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1. CONVEX CONES AND GENERALIZATION OF KREIN MILMAN THEOREM

We want to prove: P3,4 =
∑

3,4

(i.e each positive semidefinite form in 3 variables of degree 4 is a sum of squares.)
To do it , we need several notions and intermediate results.

Definition 1.1. C ⊆ Rk is a convex cone if
x, y ∈ C ⇒ x + y ∈ C, and
x ∈ C, λ ∈ R+ ⇒ λx ∈ C

(i.e if it is closed under addition and under multiplication by non-negative scalars.)

Fact 1.2. C ⊆ Rk is a convex cone if and only if it is closed under non-negative
linear combinations of its elements, i.e.
∀ n ∈ N, ∀ x1, . . . , xn ∈ C,∀ λ1, . . . , λn ∈ R+ : λ1x1 + . . . + λnxn ∈ C.

Definition 1.3. Let S ⊆ Rk. Then
Cone(S ) := {non-negative linear combinations of elements from S }

is the convex cone generated by S.

Fact 1.4. For every S ⊆ Rk, Cone(S ) is the smallest convex cone which includes
S .
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Fact 1.5. If S ⊆ Rk is convex, then
Cone(S ) := {λx | λ ∈ R+, x ∈ S }.

Definition 1.6. R ⊆ Rk is a ray if ∃ x ∈ Rk, x , 0 s.t.
R = {λx | λ ∈ R+} := x+

(A ray R is a half-line.)

Definition 1.7. Let C ⊆ Rk be a convex set:

(1) a point c ∈ C is an extreme point if C \ {c} is convex.

(2) a ray R ⊆ C is an extreme ray if C \ R is convex.

Notation 1.8. Let C ⊆ Rk convex.

(1) ext(C) := set of all extreme points in C

(2) rext(C) := set of all extreme rays in C

Definition 1.9. (1) A straight line L ⊆ Rk is a translate of a 1-dimensional
subspace, i.e. L = {x + λy | λ ∈ R}, for some x, y ∈ Rk, y , 0.

(2) C ⊆ Rk is line free if C contains no straight lines.

Theorem 1.10. (Klee) Let C ⊆ Rk be a closed line free convex set. Then
C = cvx

(
ext(C) ∪ rext(C)

)
Remark 1.11. (a) Let C ⊆ Rk be a convex cone and x ∈ C, x , 0. Then x is not
extreme.
Also x+ ⊂ C.

(b) Let C ⊆ Rk be a line free convex cone. Then ext(C) = {0}.

Proof. If not, then C \ {0} is not convex, so
∃ x, y ∈ C \ {0},∃ 0 < λ < 1 s.t. λx + (1 − λ)y < C \ {0}.

But C is convex, so
λx + (1 − λ)y = 0.

That means that x+ ∪ y+ is a straight line in C, a contradiction. �
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Corollary 1.12. (Generalization of Krein-Milman to closed line free convex cone)
Let C ⊆ Rk be a closed line free convex cone. Then

C = cvx
(
rext(C)

)
Proof. By Remark 1.11, ext(C) = {0}.
Applying Theorem 1.10, we get C = cvx

(
rext(C)

)
. �

Remark 1.13. Let C be a line free convex cone

(1) 0 , x ∈ C belongs to an extreme ray (equivalently, the ray {λx | λ ∈ R+}
generated by x is extreme) if and only if
whenever x = x1 + x2 , with x1, x2 ∈ C, then xi = λix ; λi ∈ R+, λ1 + λ2 = 1 (i.e.
x1, x2 belong to the ray generated by x).

(2) The set of convex linear combinations of points in extremal rays = the set of
sum of points in extremal rays.

2. THE CONES Pn,2d and
∑

2,2d

Lemma 2.1. Pn,2d is a closed convex cone.

Proof. It is trivial that Pn,2d is a convex cone.

Next we prove that Pn,2d is closed:
Let (Pk)k∈N be a sequence in Pn,2d converging to P. Then for all x ∈ Rn, Pk(x) →
P(x).
We want (to show that) P ∈ Pn,2d,
otherwise ∃ x0 ∈ R

n, s.t. P(x0) = −ε, ε > 0.
And since Pk(x0)→ P(x0) inRn, ∀ ε > 0,∃m ∈ N s.t ∀ k > m : |Pk(x0)−P(x0)| < ε,
thus (taking the same ε as above): |Pk(x0) + ε | < ε ⇒ Pk(x0) < 0, a contradiction
(since Pk ∈ Pn,2d ∀ k). So, P ∈ Pn,2d and hence Pn,2d is closed. �

Lemma 2.2. The cone Pn,2d is line free.

Proof. Suppose not, then there exists a straight line L in Pn,2d.
Write L = {F + λG | λ ∈ R}; F,G ∈ Pn,2d,G , 0.
Since −G < Pn,2d, take x0 s.t. −G(x0) < 0.
Then for (large enough λ i.e.) λ→ −∞ we have F(x0) + λG(x0) < 0



POSITIVE POLYNOMIALS LECTURE NOTES (07: 04/05/10) 4

⇒ L * Pn,2d.
Hence Pn,2d is line free. �

Corollary 2.3. Pn,2d is the convex hull of its extremal rays.

Proof. By Lemma 2.1 and Lemma 2.2, Pn,2d is a line free closed convex cone.
And therefore by the generalization of Krein-Milmann (Corollary 1.12) it is the
convex hull of its extremal rays. �

Definition 2.4. A form F ∈ Pn,2d is extremal in Pn,2d if
F = F1+F2, F1, F2 ∈ Pn,2d ⇒ Fi = λiF; i = 1, 2 for λi ∈ R+ satisfying λ1+λ2 = 1.

Similar definition for
∑

n,2d.

Note 2.5. By Remark 1.13 this just means that the ray generated by F is extremal.

Remark 2.6. (1) F ∈
∑

n,2d extremal⇒ F = G2 for some G ∈ Fn,d.

(2) The converse of (1) is not true in general.
For example: (x2 + y2)2 = (x2 − y2)2 + (2xy)2 is not extremal in

∑
2,4.

(3) G2 is extremal in
∑

n,2d ; G2 is extremal in Pn,2d.
For instance Choi et al showed that
p := f 2, where f (x, y, z) = x4y2 + y4z2 + z4x2 − 3x2y2z2 + (x2y + y2z − z2x − xyz)2

is extremal in
∑

3,12 but not in P3,12.

Notation 2.7. We denote by E(Pn,2d) the set of all extremal forms in Pn,2d.

Lemme 2.8. Let E ∈ Pn,2d. Then
E ∈ E(Pn,2d) if and only if ∀ F ∈ Pn,2d with E ≥ F ∃ α ∈ R+ such that F = αE.

Proof. (⇒) Let E ∈ E(Pn,2d), F ∈ Pn,2d s.t E ≥ F, then
G := E − F ∈ Pn,2d , so E = F +G.
Since E is extremal ∃ α, β ≥ 0, α + β = 1 such that F = αE and G = βE.

(⇐) Let F1, F2 ∈ Pn,2d so that E = F1 + F2, then E ≥ F1, so ∃ α ≥ 0 such that
F1 = αE. Therefore F2 = E − F1 = (1− α)E with 1− α ≥ 0 (since E, F2 ∈ Pn,2d).
Thus E is extremal. �
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Corollary 2.9. Every F ∈ Pn,2d is a finite sum of forms in E(Pn,2d).

Proof. By Corollary 2.3 and Remark 1.13 (2). �

3. PROOF OF P3,4 =
∑

3,4

Corollary 2.9 is the first main item in the proof of Hilbert’s Theorem (Theorem 2.8
of lecture 6) for the ternary quartic case. The second main item is the following
lemma (which will be proved in the next lecture):

Lemma 3.1. Let T (x, y, z) ∈ P3,4. Then ∃ a quadratic form q(x, y, z) , 0 s.t.
T ≥ q2, i.e. T − q2 is psd.

Theorem 3.2. P3,4 =
∑

3,4

Proof. Let F ∈ P3,4 . By Corollary 2.9,
F = E1 + . . . + Ek, where Ei is extremal in P3,4 for i = 1, . . . , k.
Applying Lemma 3.1 to each Ei we get
Ei ≥ q2

i , for some quadratic form qi , 0
Since Ei is extremal, by Lemma 2.8, we get
q2

i = αiEi ; for some αi > 0, ∀ i = 1, . . . , k

and so Ei =
( 1
√
αi

qi

)2
and hence F ∈

∑
3,4. �


