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1. Proof of Hilbert’s theorem 1

1. PROOF OF HILBERT’S THEOREM (Continued)

Theorem 1.1. (Recall Theorem 2.8 of lecture 6) (Hilbert) 3, ,, = P, iff
(i)n=2or
(i)m=2or

(i) (n,m) = (3,4).

In lecture 7 (Theorem 3.2) we showed the proof of (Hilbert’s) Theorem 1.1 part
(iii), i.e. for ternary quartic forms: P34 = })54 using generalization of Krein-
Milman theorem (applied to our context), plus the following lemma:

Lemma 1.2. (3.1 of lecture 7) Let T'(x,y,z) € $34. Then I a quadratic form
q(x,y,2) #0s.t. T > g%, i.e. T — ¢* is psd.

Proof. Consider three cases concerning the zero set of T.
Case 1. T > 0, i.e. T has no non trivial zeros.
Let

T
6(x,y.2) = —L YD)

— VY (x,y,2) #0.
Let u:= inzfgb > 0, where S? is the unit sphere.
s
Since S? is compact and ¢ is continous, 3 (a, b, c) € S? s.t. u = ¢(a, b,c) > 0

Therefore V (x,y,z) € S* : T(x,y,2) > u(x> +y> + 22)°.

1



POSITIVE POLYNOMIALS LECTURE NOTES (08: 06/05/10) 2

Claim: T(x,y,z) > u(x* + y* + z2)* for all (x,y,z) € R>.
Indeed, it is trivially true at the point (0, 0, 0), and

for (x,y,2) € R*\ {0} denote N := /x> +)2 + 22, then (=, =, <) € S, which

implies that
{33 2B+ G )
N'N'N)~ N N N/ |-
So, by homogeneity we get
2
T(x,y,2) > pu(x* +y* + 22)* = (\//7()(2 +y? + zz)) , as claimed.
o(Casel)

Case 2. T has exactly one (nontrivial) zero.
By changing coordinates, we may assume w.l.o.g. that zero to be (1,0,0), i.e.
7(1,0,0) =0.
Writing T as a polynomial in x one gets

T(x,y,2) = ax* + (biy + b)) + f(3,2)x* + 28y, 2)x + h(y, 2),
where f, g and h are binary quadratic, cubic and quartic forms respectively.
Reducing 7: Since 7'(1,0,0) = 0 we geta = 0.

Further, suppose (b, b,) # (0,0), it = 3 (yo, 20) € R? s.t byyo + byz9 < 0, then
taking x big enough = T(xy, yo,20) < 0, a contradiction to T > 0. Thus b; =
b, = 0 and therefore

T(x,y,2) = f(y,2)x* + 28(y, 2)x + h(y, 2) (1)

Next, clearly h(y,z) > 0 [since otherwise T(0,yo,20) = h(yo,20) < O for some
(Yo» 20) € R?, a contradiction].

Also f(y,z) = 0, if not, say f(yo, 29) < 0 for some (yy, 29), then taking x big enough
we get T'(x, yo,20) < 0, a contradiction.

Thus f,h > 0.
From (1) we can write:
ST(x,y,2) = (xf +8)* + (fh—g°) )

Claim: fh—g*>>0

If not, say (fh — g*)(yo,z0) < O for some (yy, z0). Then there are two cases to be
considered here:

Case (i): f(yo,z0) = 0. In this case we claim g(yo,zo) = 0 because if not then
T(x,90,20) = 28(yo,20)x + h(yo,z0) < 0 and we take |xy| large enough so that
22(yo, 20)Xo + h(yo, 20) < 0, a contradiction.
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Case (ii): f(yo,20) > 0, we take |xo| such that xof(yo,20) + g0Vo,20) = O, then
FT(x0,¥0,20) = (fh — g)(¥0, 20) < 0, a contradiction.

So our claim is established and fh — g% > 0.

Now the polynomial f is a psd binary form, thus by Lemma 1.3 below f is sum
of two squares. Let us consider the two subcases:

Case 2.1. f is a perfect square. Then f = f7, with fi = by + ¢z for some b, ¢ € R.
Up to multiplication by a constant (—c, b) is the unique zero of f; and so of f.
Thus

(fh - g»)(—c,b) = —(g(—c,b))* <0

which is a contradiction unless g(—c, b) = 0 which means ! that f; | g, i.e. g(v,2) =
J1(»,2)81(y, 2). Then from (2) we get

fT 2 (xf +g)
= (xfi* + fig1)?
= fi’(xfi + &1)°
= f(xfi + 1)
Hence T > (xf; + g1)? as required.
Case 2.2. f = f% + f;, with fi, f> linear in y, z.
Now f; # Af> [otherwise we are in Case 2.1]
i.e. fi, f» don’t have same non-trivial zeroes, otherwise they would be multiples
of each other and f would be a perfect square. Hence f > 0.
Claim 1: fh—g>>0
If not, i.e. if I (yg,z0) # (0,0) s.t. (fh — g»)(yo.z0) = 0, then (yo,z0) could be

completed to a zero ( _ 800.20) , Y0, zo) of T, which contradicts our hypothesis
S (o, z0)
that T has only 1 zero (1,0, 0). Thus fh - g*> > 0.
. fh—-g° - . 1
Claim 2: 3 has a minimum g > 0 on the unit circle S'. (clear)

So, just as in Case 1,

fh—g = uf*Vv(y,2) e R%

= fT = fh—g* > uf>, by (2)

= T > uf? = (Vif)’ as claimed. oO(Case 2)

ISee (5) implies (2) of Theorem 4.5.1 in Real Algebraic Geometry by J. Bochnak, M. Coste,
M.-E. Roy or (5) implies (2) of Theorem 12.7 in Positive Polynomials and Sum of Squares by M.
Marshall.
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Case 3. T has more than one zero.
Without loss of generality, assume (1,0, 0) and (0, 1, 0) are two of the zeros of 7.

As in case 2, reduction = T is of degree at most 2 in x as well as in y and so we
can write:

T(x,y,2) = f(, )% + 28(y, D)zx + 2°h(, 2),
where f, g, h are quadratic forms and f,h > 0.
And so

T = (xf +z8)* +22(fh— g%, 3)

with fh — g% > 0 [Indeed, if (fh — g%)(yo,20) < O for some (v, 2o), then we must
have case distinction as on bottom of page 2 i.e. f(yo,z0) = 0 or f(yo,20) > 0].

Using Lemma 1.3 if f or A is a perfect square, then we get the desired result as in
the Case 2.1. Hence we suppose f and & to be sum of two squares and again as
before (as in Case 2.2) f, h > 0. We consider the following two possible subcases
on fh— g*:

Case 3.1. Suppose fh — g* has a zero (yo, z9) # (0, 0).

Set xp = —M and
f()’O, ZO)
T, :=T(x+ x02,,2) = X*f + 2x2(g + xo.f) + 22(h + 2x0g + x(z)f) @)
Evaluating (3) at (x + x¢z,y,2), we get
2 ,
FT1 = fT(x + x02.3,2) = ((x + x0)f +28) +2(fh— g2, 3)

Multyplying (4) by f, we get
fTh = fT(x + %02,5,2) = X f? + 2x2f (g + %0f) + 2 f(h + 2%08 + x5 ) (4
Now compare the coefficients of zZ in (3) and (4) to get
(xof + 8%+ (fh—g*) = f(h+2x08 + x3f),
(fh = &) + (xof +8)°
f

In particular, i + 2x0g + x f is psd and has a zero, namely (yo, zo) # (0, 0).

ie. h+2x0g + x3f = Y (y,2) # (0,0)

Thus (h + 2x08 + x;f), being a psd quadratic in y, z, which has a nontrivial zero
(vo, 20), 1 a perfect square [since by the arguments similar to Case 2.2, it cannot
be a sum of two (or more) squares].

Say (h+ 2xog + x3f) = hi, with hy(y, z) linear and /;(yo, 20) = 0

Now (g + x0/)(¥0, 20) = 80> 20) + X0/ (Yo, 20) = 0. So, g + xof vanishes at every
zero of the linear form h,. Therefore, we have g + xof = g1h; for some g;.
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So (from (4)), Ty = fx* + 2xzg1hy + 2213
= (zhy + xg1)* + X*(f — g7)
= 3T = hi(zhy + xg1)* + X*(hif — (hig1)?)
= hi(zh + xg1)* + ¥ (hf - &°)
= 3T\ > hi(zhy + xg1) -
= T(x + x0z,y,2) = T > (zh; + xg1)*

By change of variables (x — x — xyz), we get T > a square of a quadratic form, as
desired.

Case 3.2. Suppose fh — g*> > 0 (i.e. fh — g* has no zero).

. fh -g° 1
Then (as in Case 2.2), du >0st ———>puonS
( ), Au Ry
and so fh—g*>u(* +22)f ¥ (v,z) € R
Hence, by (7)

T =(xf+28° +2(fh— &)
~—

>0
> 22 (fh - &%)
> pu?(* + 2 f,
giving as required
T > (\uzy)* + (\uz?)?
= T > (Vpz?)? O(Case 3)
This completes the proof of the Lemma 1.2. od

Next we prove Theorem 1.1 part (1), i.e. for binary forms. This was also used
as a helping lemma in the proof of above lemma:

Lemma 1.3. If f is a binary psd form of degree m, then f is a sum of squares of
binary forms of degree m/2, thatis, P, ,, = 3.5, . In fact, f is sum of two squares.

Proof. If f is a binary form of degree m, we can write

m

flx,y) = Z ckxkym_k; c €R

k=0



POSITIVE POLYNOMIALS LECTURE NOTES (08: 06/05/10) 6

m k
. X
=y Z Crl—| >
=0\
where m is an even number and c,, # 0, since f is psd.

Without loss of generality let ¢,, = 1.

m

Put g() = Z e,

k=0
m/2
Over C, g(1) = H(t —z)(t=2); 2 = ax +ibg,a, by €R
k=1
m/2

i (= a? +b})
m/2

= f(x,y) = ymg(g) = [ [ (&= aw? +b}y?)

k=1
Then using iteratively the identity

(X2 + Y)(Z2 + W) = (XZ — YW)? + (YZ + XW)2,

we obtain that f(x,y) is a sum of two squares. O

Example 1.4. Using the ideas in the proof of above lemma, we write the binary
form

f(x,y) = 2x% + y6 — 3x4y2
as a sum of two squares:

Consider f written in the form

Flxy) = yf'(z(g)6 - 3(5)4)

So, the polynomial g(r) = 2¢% — 3t* + 1. This polynomial has double roots 1 and
—1 and complex roots +—i.
Thus
g(t) =2(t = D>t + 1) + %) = - 1D*QF +1).
Therefore we have
Fu =3(3) = (2 =28 +7) = 2802 =7 4708 = 7Y

written as a sum of two squares. O
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Next we prove Theorem 1.1 part (ii), i.e. for quadratic forms:

Lemma 1.5. If f(xy,...,, x,) is a psd quadratic form, then f(xy,...,, x,) is sos of
linear forms, that is, P> = >,».

Proof. If f(xy,...,x,)is a quadratic form, then we can write
n
J(xX1, ., x,) = Z x;a;;xj, where A = [a;;] 1s a symmetric matrix with a;; € R.
ij=1

We have f = XTAX, where X7 = [xi,...x,].

By the spectral theorem for Hermitian matrices, there exists a real orthogonal
matrix S and a diagonal matrix D = diag(d,, ..., d,) such that D = STAS. Then

f= XTSSTASSTX =(STX)TSTAS (STX)
Putting ¥ = [y,...,y.]7 = STX, we get
f=Y'STASY=Y'DY = Zd,-yﬁ,d,- €R.
i=1
Since f is psd, we have d; > 0 V i, and so

f= Z ( \/d_iyi)z,
i=1
Thus

JOos oo x) = Z (Vei(siim + ..., Sn,ixn))z,

i=1
that is, f is sos of linear forms. ]



