal{Z}(I) \Rightarrow g_{i}(\underline{x})=0 \forall i=1, \ldots, s$]
$\Rightarrow f \in \mathcal{I}(\mathcal{Z}(I))$.
But in general it is false that $\mathcal{I}(\mathcal{Z}(I))=I$. Hilbert's Nullstellensatz studies necessary and sufficient conditions on K and I so that this identity holds.

