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1. THE REAL SPECTRUM

Definition 1.1. Let A be a commutative ring with 1. We set:

Sper(A) :=
{
α = (p,≤) | p is a prime ideal of A and ≤ is an ordering on f f

(
A/p)

}
.

Note 1.2. Sper(A) :=
{
α = (p,≤) | p is a real prime and ≤ an ordering on f f

(
A/p)

}
.

Definition 1.3. Let α = (p,≤) ∈ Sper(A), then p = Supp(α), the Support of α.

Recall 1.4. An ordering P ⊆ A is a preordering with P∪−P = A and p := P∩−P
prime ideal of A.

Definition 1.5. Alternatively, the Real Spectrum of A, Sper(A) can be defined
as:

Sper(A) :=
{
P | P ⊆ A, P is an ordering of A

}
.

Remark 1.6. The two definitions ofSper(A) are equivalent in the following sense:

The map

ϕ:
{
Orderings in A

}
{

{
(p,≤), p real prime, ≤ ordering on f f

(
A/p)

}
P 7−→ p := P ∩ −P,≤P on f f

(
A/p)

1
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(
where

a

b
≥P 0⇔ ab ∈ P with a = a + p

)
is bijective

[
where ϕ−1(p,≤ )

is P :=
{
a ∈ A | a ≥ 0

}]
. �

2. TOPOLOGIES ON Sper(A)

Definition 2.1. The Spectral Topology on Sper(A):
Sper(A) as a topological space, subbasis of open sets is:
U(a) :=

{
P ∈ Sper(A) | a < P

}
, a ∈ A.(

So a basis of open sets consists of finite intersection, i.e. of sets

U(a1, . . . , an) :=
{
P ∈ Sper(A) | a1, . . . , an < P

})
Then close by arbitrary unions to get all open sets.

This is called Spectral Topology.

Definition 2.2. The Constructible (or Patch) Topology on Sper(A) is the topol-
ogy that is generated by the open setsU(a) and there complementsSper(A)\U(a),
for a ∈ A.(
Subbasis for constructible topology isU(a), Sper(A)\U(a), for a ∈ A.

)
Remark 2.3. The constructible topology is finer than the Spectral Topology (i.e.
more open sets).

Special case: A = R[X]

Proposition 2.4. There is a natural embedding

P : Rn −→ Sper
(
R[X]

)
given by

x 7−→ Px :=
{
f ∈ R[x] | f (x) ≥ 0

}
.

Proof. The map P is well defined.

Verify that Px is indeed an ordering of A.

Clearly it is a preordering, Px ∪ −Px = R[X].

p := Px ∩ −Px =
{
f ∈ R[X] | f (x) = 0

}
is actually a maximal ideal of R[X],

since p = Ker (evx), the kernel of the evaluation map

evx : R[X] −→ R

f 7−→ f (x)
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so, R[X]
p
' R︸︷︷︸

a field

(by first isomorphism theorem)

⇒ pmaximal⇒ p is prime ideal. �

Theorem 2.5. P(Rn), the image of Rn in Sper
(
R[X]

)
is dense in

(
Sper

(
R[X]

)
,

Constructible Topology
)

and hence in
(
Sper

(
R[X]

)
, Spectral Topology

)
.

(
i.e.

P(Rn)
patch

= Sper
(
R[X]

))
.

Proof. By definition, a basic open set in Sper
(
R[X]

)
has the form

U =
{
P ∈ Sper

(
R[X]

)
| fi < P, g j ∈ P; i = i, . . . , s, j = 1, . . . , t

}
, for some

fi, g j ∈ R[X].

Let P ∈ U
(
open neighbourhood of P ∈ Sper

(
R[X]

))
We want to show that: ∃ y ∈ Rn s.t. Py ∈ U

Consider F = f f
(
R[X]/p

)
; p = Supp(P) = P ∩ −P and ≤ ordering on F induced

by P.

Then
(
F,≤

)
is an ordered field extension of

(
R,≤

)
.

Consider x =
(
x1, . . . , xn

)
∈ Fn, where xi = Xi + p

Then by definition of ≤ we have (as in the proof of PSS):
fi(x) < 0 and g j(x) ≥ 0 ;∀ i = i, . . . , s, j = 1, . . . , t.

By Tarski Transfer, ∃ y ∈ Rn s.t.

fi(y) < 0
(
⇔ fi < Py

)
and g j(y) ≥ 0

(
⇔ g j ∈ Py

)
; i = i, . . . , s, j = 1, . . . , t

⇔ Py ∈ U �

3. ABSTRACT POSITIVSTELLENSATZ

Recall 3.1. T proper preordering⇒ ∃ P an ordering of A s.t. P ⊇ T .

