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1. GENERALITIES ABOUT POLYNOMIALS

Definition 1.1. For a polynomial p € R[Xj,..., X, ], we write
pX) =) ¢ X' ¢ eR,
i€zl n
where X' = X|'...X,’ is a monomial of degree = |i| = Z ir and ¢; X' is a term.
k=1
Definition 1.2. A polynomial p(X) € R[X] is called homogeneous or form if all
terms in p have the same degree.

Notation 1.3. ¥,,,, := {F € R[X\,...,X,] | F is a form and deg(F) = m}, the set
of all forms in n variables of degree m (also called set of n-ary m-ics forms), for
n,meN.

Convention: 0 € F,, .

Definition 1.4. Let p € R[X},...,X,] of degree m. The homogenization of p
w.r.t X, 1s defined as

e om X1 Xn
Pr(X1s ooy Xy Xpa1) 1= X0 P
Xn+l Xn+1

Note that p;, is a homogeneous polynomial of degree m and in n + 1 variables i.e.
Pr € Fostm:

Proposition 1.5. (1) Let p(X) € R[X], deg(p) = m, then
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number of monomials of p < (m:")

(2) Let F(X) € ., then

number of monomials of FF < N := (m;i’l_l) O
Remark 1.6. ¥, is a finite dimensional real vector space with %,,, ~ RY.
2. PSD- AND SOS- POLYNOMIALS

Definition 2.1. (1) p(x) € R[X] is positive semidefinite (psd) if

p(x) >0V xeR".

(2) p(x) € R[X] is sum of squares (SOS) if 3 p; € R[X] s.t.

p) = i’

Notation 2.2. P, ,, := set of all forms F € ¥, ,, which are psd, and
Yonm = setof all forms F € F,,, which are sos.

Lemma 2.3. If a polynomial p is psd then p has even degree. O

Remark 2.4. From now on (using lemma 2.3) we will often write $,, 54 and 3}, 5.

Lemma 2.5. Let p be a homogeneous polynomial of degree 2d, and p sos. Then
every sos representation of p consists of homogeneous polynomials only, i.e.

p(x) = Z pi(x)* = pi(x) homogenous of degree d, i.e. p; € Fpa. O

Remark 2.6. The properties of psd-ness and sos-ness are preserved under homog-
enization (see the following lemma).

Lemma 2.7. Let p(x) be a polynomial of degree m. Then
(1) pis psd iff p, is psd,

(2) pis sos iff py, is sos. |

So we can focus our investigation of psdness of polynomials versus sosness of
polynomials to those of forms, i.e. study and compare },,, € Prm -

Theorem 2.8. (Hilbert) Y, = P, iff
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(i) n = 2 [i.e. binary forms] or
(i) m = 2 [i.e. quadratic forms] or

(1) (n,m) = (3,4) [i.e. ternary quartics].

For the ternary quartics case (#34), we shall study the convex cones #,,, and

L

3. CONVEX SETS, CONES AND EXTREMALITY

Definition 3.1. A subset C of R" is convex setif a,b € C = Aa+ (1 — )b € C,
forall0 < A< 1.

Proposition 3.2. The intersection of an arbitrary collection of convex sets is con-
vex.

Notation 3.3. R, :={x e R | x > 0}.

Definition 3.4. Letc,,...,c, € R". A convex combination of ¢ ,...,c, is any
vector sum
k
aic, + ... +apc, with @y, ..., a; € R, and a; = 1.

i=1

Theorem 3.5. A subset C C R” is convex if and only if it contains all the convex
combinations of its elements.

Proof. (<) clear

(=) Let C C R” be a convex set. By definition C is closed under taking convex
combinations with two summands. We show that it is also closed under finitely
many summands.

Let k > 2. By Induction on &, assuming it true for fewer than k.
Given a convex combination ¢ = a;¢, +... + axc,, with¢,...,¢c, € C

Note that we may assume 0 < a; < 1 fori = i,...,k; otherwise we have fewer
than £ summands and we are done.

. (0%)] g
Consider d = ——¢, +... + Ch
- 1—a™ 1—a™
(0%) Qg @ Qg
we have e > 0 and +...+ =1
1—0’1 1—0’1 — l—czl

Thus d is a convex combination of k — 1 elements of C and d € C by induction.

Since ¢ = a;¢; + (1 — ay)d, it follows that ¢ € C. O
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Definition 3.6. The intersection of all convex sets containing a given subset S C
R” is called the convex hull of S and is denoted by cvx(S).

Remark 3.7. The convex hull of § C R” is a convex set and is the uniquely
defined smallest convex set containing S .

Theorem 3.8. For any S C R”,
cvx(S) = the set of all convex combinations of the elements of S.

Proof. (2) The elements of S belong to cvx(§), so all their convex combinations
belong to cvx(S) by Theorem 3.5.

(©) On the other hand we observe that the set of convex combinations of elements
of S is itself a convex set:

let c=aic, +...+ac, andd = pd, + ...+ pd,, wherec,;,d; €S, then
Ac+(1=Dd =Aaic; +...+ Ay, + (1 =DBid +...+(1 -DBd,,0 <A< 1 is
just another convex combination of elements of S.

So by minimality property of cvx(S), it follows that cvx(S) C the set of all convex

combinations of the elements of S'. O

Corollary 3.9. The convex hull of a finite subset {s,,...,s,} € R" consists of all

the vectors of the form a5, + ... + ays, with ay, ..., > 0 and Z a; = 1. ]
i

Definitions 3.10. (1) A set which is the convex hull of a finite subset of R” is
called a convex polytope, i.e. C C R" is a convex polytope if C = cvx(S) for
some finite § C R".

(2) A point in a polytope is called a vertex if it is not on the line segment joining
any other two distinct points of the polytope.

Remark 3.11. (1) Convex polytope is necessarily closed and bounded, i.e. com-
pact.

(2) A convex polytope is always the convex hull of its vertices.
More general version for compact sets is the Krein Milman theorem:
Theorem 3.12. (Krein-Milman) Let C C R" be a compact and convex set. Then

C is the convex hull of its extreme points. O
Definitions 3.13. x € C is extreme if C \ {x} is convex.



