POSITIVE POLYNOMIALS LECTURE NOTES (05: 27/04/10)

SALMA KUHLMANN

Contents

1. The Real Spectrum	1 2 3
2. Topologies on $Sper(A)$	
3. Abstract Positivstellensatz	

1. THE REAL SPECTRUM

Definition 1.1. Let *A* be a commutative ring with 1. We set:

 $Sper(A) := \{ \alpha = (\mathfrak{p}, \leq) \mid \mathfrak{p} \text{ is a prime ideal of } A \text{ and } \leq \text{ is an ordering on } ff(A/\mathfrak{p}) \}.$

Note 1.2. *Sper*(*A*) := { $\alpha = (\mathfrak{p}, \leq) | \mathfrak{p}$ is a real prime and \leq an ordering on $ff(A/\mathfrak{p})$ }.

Definition 1.3. Let $\alpha = (\mathfrak{p}, \leq) \in Sper(A)$, then $\mathfrak{p} = Supp(\alpha)$, the **Support** of α .

Recall 1.4. An ordering $P \subseteq A$ is a preordering with $P \cup -P = A$ and $\mathfrak{p} := P \cap -P$ prime ideal of *A*.

Definition 1.5. Alternatively, the **Real Spectrum** of A, Sper(A) can be defined as:

$$Sper(A) := \{P \mid P \subseteq A, P \text{ is an ordering of } A\}.$$

Remark 1.6. The two definitions of Sper(A) are equivalent in the following sense: The map

$$\varphi: \left\{ \text{Orderings in } A \right\} \rightsquigarrow \left\{ (\mathfrak{p}, \leq), \mathfrak{p} \text{ real prime, } \leq \text{ ordering on } ff(A/\mathfrak{p}) \right\}$$
$$P \longmapsto \mathfrak{p} := P \cap -P, \leq_P \text{ on } ff(A/\mathfrak{p})$$

 $\left(\text{where } \frac{\overline{a}}{\overline{b}} \ge_P 0 \Leftrightarrow ab \in P \text{ with } \overline{a} = a + \mathfrak{p}\right)$ is bijective [where $\varphi^{-1}(\mathfrak{p}, \leq)$ is $P := \{a \in A \mid \overline{a} \ge 0\}$]. \Box

2. TOPOLOGIES ON *Sper*(*A*)

Definition 2.1. The **Spectral Topology** on Sper(A): Sper(A) as a topological space, subbasis of open sets is: $\mathcal{U}(a) := \{P \in Sper(A) \mid a \notin P\}, a \in A.$

(So a basis of open sets consists of finite intersection, i.e. of sets

 $\mathcal{U}(a_1, \ldots, a_n) := \{P \in Sper(A) \mid a_1, \ldots, a_n \notin P\}$ Then close by arbitrary unions to get all open sets. This is called Spectral Topology.

Definition 2.2. The **Constructible (or Patch) Topology** on Sper(A) is the topology that is generated by the open sets $\mathcal{U}(a)$ and there complements $Sper(A) \setminus \mathcal{U}(a)$, for $a \in A$.

(Subbasis for constructible topology is $\mathcal{U}(a)$, $Sper(A) \setminus \mathcal{U}(a)$, for $a \in A$.)

Remark 2.3. The constructible topology is finer than the Spectral Topology (i.e. more open sets).

Special case: $A = \mathbb{R}[\underline{X}]$

Proposition 2.4. There is a natural embedding

 $\mathcal{P}: \mathbb{R}^n \longrightarrow \mathcal{S}per(\mathbb{R}[X])$

given by

$$\underline{x} \longmapsto P_{\underline{x}} := \left\{ f \in \mathbb{R}[\underline{x}] \mid f(\underline{x}) \ge 0 \right\}.$$

Proof. The map \mathcal{P} is well defined.

Verify that P_x is indeed an ordering of *A*.

Clearly it is a preordering, $P_{\underline{x}} \cup -P_{\underline{x}} = \mathbb{R}[\underline{X}].$

 $\mathfrak{p} := P_{\underline{x}} \cap -P_{\underline{x}} = \left\{ f \in \mathbb{R}[\underline{X}] \mid f(\underline{x}) = 0 \right\} \text{ is actually a maximal ideal of } \mathbb{R}[\underline{X}],$ since $\mathfrak{p} = \text{Ker}(ev_x)$, the kernel of the evaluation map

$$ev_{\underline{x}} : \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$$
$$f \longmapsto f(x)$$

so,
$$\frac{\mathbb{R}[\underline{X}]}{p} \simeq \underbrace{\mathbb{R}}_{a \text{ field}}$$
 (by first isomorphism theorem)

 $\Rightarrow p$ maximal $\Rightarrow p$ is prime ideal.

Theorem 2.5. $\mathcal{P}(\mathbb{R}^n)$, the image of \mathbb{R}^n in $Sper(\mathbb{R}[\underline{X}])$ is dense in $(Sper(\mathbb{R}[\underline{X}]))$, Constructible Topology) and hence in $(Sper(\mathbb{R}[\underline{X}]))$, Spectral Topology). (i.e. $\overline{\mathcal{P}(\mathbb{R}^n)}^{patch} = Sper(\mathbb{R}[\underline{X}])$).

Proof. By definition, a basic open set in $Sper(\mathbb{R}[X])$ has the form

 $\mathcal{U} = \{ P \in Sper(\mathbb{R}[\underline{X}]) \mid f_i \notin P, g_j \in P; i = i, \dots, s, j = 1, \dots, t \}, \text{ for some } f_i, g_j \in \mathbb{R}[\underline{X}].$

Let $P \in \mathcal{U}$ (open neighbourhood of $P \in Sper(\mathbb{R}[\underline{X}])$)

We want to **show that:** $\exists y \in \mathbb{R}^n$ s.t. $P_y \in \mathcal{U}$

Consider $F = ff(\mathbb{R}[\underline{X}]/\mathfrak{p}); \mathfrak{p} = \operatorname{Supp}(P) = P \cap -P$ and \leq ordering on *F* induced by *P*.

Then (F, \leq) is an ordered field extension of (\mathbb{R}, \leq) .

Consider $x = (\overline{x_1}, \dots, \overline{x_n}) \in F^n$, where $\overline{x_i} = X_i + p$

Then by definition of \leq we have (as in the proof of PSS):

 $f_i(\underline{x}) < 0$ and $g_j(\underline{x}) \ge 0$; $\forall i = i, \dots, s, j = 1, \dots, t$.

By Tarski Transfer, $\exists y \in \mathbb{R}^n$ s.t.

$$f_{i}(\underline{y}) < 0 \left(\Leftrightarrow f_{i} \notin P_{\underline{y}} \right) \text{ and } g_{j}(\underline{y}) \ge 0 \left(\Leftrightarrow g_{j} \in P_{\underline{y}} \right) ; i = i, \dots, s, \ j = 1, \dots, t$$
$$\Leftrightarrow P_{\underline{y}} \in \mathcal{U} \qquad \qquad \Box$$

3. ABSTRACT POSITIVSTELLENSATZ

Recall 3.1. *T* proper preordering $\Rightarrow \exists P$ an ordering of *A* s.t. $P \supseteq T$.

Definiton 3.2. Let *P* be an ordering of *A*, fix $a \in A$. We define **Sign of** a **at** *P* :

$$a(P) := \begin{cases} 1 & \text{if } a \notin -P \\ 0 & \text{if } a \in P \cap -P \\ -1 & \text{if } a \notin P \end{cases}$$

(Note that this allows to consider $a \in A$ as a map on Sper(A)).

Notation 3.3. We write: a > 0 at *P* if a(P) = 1a = 0 at *P* if a(P) = 0a < 0 at *P* if a(P) = -1

Note that (in this notation) $a \ge 0$ at *P* iff $a \in P$.

Definition 3.4. Let $T \subseteq A$, then the **Relative Spectrum** of A with respect to T is

 $Sper_T(A) = \{P \mid P \supseteq T; P \subseteq A \text{ is an ordering of } A\}.$

(05: 27/04/10)

Proposition 3.5. Let $T \subseteq A$ be a finitely generated preordering, say $T = T_S$; where $S = \{g_1, \ldots, g_s\} \subseteq A$. Then

$$Sper_T(A) = Sper_S(A) = \{P \in Sper(A) \mid g_i \in P ; i = i, \dots, s\}$$
$$= \{P \in Sper(A) \mid g_i(P) \ge 0 ; i = i, \dots, s\}$$

Remark 3.5. Let $T \subseteq A$

(i) $Sper_{T}(A)$ inherits the relative spectral (respectively constructible) topology.

(ii) In case $T = T_{\{g_1,\dots,g_s\}}$ is a finitely generated preordering, then the proof of Theorem 2.5 goes through to give the following relative version for $Sper_T$:

Theorem 3.6. (Relative version of Theorem 2.5) Let $T = T_S$ = finitely generated preordering; $S = \{g_1, \ldots, g_s\}$. Let $K = K_S = \{\underline{x} \in \mathbb{R}^n \mid g_i(\underline{x}) \ge 0\} \subseteq \mathbb{R}^n$, a basic closed semi-algebraic set. Consider (*Sper_T*, Constructible Topology). Then

$$\mathcal{P}: K \rightsquigarrow \mathcal{S}per_T(\mathbb{R}[\underline{X}])$$
(defined as before)

$$\underline{x} \longmapsto P_{\underline{x}} = \left\{ f \in \mathbb{R}[\underline{x}] \mid f(\underline{x}) \ge 0 \right\}$$

is well defined (i.e. $P_x \supseteq T \forall x \in K$).

Moreover $\mathcal{P}(K)$ is dense in $(Sper_T(\mathbb{R}[\underline{X}]), Constructible Topology).$

Proof. The proof is analogous to the proof of Theorem 2.5. (Note the fact that T is finitely generated is crucial here to be able to apply Tarski Transfer.)

Theorem 3.7. (Abstract Positivstellensatz) Let *A* be a commutative ring, $T \subseteq A$ be a preordering of *A* (not necessarily finitely generated). Then for $a \in A$:

(1) a > 0 on $Sper_T(A) \Leftrightarrow \exists p, q \in T$ s.t. pa = 1 + q

(2)
$$a \ge 0$$
 on $Sper_T(A) \Leftrightarrow \exists p, q \in T, m \ge 0$ s.t. $pa = a^{2m} + q$
(3) $a = 0$ on $Sper_T(A) \Leftrightarrow \exists m \ge 0$ s.t. $-a^{2m} \in T$.

Proof. (1) Let *a* > 0 on *Sper_T*(*A*). Suppose for a contradiction that there are no elements *p*, *q* ∈ *T* s.t. *pa* = 1 + *q* i.e. s.t. −1 = *q* − *pa* i.e. −1 ≠ *q* − *pa* ∀ *p*, *q* ∈ *T* Thus −1 ∉ *T*['] := *T* − *Ta*. ⇒ *T*['] is a proper preordering. So (by recall 3.1) ∃ *P* an ordering of *A* with *T*['] ⊆ *P*. Now observe that *T* ⊆ *P* i.e. *P* ∈ *Sper_T*(*A*) but −*a* ∈ *P* (i.e. *a*(*P*) ≤ 0) i.e. *a* ≤ 0 on *P*, a contradiction to the assumption. □

Proposition 3.8. Abstract Positivstellensatz \Rightarrow Positivstellensatz.

Proof. $A = \mathbb{R}[\underline{X}], T = T_S = T_{\{g_1, \dots, g_s\}}, K = K_S.$

It suffices to show (2) of PSS [Theorem 1.1 of lecture 03 on 20/04/10], i.e. $f \ge 0$ on $K_S \Leftrightarrow \exists m \in \mathbb{Z}_+, \exists p, q \in T_S$ s.t. $pf = f^{2m} + q$.

Let $f \in \mathbb{R}[\underline{X}]$ and $f \ge 0$ on K_S .

It suffices [by (2) of Theorem 3.7] to show that $f \ge 0$ on $Sper_T(\mathbb{R}[\underline{X}])$:

If not then $\exists P \in Sper_T(\mathbb{R}[\underline{X}])$ s.t. $f \notin P$

So,
$$P \in \mathcal{U}_T(f)$$

(open neighbourhood of $P \in Sper_T(\mathbb{R}[\underline{X}])$)

Now by [Theorem 3.6 i.e.] relative density of $\mathcal{P}(K)$ in $Sper_T(\mathbb{R}[\underline{X}])$:

 $\exists \underline{x} \in K \text{ s.t. } P_x \in \mathcal{U}_T(f)$

 $\Rightarrow f \notin P_{\underline{x}} \Rightarrow f(\underline{x}) < 0$, a contradiction to the assumption.