Definiton 3.2. Let P be an ordering of A, fix a ∈ A. We define Sign of a at P :

a(P) :=


1 if a < −P
0 if a ∈ P ∩ −P
−1 if a < P(

Note that this allows to consider a ∈ A as a map on Sper(A)
)
.
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Notation 3.3. We write: a > 0 at P if a(P) = 1
a = 0 at P if a(P) = 0
a < 0 at P if a(P) = −1

Note that (in this notation) a ≥ 0 at P iff a ∈ P.

Definition 3.4. Let T ⊆ A, then the Relative Spectrum of A with respect to T is

SperT (A) =
{
P | P ⊇ T ; P ⊆ A is an ordering of A

}
.

Proposition 3.5. Let T ⊆ A be a finitely generated preordering, say T = TS ;
where S = {g1, . . . , gs} ⊆ A. Then

SperT (A) = SperS (A) =
{
P ∈ Sper(A) | gi ∈ P ; i = i, . . . , s

}
=

{
P ∈ Sper(A) | gi(P) ≥ 0 ; i = i, . . . , s

}
�

Remark 3.5. Let T ⊆ A

(i)SperT (A) inherits the relative spectral (respectively constructible) topology.

(ii) In case T = T{g1,...,gs} is a finitely generated preordering, then the proof of
Theorem 2.5 goes through to give the following relative version for SperT :

Theorem 3.6. (Relative version of Theorem 2.5) Let T = TS = finitely generated
preordering; S = {g1, . . . , gs}. Let K = KS =

{
x ∈ Rn | gi(x) ≥ 0

}
⊆ Rn, a basic

closed semi-algebraic set. Consider
(
SperT , Constructible Topology

)
. Then

P : K { SperT
(
R[X]

)
(defined as before)

x 7−→ Px =
{
f ∈ R[x] | f (x) ≥ 0

}
is well defined

(
i.e. Px ⊇ T ∀ x ∈ K

)
.

Moreover P(K) is dense in
(
SperT

(
R[X]

)
, Constructible Topology

)
.

Proof. The proof is analogous to the proof of Theorem 2.5.
(Note the fact that T is finitely generated is crucial here to be able to apply Tarski
Transfer.) �

Theorem 3.7. (Abstract Positivstellensatz) Let A be a commutative ring, T ⊆ A
be a preordering of A (not necessarily finitely generated). Then for a ∈ A:

(1) a > 0 on SperT (A)⇔ ∃ p, q ∈ T s.t. pa = 1 + q
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(2) a ≥ 0 on SperT (A)⇔ ∃ p, q ∈ T,m ≥ 0 s.t. pa = a2m + q

(3) a = 0 on SperT (A)⇔ ∃ m ≥ 0 s.t. −a2m ∈ T .

Proof. (1) Let a > 0 on SperT (A). Suppose for a contradiction that there are no
elements p, q ∈ T s.t. pa = 1 + q i.e. s.t. −1 = q − pa
i.e. −1 , q − pa ∀ p, q ∈ T
Thus −1 < T

′

:= T − Ta.
⇒ T

′

is a proper preordering.
So (by recall 3.1) ∃ P an ordering of A with T

′

⊆ P .

Now observe that T ⊆ P i.e. P ∈ SperT (A) but −a ∈ P (i.e. a(P) ≤ 0) i.e. a ≤ 0
on P, a contradiction to the assumption. �

Proposition 3.8. Abstract Positivstellensatz⇒ Positivstellensatz.

Proof. A = R[X],T = TS = T{g1,...,gs},K = KS .

It suffices to show (2) of PSS [Theorem 1.1 of lecture 03 on 20/04/10], i.e. f ≥ 0
on KS ⇔ ∃ m ∈ Z+,∃ p, q ∈ TS s.t. p f = f 2m + q.

Let f ∈ R[X] and f ≥ 0 on KS .

It suffices [by (2) of Theorem 3.7] to show that f ≥ 0 on SperT
(
R[X]

)
:

If not then ∃ P ∈ SperT
(
R[X]

)
s.t. f < P

So, P ∈ UT ( f )(
open neighbourhood of P ∈ SperT

(
R[X]

))
Now by [Theorem 3.6 i.e.] relative density of P(K) in SperT

(
R[X]

)
:

∃ x ∈ K s.t. Px ∈ UT ( f )

⇒ f < Px ⇒ f (x) < 0, a contradiction to the assumption. �


