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1. GENERALITIES ABOUT POLYNOMIALS

Definition 1.1. For a polynomial p ∈ R[X1, . . . , Xn], we write

p(X) =
∑
i∈Zn

+

ci Xi ; ci ∈ R,

where Xi = Xi1
1 . . . X

in
n is a monomial of degree = |i| =

n∑
k=1

ik and ci Xi is a term.

Definition 1.2. A polynomial p(X) ∈ R[X] is called homogeneous or form if all
terms in p have the same degree.

Notation 1.3. Fn,m :=
{
F ∈ R[X1, . . . , Xn] | F is a form and deg(F) = m

}
, the set

of all forms in n variables of degree m (also called set of n-ary m-ics forms), for
n,m ∈ N.
Convention: 0 ∈ Fn,m.

Definition 1.4. Let p ∈ R[X1, . . . , Xn] of degree m. The homogenization of p
w.r.t Xn+1 is defined as

ph(x1, . . . , xn, xn+1) := xm
n+1 p

(
x1

xn+1
, . . . ,

xn

xn+1

)
Note that ph is a homogeneous polynomial of degree m and in n + 1 variables i.e.
ph ∈ Fn+1,m.

Proposition 1.5. (1) Let p(X) ∈ R[X], deg(p) = m, then
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number of monomials of p ≤
(

m+n
n

)
(2) Let F(X) ∈ Fn,m, then

number of monomials of F ≤ N :=
(

m+n−1
n−1

)
�

Remark 1.6. Fn,m is a finite dimensional real vector space with Fn,m ' R
N .

2. PSD- AND SOS- POLYNOMIALS

Definition 2.1. (1) p(x) ∈ R[X] is positive semidefinite (psd) if

p(x) ≥ 0 ∀ x ∈ Rn.

(2) p(x) ∈ R[X] is sum of squares (SOS) if ∃ pi ∈ R[X] s.t.

p(x) =
∑

i

pi(x)2.

Notation 2.2. Pn,m := set of all forms F ∈ Fn,m which are psd, and∑
n,m := set of all forms F ∈ Fn,m which are sos.

Lemma 2.3. If a polynomial p is psd then p has even degree. �

Remark 2.4. From now on (using lemma 2.3) we will often write Pn,2d and
∑

n,2d.

Lemma 2.5. Let p be a homogeneous polynomial of degree 2d, and p sos. Then
every sos representation of p consists of homogeneous polynomials only, i.e.

p(x) =
∑

i

pi(x)2 ⇒ pi(x) homogenous of degree d, i.e. pi ∈ Fn,d. �

Remark 2.6. The properties of psd-ness and sos-ness are preserved under homog-
enization (see the following lemma).

Lemma 2.7. Let p(x) be a polynomial of degree m. Then

(1) p is psd iff ph is psd,

(2) p is sos iff ph is sos. �

So we can focus our investigation of psdness of polynomials versus sosness of
polynomials to those of forms, i.e. study and compare

∑
n,m ⊆ Pn,m .

Theorem 2.8. (Hilbert)
∑

n,m = Pn,m iff
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(i) n = 2 [i.e. binary forms] or

(ii) m = 2 [i.e. quadratic forms] or

(iii) (n,m) = (3, 4) [i.e. ternary quartics].

For the ternary quartics case (F3,4), we shall study the convex cones Pn,m and∑
n,m.

3. CONVEX SETS, CONES AND EXTREMALITY

Definition 3.1. A subset C of Rn is convex set if a, b ∈ C ⇒ λa + (1 − λ)b ∈ C,
for all 0 < λ < 1.

Proposition 3.2. The intersection of an arbitrary collection of convex sets is con-
vex.

Notation 3.3. R+ := {x ∈ R | x ≥ 0}.

Definition 3.4. Let c1, . . . , ck ∈ R
n. A convex combination of c1, . . . , ck is any

vector sum

α1c1 + . . . + αkck, with α1, . . . , αk ∈ R+ and
k∑

i=1

αi = 1.

Theorem 3.5. A subset C ⊆ Rn is convex if and only if it contains all the convex
combinations of its elements.

Proof. (⇐) clear
(⇒) Let C ⊆ Rn be a convex set. By definition C is closed under taking convex
combinations with two summands. We show that it is also closed under finitely
many summands.
Let k > 2. By Induction on k, assuming it true for fewer than k.
Given a convex combination c = α1c1 + . . . + αkck, with c1, . . . , ck ∈ C
Note that we may assume 0 < αi < 1 for i = i, . . . , k; otherwise we have fewer
than k summands and we are done.

Consider d =
α2

1 − α1
c2 + . . . +

αk

1 − α1
ck

we have
α2

1 − α1
, . . . ,

αk

1 − α1
> 0 and

α2

1 − α1
+ . . . +

αk

1 − α1
= 1

Thus d is a convex combination of k − 1 elements of C and d ∈ C by induction.

Since c = α1c1 + (1 − α1)d, it follows that c ∈ C. �
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Definition 3.6. The intersection of all convex sets containing a given subset S ⊆
Rn is called the convex hull of S and is denoted by cvx(S ).

Remark 3.7. The convex hull of S ⊆ Rn is a convex set and is the uniquely
defined smallest convex set containing S .

Theorem 3.8. For any S ⊆ Rn,
cvx(S ) = the set of all convex combinations of the elements of S .

Proof. (⊇) The elements of S belong to cvx(S ), so all their convex combinations
belong to cvx(S ) by Theorem 3.5.

(⊆) On the other hand we observe that the set of convex combinations of elements
of S is itself a convex set:
let c = α1c1 + . . . + αkck and d = β1d1 + . . . + βldl, where ci, di ∈ S , then

λc + (1− λ)d = λα1c1 + . . .+ λαkck + (1− λ)β1d1 + . . .+ (1− λ)βldl, 0 ≤ λ ≤ 1 is
just another convex combination of elements of S .
So by minimality property of cvx(S ), it follows that cvx(S ) ⊆ the set of all convex
combinations of the elements of S . �

Corollary 3.9. The convex hull of a finite subset {s1, . . . , sk} ⊆ R
n consists of all

the vectors of the form α1s1 + . . . + αksk with α1, . . . , αk ≥ 0 and
∑

i

αi = 1. �

Definitions 3.10. (1) A set which is the convex hull of a finite subset of Rn is
called a convex polytope, i.e. C ⊆ Rn is a convex polytope if C = cvx(S ) for
some finite S ⊆ Rn.

(2) A point in a polytope is called a vertex if it is not on the line segment joining
any other two distinct points of the polytope.

Remark 3.11. (1) Convex polytope is necessarily closed and bounded, i.e. com-
pact.

(2) A convex polytope is always the convex hull of its vertices.

More general version for compact sets is the Krein Milman theorem:

Theorem 3.12. (Krein-Milman) Let C ⊆ Rn be a compact and convex set. Then
C is the convex hull of its extreme points. �
Definitions 3.13. x ∈ C is extreme if C \ {x} is convex.


