POSITIVE POLYNOMIALS LECTURE NOTES (08: 06/05/10)

SALMA KUHLMANN

This lecture was held by Dr. Mickael Matusinski.

Contents

1. Proof of Hilbert's theorem

1. PROOF OF HILBERT'S THEOREM (Continued)

Theorem 1.1. (Recall Theorem 2.8 of lecture 6) (Hilbert) $\sum_{n, m}=\mathcal{P}_{n, m}$ iff
(i) $n=2$ or
(ii) $m=2$ or
(iii) $(n, m)=(3,4)$.

In lecture 7 (Theorem 3.2) we showed the proof of (Hilbert's) Theorem 1.1 part (iii), i.e. for ternary quartic forms: $\mathcal{P}_{3,4}=\sum_{3,4}$ using generalization of KreinMilman theorem (applied to our context), plus the following lemma:

Lemma 1.2. (3.1 of lecture 7) Let $T(x, y, z) \in \mathcal{P}_{3,4}$. Then \exists a quadratic form $q(x, y, z) \neq 0$ s.t. $T \geq q^{2}$, i.e. $T-q^{2}$ is psd.

Proof. Consider three cases concerning the zero set of T.
Case 1. $T>0$, i.e. T has no non trivial zeros.
Let

$$
\phi(x, y, z):=\frac{T(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}, \forall(x, y, z) \neq 0 .
$$

Let $\mu:=\inf _{\mathbb{S}^{2}} \phi \geq 0$, where \mathbb{S}^{2} is the unit sphere.
Since \mathbb{S}^{2} is compact and ϕ is continous, $\exists(a, b, c) \in \mathbb{S}^{2}$ s.t. $\mu=\phi(a, b, c)>0$
Therefore $\forall(x, y, z) \in \mathbb{S}^{2}: T(x, y, z) \geq \mu\left(x^{2}+y^{2}+z^{2}\right)^{2}$.

Claim: $T(x, y, z) \geq \mu\left(x^{2}+y^{2}+z^{2}\right)^{2}$ for all $(x, y, z) \in \mathbb{R}^{3}$.
Indeed, it is trivially true at the point $(0,0,0)$, and
for $(x, y, z) \in \mathbb{R}^{3} \backslash\{0\}$ denote $N:=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\left(\frac{x}{N}, \frac{y}{N}, \frac{z}{N}\right) \in \mathbb{S}^{2}$, which implies that

$$
T\left(\frac{x}{N}, \frac{y}{N}, \frac{z}{N}\right) \geq \mu\left(\left(\frac{x}{N}\right)^{2}+\left(\frac{y}{N}\right)^{2}+\left(\frac{z}{N}\right)^{2}\right)^{2}
$$

So, by homogeneity we get

$$
T(x, y, z) \geq \mu\left(x^{2}+y^{2}+z^{2}\right)^{2}=\left(\sqrt{\mu}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}, \text { as claimed. }
$$

\square (Case1)

Case 2. Thas exactly one (nontrivial) zero.
By changing coordinates, we may assume w.l.o.g. that zero to be $(1,0,0)$, i.e. $T(1,0,0)=0$.
Writing T as a polynomial in x one gets

$$
T(x, y, z)=a x^{4}+\left(b_{1} y+b_{2} z\right) x^{3}+f(y, z) x^{2}+2 g(y, z) x+h(y, z)
$$

where f, g and h are binary quadratic, cubic and quartic forms respectively.
Reducing T : Since $T(1,0,0)=0$ we get $a=0$.
Further, suppose $\left(b_{1}, b_{2}\right) \neq(0,0)$, it $\Rightarrow \exists\left(y_{0}, z_{0}\right) \in \mathbb{R}^{2}$ s.t $b_{1} y_{0}+b_{2} z_{0}<0$, then taking x big enough $\Rightarrow T\left(x_{0}, y_{0}, z_{0}\right)<0$, a contradiction to $T \geq 0$. Thus $b_{1}=$ $b_{2}=0$ and therefore

$$
\begin{equation*}
T(x, y, z)=f(y, z) x^{2}+2 g(y, z) x+h(y, z) \tag{1}
\end{equation*}
$$

Next, clearly $h(y, z) \geq 0$ [since otherwise $T\left(0, y_{0}, z_{0}\right)=h\left(y_{0}, z_{0}\right)<0$ for some $\left(y_{0}, z_{0}\right) \in \mathbb{R}^{2}$, a contradiction].
Also $f(y, z) \geq 0$, if not, say $f\left(y_{0}, z_{0}\right)<0$ for some $\left(y_{0}, z_{0}\right)$, then taking x big enough we get $T\left(x, y_{0}, z_{0}\right)<0$, a contradiction.
Thus $f, h \geq 0$.
From (1) we can write:

$$
\begin{equation*}
f T(x, y, z)=(x f+g)^{2}+\left(f h-g^{2}\right) \tag{2}
\end{equation*}
$$

Claim: $f h-g^{2} \geq 0$
If not, say $\left(f h-g^{2}\right)\left(y_{0}, z_{0}\right)<0$ for some $\left(y_{0}, z_{0}\right)$. Then there are two cases to be considered here:
Case (i): $f\left(y_{0}, z_{0}\right)=0$. In this case we claim $g\left(y_{0}, z_{0}\right)=0$ because if not then $T\left(x, y_{0}, z_{0}\right)=2 g\left(y_{0}, z_{0}\right) x+h\left(y_{0}, z_{0}\right)<0$ and we take $\left|x_{0}\right|$ large enough so that $2 g\left(y_{0}, z_{0}\right) x_{0}+h\left(y_{0}, z_{0}\right)<0$, a contradiction.

Case (ii): $f\left(y_{0}, z_{0}\right)>0$, we take $\left|x_{0}\right|$ such that $x_{0} f\left(y_{0}, z_{0}\right)+g\left(y_{0}, z_{0}\right)=0$, then $f T\left(x_{0}, y_{0}, z_{0}\right)=\left(f h-g^{2}\right)\left(y_{0}, z_{0}\right)<0$, a contradiction.
So our claim is established and $f h-g^{2} \geq 0$.
Now the polynomial f is a psd binary form, thus by Lemma 1.3 below f is sum of two squares. Let us consider the two subcases:
Case 2.1. f is a perfect square. Then $f=f_{1}^{2}$, with $f_{1}=b y+c z$ for some $b, c \in \mathbb{R}$. Up to multiplication by a constant $(-c, b)$ is the unique zero of f_{1} and so of f. Thus

$$
\left(f h-g^{2}\right)(-c, b)=-(g(-c, b))^{2} \leq 0
$$

which is a contradiction unless $g(-c, b)=0$ which means ${ }^{1}$ that $f_{1} \mid g$, i.e. $g(y, z)=$ $f_{1}(y, z) g_{1}(y, z)$. Then from (2) we get

$$
\begin{aligned}
f T & \geq(x f+g)^{2} \\
& =\left(x f_{1}^{2}+f_{1} g_{1}\right)^{2} \\
& =f_{1}^{2}\left(x f_{1}+g_{1}\right)^{2} \\
& =f\left(x f_{1}+g_{1}\right)^{2} .
\end{aligned}
$$

Hence $T \geq\left(x f_{1}+g_{1}\right)^{2}$ as required.
Case 2.2. $f=f_{1}^{2}+f_{2}^{2}$, with f_{1}, f_{2} linear in y, z.
Now $f_{1} \not \equiv \lambda f_{2}$ [otherwise we are in Case 2.1]
i.e. f_{1}, f_{2} don't have same non-trivial zeroes, otherwise they would be multiples of each other and f would be a perfect square. Hence $f>0$.
Claim 1: $f h-g^{2}>0$
If not, i.e. if $\exists\left(y_{0}, z_{0}\right) \neq(0,0)$ s.t. $\left(f h-g^{2}\right)\left(y_{0}, z_{0}\right)=0$, then $\left(y_{0}, z_{0}\right)$ could be completed to a zero $\left(-\frac{g\left(y_{0}, z_{0}\right)}{f\left(y_{0}, z_{0}\right)}, y_{0}, z_{0}\right)$ of T, which contradicts our hypothesis that T has only 1 zero $(1,0,0)$. Thus $f h-g^{2}>0$.
Claim 2: $\frac{f h-g^{2}}{f^{3}}$ has a minimum $\mu>0$ on the unit circle \mathbb{S}^{1}. (clear)
So, just as in Case 1,
$f h-g^{2} \geq \mu f^{3} \forall(y, z) \in \mathbb{R}^{2}$.
$\Rightarrow f T \geq f h-g^{2} \geq \mu f^{3}$, by (2)
$\Rightarrow T \geq \mu f^{2} \geq(\sqrt{\mu} f)^{2}$, as claimed.

[^0]Case 3. T has more than one zero.
Without loss of generality, assume $(1,0,0)$ and $(0,1,0)$ are two of the zeros of T. As in case 2 , reduction $\Rightarrow T$ is of degree at most 2 in x as well as in y and so we can write:

$$
T(x, y, z)=f(y, z) x^{2}+2 g(y, z) z x+z^{2} h(y, z),
$$

where f, g, h are quadratic forms and $f, h \geq 0$.
And so

$$
\begin{equation*}
f T=(x f+z g)^{2}+z^{2}\left(f h-g^{2}\right), \tag{3}
\end{equation*}
$$

with $f h-g^{2} \geq 0$ [Indeed, if $\left(f h-g^{2}\right)\left(y_{0}, z_{0}\right)<0$ for some $\left(y_{0}, z_{0}\right)$, then we must have case distinction as on bottom of page 2 i.e. $f\left(y_{0}, z_{0}\right)=0$ or $f\left(y_{0}, z_{0}\right)>0$].
Using Lemma 1.3 if f or h is a perfect square, then we get the desired result as in the Case 2.1. Hence we suppose f and h to be sum of two squares and again as before (as in Case 2.2) $f, h>0$. We consider the following two possible subcases on $f h-g^{2}$:
Case 3.1. Suppose $f h-g^{2}$ has a zero $\left(y_{0}, z_{0}\right) \neq(0,0)$.
Set $x_{0}=-\frac{g\left(y_{0}, z_{0}\right)}{f\left(y_{0}, z_{0}\right)}$ and

$$
\begin{equation*}
T_{1}:=T\left(x+x_{0} z, y, z\right)=x^{2} f+2 x z\left(g+x_{0} f\right)+z^{2}\left(h+2 x_{0} g+x_{0}^{2} f\right) \tag{4}
\end{equation*}
$$

Evaluating (3) at $\left(x+x_{0} z, y, z\right)$, we get

$$
\begin{equation*}
f T_{1}=f T\left(x+x_{0} z, y, z\right)=\left(\left(x+x_{0}\right) f+z g\right)^{2}+z^{2}\left(f h-g^{2}\right), \tag{3}
\end{equation*}
$$

Multyplying (4) by f, we get

$$
\begin{equation*}
f T_{1}=f T\left(x+x_{0} z, y, z\right)=x^{2} f^{2}+2 x z f\left(g+x_{0} f\right)+z^{2} f\left(h+2 x_{0} g+x_{0}^{2} f\right) \tag{4}
\end{equation*}
$$

Now compare the coefficients of z^{2} in (3)' and (4)' to get

$$
\left(x_{0} f+g\right)^{2}+\left(f h-g^{2}\right)=f\left(h+2 x_{0} g+x_{0}^{2} f\right),
$$

i.e. $h+2 x_{0} g+x_{0}^{2} f=\frac{\left(f h-g^{2}\right)+\left(x_{0} f+g\right)^{2}}{f} \forall(y, z) \neq(0,0)$

In particular, $h+2 x_{0} g+x_{0}^{2} f$ is psd and has a zero, namely $\left(y_{0}, z_{0}\right) \neq(0,0)$.
Thus $\left(h+2 x_{0} g+x_{0}^{2} f\right)$, being a psd quadratic in y, z, which has a nontrivial zero $\left(y_{0}, z_{0}\right)$, is a perfect square [since by the arguments similar to Case 2.2, it cannot be a sum of two (or more) squares].
Say $\left(h+2 x_{0} g+x_{0}^{2} f\right)=h_{1}^{2}$, with $h_{1}(y, z)$ linear and $h_{1}\left(y_{0}, z_{0}\right)=0$
Now $\left(g+x_{0} f\right)\left(y_{0}, z_{0}\right)=g\left(y_{0}, z_{0}\right)+x_{0} f\left(y_{0}, z_{0}\right)=0$. So, $g+x_{0} f$ vanishes at every zero of the linear form h_{1}. Therefore, we have $g+x_{0} f=g_{1} h_{1}$ for some g_{1}.

$$
\begin{aligned}
& \text { So (from (4)), } \begin{aligned}
& T_{1}=f x^{2}+2 x z g_{1} h_{1}+z^{2} h_{1}^{2} \\
&=\left(z h_{1}+x g_{1}\right)^{2}+x^{2}\left(f-g_{1}^{2}\right) \\
& \Rightarrow h_{1}^{2} T_{1}=h_{1}^{2}\left(z h_{1}\right.\left.+x g_{1}\right)^{2}+x^{2}\left(h_{1}^{2} f-\left(h_{1} g_{1}\right)^{2}\right) \\
&=h_{1}^{2}\left(z h_{1}+x g_{1}\right)^{2}+x^{2} \underbrace{\left(h f-g^{2}\right)}_{\geq 0} \\
& \Rightarrow h_{1}^{2} T_{1} \geq h_{1}^{2}\left(z h_{1}+x g_{1}\right)^{2} \\
& \Rightarrow T\left(x+x_{0} z, y, z\right)=: T_{1} \geq\left(z h_{1}+x g_{1}\right)^{2}
\end{aligned}
\end{aligned}
$$

By change of variables $\left(x \rightarrow x-x_{0} z\right)$, we get $T \geq$ a square of a quadratic form, as desired.
Case 3.2. Suppose $f h-g^{2}>0$ (i.e. $f h-g^{2}$ has no zero).
Then (as in Case 2.2), $\exists \mu>0$ s.t $\frac{f h-g^{2}}{\left(y^{2}+z^{2}\right) f} \geq \mu$ on \mathbb{S}^{1}
and so $f h-g^{2} \geq \mu\left(y^{2}+z^{2}\right) f \forall(y, z) \in \mathbb{R}^{2}$.
Hence, by (\dagger)

$$
\begin{aligned}
f T & =(x f+z g)^{2}+z^{2} \underbrace{\left(f h-g^{2}\right)}_{>0} \\
& \geq z^{2}\left(f h-g^{2}\right) \\
& \geq \mu z^{2}\left(y^{2}+z^{2}\right) f,
\end{aligned}
$$

giving as required

$$
\begin{aligned}
& T \geq(\sqrt{\mu} z y)^{2}+\left(\sqrt{\mu} z^{2}\right)^{2} \\
\Rightarrow & T \geq\left(\sqrt{\mu} z^{2}\right)^{2}
\end{aligned}
$$

This completes the proof of the Lemma 1.2.
Next we prove Theorem 1.1 part (i), i.e. for binary forms. This was also used as a helping lemma in the proof of above lemma:

Lemma 1.3. If f is a binary psd form of degree m, then f is a sum of squares of binary forms of degree $m / 2$, that is, $\mathcal{P}_{2, m}=\sum_{2, m}$. In fact, f is sum of two squares.

Proof. If f is a binary form of degree m, we can write

$$
f(x, y)=\sum_{k=0}^{m} c_{k} x^{k} y^{m-k} ; c_{k} \in \mathbb{R}
$$

$$
=y^{m} \sum_{k=0}^{m} c_{k}\left(\frac{x}{y}\right)^{k}
$$

where m is an even number and $c_{m} \neq 0$, since f is psd.
Without loss of generality let $c_{m}=1$.
Put $g(t)=\sum_{k=0}^{m} c_{k} t^{k}$.
Over $\mathbb{C}, g(t)=\prod_{k=1}^{m / 2}\left(t-z_{k}\right)\left(t-\bar{z}_{k}\right) ; \quad z_{k}=a_{k}+i b_{k}, a_{k}, b_{k} \in \mathbb{R}$

$$
=\prod_{k=1}^{m / 2}\left(\left(t-a_{k}\right)^{2}+b_{k}^{2}\right)
$$

$\Rightarrow f(x, y)=y^{m} g\left(\frac{x}{y}\right)=\prod_{k=1}^{m / 2}\left(\left(x-a_{k} y\right)^{2}+b_{k}^{2} y^{2}\right)$
Then using iteratively the identity

$$
\left(X^{2}+Y^{2}\right)\left(Z^{2}+W^{2}\right)=(X Z-Y W)^{2}+(Y Z+X W)^{2}
$$

we obtain that $f(x, y)$ is a sum of two squares.
Example 1.4. Using the ideas in the proof of above lemma, we write the binary form

$$
f(x, y)=2 x^{6}+y^{6}-3 x^{4} y^{2}
$$

as a sum of two squares:
Consider f written in the form

$$
f(x, y)=y^{6}\left(2\left(\frac{x}{y}\right)^{6}+1-3\left(\frac{x}{y}\right)^{4}\right)
$$

So, the polynomial $g(t)=2 t^{6}-3 t^{4}+1$. This polynomial has double roots 1 and -1 and complex roots $\pm \frac{1}{\sqrt{2}} i$.
Thus

$$
g(t)=2(t-1)^{2}(t+1)^{2}\left(t^{2}+\frac{1}{2}\right)=\left(t^{2}-1\right)^{2}\left(2 t^{2}+1\right) .
$$

Therefore we have

$$
f(x, y)=y^{6} g\left(\frac{x}{y}\right)=\left(x^{2}-y^{2}\right)^{2}\left(2 x^{2}+y^{2}\right)=2 x^{2}\left(x^{2}-y^{2}\right)^{2}+y^{2}\left(x^{2}-y^{2}\right)^{2}
$$

written as a sum of two squares.

Next we prove Theorem 1.1 part (ii), i.e. for quadratic forms:
Lemma 1.5. If $f\left(x_{1}, \ldots, x_{n}\right)$ is a psd quadratic form, then $f\left(x_{1}, \ldots, x_{n}\right)$ is sos of linear forms, that is, $\mathcal{P}_{n, 2}=\sum_{n, 2}$.

Proof. If $f\left(x_{1}, \ldots, x_{n}\right)$ is a quadratic form, then we can write

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j=1}^{n} x_{i} a_{i j} x_{j} \text {, where } A=\left[a_{i j}\right] \text { is a symmetric matrix with } a_{i j} \in \mathbb{R} .
$$

We have $f=X^{T} A X$, where $X^{T}=\left[x_{1}, \ldots x_{n}\right]$.
By the spectral theorem for Hermitian matrices, there exists a real orthogonal matrix S and a diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ such that $D=S^{T} A S$. Then

$$
f=X^{T} S S^{T} A S S^{T} X=\left(S^{T} X\right)^{T} S^{T} A S\left(S^{T} X\right)
$$

Putting $Y=\left[y_{1}, \ldots, y_{n}\right]^{T}=S^{T} X$, we get

$$
f=Y^{T} S^{T} A S Y=Y^{T} D Y=\sum_{i=1}^{n} d_{i} y_{i}^{2}, d_{i} \in \mathbb{R}
$$

Since f is psd, we have $d_{i} \geq 0 \forall i$, and so

$$
f=\sum_{i=1}^{n}\left(\sqrt{d_{i}} y_{i}\right)^{2},
$$

Thus

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left(\sqrt{d_{i}}\left(s_{1, i} x_{1}+\ldots, s_{n, i} x_{n}\right)\right)^{2}
$$

that is, f is sos of linear forms.

[^0]: ${ }^{1}$ See (5) implies (2) of Theorem 4.5.1 in Real Algebraic Geometry by J. Bochnak, M. Coste, M.-F. Roy or (5) implies (2) of Theorem 12.7 in Positive Polynomials and Sum of Squares by M. Marshall.

