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1. Proof of Hilbert’s theorem 1

1. PROOF OF HILBERT’S THEOREM (Continued)

Theorem 1.1. (Recall Theorem 2.8 of lecture 6) (Hilbert)
∑

n,m = Pn,m iff

(i) n = 2 or

(ii) m = 2 or

(iii) (n,m) = (3, 4).

In lecture 7 (Theorem 3.2) we showed the proof of (Hilbert’s) Theorem 1.1 part
(iii), i.e. for ternary quartic forms: P3,4 =

∑
3,4 using generalization of Krein-

Milman theorem (applied to our context), plus the following lemma:

Lemma 1.2. (3.1 of lecture 7) Let T (x, y, z) ∈ P3,4. Then ∃ a quadratic form
q(x, y, z) , 0 s.t. T ≥ q2, i.e. T − q2 is psd.

Proof. Consider three cases concerning the zero set of T.

Case 1. T > 0, i.e. T has no non trivial zeros.
Let

φ(x, y, z) :=
T (x, y, z)

(x2 + y2 + z2)2 ,∀ (x, y, z) , 0.

Let µ := inf
S2
φ ≥ 0, where S2 is the unit sphere.

Since S2 is compact and φ is continous, ∃ (a, b, c) ∈ S2 s.t. µ = φ(a, b, c) > 0

Therefore ∀ (x, y, z) ∈ S2 : T (x, y, z) ≥ µ(x2 + y2 + z2)2.

1
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Claim: T (x, y, z) ≥ µ(x2 + y2 + z2)2 for all (x, y, z) ∈ R3.

Indeed, it is trivially true at the point (0, 0, 0), and

for (x, y, z) ∈ R3 \ {0} denote N :=
√

x2 + y2 + z2, then
( x
N
,

y
N
,

z
N

)
∈ S2, which

implies that

T
(

x
N
,

y
N
,

z
N

)
≥ µ

(( x
N

)2
+

( y
N

)2
+

( z
N

)2
)2

.

So, by homogeneity we get

T (x, y, z) ≥ µ(x2 + y2 + z2)2 =
(√
µ
(
x2 + y2 + z2))2

, as claimed.
�(Case1)

Case 2. T has exactly one (nontrivial) zero.
By changing coordinates, we may assume w.l.o.g. that zero to be (1, 0, 0), i.e.
T (1, 0, 0) = 0.
Writing T as a polynomial in x one gets

T (x, y, z) = ax4 + (b1y + b2z)x3 + f (y, z)x2 + 2g(y, z)x + h(y, z),

where f , g and h are binary quadratic, cubic and quartic forms respectively.

Reducing T : Since T (1, 0, 0) = 0 we get a = 0.

Further, suppose (b1, b2) , (0, 0), it⇒ ∃ (y0, z0) ∈ R2 s.t b1y0 + b2z0 < 0, then
taking x big enough ⇒ T (x0, y0, z0) < 0, a contradiction to T ≥ 0. Thus b1 =

b2 = 0 and therefore

T (x, y, z) = f (y, z)x2 + 2g(y, z)x + h(y, z) (1)

Next, clearly h(y, z) ≥ 0
[
since otherwise T (0, y0, z0) = h(y0, z0) < 0 for some

(y0, z0) ∈ R2, a contradiction
]
.

Also f (y, z) ≥ 0, if not, say f (y0, z0) < 0 for some (y0, z0), then taking x big enough
we get T (x, y0, z0) < 0, a contradiction.
Thus f , h ≥ 0.

From (1) we can write:

f T (x, y, z) = (x f + g)2 + ( f h − g2) (2)

Claim: f h − g2 ≥ 0
If not, say ( f h − g2)(y0, z0) < 0 for some (y0, z0). Then there are two cases to be
considered here:
Case (i): f (y0, z0) = 0. In this case we claim g(y0, z0) = 0 because if not then
T (x, y0, z0) = 2g(y0, z0)x + h(y0, z0) < 0 and we take |x0| large enough so that
2g(y0, z0)x0 + h(y0, z0) < 0, a contradiction.
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Case (ii): f (y0, z0) > 0, we take |x0| such that x0 f (y0, z0) + g(y0, z0) = 0, then
f T (x0, y0, z0) = ( f h − g2)(y0, z0) < 0, a contradiction.
So our claim is established and f h − g2 ≥ 0.
Now the polynomial f is a psd binary form, thus by Lemma 1.3 below f is sum
of two squares. Let us consider the two subcases:

Case 2.1. f is a perfect square. Then f = f 2
1 , with f1 = by + cz for some b, c ∈ R.

Up to multiplication by a constant (−c, b) is the unique zero of f1 and so of f .
Thus

( f h − g2)(−c, b) = −(g(−c, b))2 ≤ 0

which is a contradiction unless g(−c, b) = 0 which means 1 that f1 | g, i.e. g(y, z) =

f1(y, z)g1(y, z). Then from (2) we get

f T ≥ (x f + g)2

= (x f1
2 + f1g1)2

= f1
2(x f1 + g1)2

= f (x f1 + g1)2.

Hence T ≥ (x f1 + g1)2 as required.

Case 2.2. f = f 2
1 + f 2

2 , with f1, f2 linear in y, z.
Now f1 . λ f2 [otherwise we are in Case 2.1]
i.e. f1, f2 don’t have same non-trivial zeroes, otherwise they would be multiples
of each other and f would be a perfect square. Hence f > 0.

Claim 1: f h − g2 > 0
If not, i.e. if ∃ (y0, z0) , (0, 0) s.t. ( f h − g2)(y0, z0) = 0, then (y0, z0) could be

completed to a zero
(
−

g(y0, z0)
f (y0, z0)

, y0, z0

)
of T , which contradicts our hypothesis

that T has only 1 zero (1, 0, 0). Thus f h − g2 > 0.

Claim 2:
f h − g2

f 3 has a minimum µ > 0 on the unit circle S1. (clear)

So, just as in Case 1,

f h − g2 ≥ µ f 3 ∀ (y, z) ∈ R2.

⇒ f T ≥ f h − g2 ≥ µ f 3, by (2)

⇒ T ≥ µ f 2 ≥
(√
µ f

)2, as claimed. �(Case 2)

1See (5) implies (2) of Theorem 4.5.1 in Real Algebraic Geometry by J. Bochnak, M. Coste,
M.-F. Roy or (5) implies (2) of Theorem 12.7 in Positive Polynomials and Sum of Squares by M.
Marshall.
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Case 3. T has more than one zero.
Without loss of generality, assume (1, 0, 0) and (0, 1, 0) are two of the zeros of T .
As in case 2, reduction⇒ T is of degree at most 2 in x as well as in y and so we
can write:

T (x, y, z) = f (y, z)x2 + 2g(y, z)zx + z2h(y, z),

where f , g, h are quadratic forms and f , h ≥ 0.
And so

f T = (x f + zg)2 + z2( f h − g2), (3)

with f h − g2 ≥ 0 [Indeed, if ( f h − g2)(y0, z0) < 0 for some (y0, z0), then we must
have case distinction as on bottom of page 2 i.e. f (y0, z0) = 0 or f (y0, z0) > 0].

Using Lemma 1.3 if f or h is a perfect square, then we get the desired result as in
the Case 2.1. Hence we suppose f and h to be sum of two squares and again as
before (as in Case 2.2) f , h > 0. We consider the following two possible subcases
on f h − g2:

Case 3.1. Suppose f h − g2 has a zero (y0, z0) , (0, 0).

Set x0 = −
g(y0, z0)
f (y0, z0)

and

T1 := T (x + x0z, y, z) = x2 f + 2xz(g + x0 f ) + z2(h + 2x0g + x2
0 f ) (4)

Evaluating (3) at (x + x0z, y, z), we get

f T1 = f T (x + x0z, y, z) =
(
(x + x0) f + zg

)2
+ z2( f h − g2), (3)

′

Multyplying (4) by f , we get

f T1 = f T (x + x0z, y, z) = x2 f 2 + 2xz f (g + x0 f ) + z2 f (h + 2x0g + x2
0 f ) (4)

′

Now compare the coefficients of z2 in (3)
′

and (4)
′

to get

(x0 f + g)2 + ( f h − g2) = f (h + 2x0g + x2
0 f ),

i.e. h + 2x0g + x2
0 f =

( f h − g2) + (x0 f + g)2

f
∀ (y, z) , (0, 0)

In particular, h + 2x0g + x2
0 f is psd and has a zero, namely (y0, z0) , (0, 0).

Thus (h + 2x0g + x2
0 f ), being a psd quadratic in y, z, which has a nontrivial zero

(y0, z0), is a perfect square [since by the arguments similar to Case 2.2, it cannot
be a sum of two (or more) squares].
Say (h + 2x0g + x2

0 f ) = h2
1, with h1(y, z) linear and h1(y0, z0) = 0

Now (g + x0 f )(y0, z0) = g(y0, z0) + x0 f (y0, z0) = 0. So, g + x0 f vanishes at every
zero of the linear form h1. Therefore, we have g + x0 f = g1h1 for some g1.
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So (from (4)), T1 = f x2 + 2xzg1h1 + z2h2
1

= (zh1 + xg1)2 + x2( f − g2
1)

⇒ h2
1T1 = h2

1(zh1 + xg1)2 + x2(h2
1 f − (h1g1)2)

= h2
1(zh1 + xg1)2 + x2 (h f − g2)︸    ︷︷    ︸

≥ 0

⇒ h2
1T1 ≥ h2

1(zh1 + xg1)2

⇒ T (x + x0z, y, z) =: T1 ≥ (zh1 + xg1)2

By change of variables (x→ x− x0z), we get T ≥ a square of a quadratic form, as
desired.

Case 3.2. Suppose f h − g2 > 0 (i.e. f h − g2 has no zero).

Then (as in Case 2.2), ∃ µ > 0 s.t
f h − g2

(y2 + z2) f
≥ µ on S1

and so f h − g2 ≥ µ(y2 + z2) f ∀ (y, z) ∈ R2.

Hence, by (†)

f T = (x f + zg)2 + z2 ( f h − g2)︸    ︷︷    ︸
>0

≥ z2( f h − g2)

≥ µz2(y2 + z2) f ,

giving as required

T ≥ (
√
µzy)2 + (

√
µz2)2

⇒ T ≥ (
√
µz2)2 �(Case 3)

This completes the proof of the Lemma 1.2. ��

Next we prove Theorem 1.1 part (i), i.e. for binary forms. This was also used
as a helping lemma in the proof of above lemma:

Lemma 1.3. If f is a binary psd form of degree m, then f is a sum of squares of
binary forms of degree m/2, that is, P2,m =

∑
2,m . In fact, f is sum of two squares.

Proof. If f is a binary form of degree m, we can write

f (x, y) =

m∑
k=0

ckxkym−k; ck ∈ R
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= ym
m∑

k=0

ck

(
x
y

)k

,

where m is an even number and cm , 0, since f is psd.

Without loss of generality let cm = 1.

Put g(t) =

m∑
k=0

cktk.

Over C, g(t) =

m/2∏
k=1

(t − zk)(t − zk); zk = ak + ibk, ak, bk ∈ R

=

m/2∏
k=1

(
(t − ak)2 + b2

k

)
⇒ f (x, y) = ymg

( x
y

)
=

m/2∏
k=1

(
(x − aky)2 + b2

ky2
)

Then using iteratively the identity

(X2 + Y2)(Z2 + W2) = (XZ − YW)2 + (YZ + XW)2,

we obtain that f (x, y) is a sum of two squares. �

Example 1.4. Using the ideas in the proof of above lemma, we write the binary
form

f (x, y) = 2x6 + y6 − 3x4y2

as a sum of two squares:
Consider f written in the form

f (x, y) = y6
(
2
( x
y

)6
+ 1 − 3

( x
y

)4
)

So, the polynomial g(t) = 2t6 − 3t4 + 1. This polynomial has double roots 1 and

−1 and complex roots ±
1
√

2
i.

Thus

g(t) = 2(t − 1)2(t + 1)2(t2 +
1
2

) = (t2 − 1)2(2t2 + 1).

Therefore we have

f (x, y) = y6g
( x
y

)
= (x2 − y2)2(2x2 + y2) = 2x2(x2 − y2)2 + y2(x2 − y2)2

written as a sum of two squares. �
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Next we prove Theorem 1.1 part (ii), i.e. for quadratic forms:

Lemma 1.5. If f (x1, . . . , , xn) is a psd quadratic form, then f (x1, . . . , , xn) is sos of
linear forms, that is, Pn,2 =

∑
n,2.

Proof. If f (x1, . . . , xn) is a quadratic form, then we can write

f (x1, . . . , xn) =

n∑
i, j=1

xiai jx j, where A = [ai j] is a symmetric matrix with ai j ∈ R.

We have f = XT AX, where XT = [x1, . . . xn].
By the spectral theorem for Hermitian matrices, there exists a real orthogonal
matrix S and a diagonal matrix D = diag(d1, . . . , dn) such that D = S T AS . Then

f = XT S S T A S S T X = (S T X)T S T A S (S T X)

Putting Y = [y1, . . . , yn]T = S T X, we get

f = YT S T A S Y = YT D Y =

n∑
i=1

diyi
2, di ∈ R .

Since f is psd, we have di ≥ 0 ∀ i, and so

f =

n∑
i=1

( √
diyi

)2
,

Thus

f (x1, . . . , xn) =

n∑
i=1

( √
di(s1,ix1 + . . . , sn,ixn)

)2
,

that is, f is sos of linear forms. �


