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1. PROOF OF HILBERT’S THEOREM (Continued)

Theorem 1.1. (Recall) (Hilbert)
∑

n,m = Pn,m iff

(i) n = 2 or

(ii) m = 2 or

(iii) (n,m) = (3, 4).

And in all other cases
∑

n,m ( Pn,m .

Note that here m is necessarily even because a psd polynomial must have even
degree (see Lemma 2.3 in lecture 6).

We have shown one direction (⇐) of Hilbert’s Theorem (1.1 above), i.e. if
n = 2 or m = 2 or (n,m) = (3, 4), then

∑
n,m = Pn,m. To prove the other direction

we have to show that:∑
n,m ( Pn,m for all pairs (n,m) s.t. n ≥ 3,m ≥ 4 (m even) with (n,m) , (3, 4).

(1)

1
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Hilbert showed (using algebraic geometry) that
∑

3,6 ( P3,6 and
∑

4,4 ( P4,4. This
is a reduction of the general problem (1), indeed we have:

Lemma 1.2. If
∑

3,6 ( P3,6 and
∑

4,4 ( P4,4, then∑
n,m ( Pn,m for all n ≥ 3,m ≥ 4 and (n,m) , (3, 4), (m even).

Proof. Clearly, given F ∈ Pn,m −
∑

n,m, then F ∈ Pn+ j, m −
∑

n+ j, m for all j ≥ 0.

Moreover, we claim: F ∈ Pn,m −
∑

n,m ⇒ x2i
1 F ∈ Pn, m+2i −

∑
n, m+2i ∀ i ≥ 0

Proof of claim: Assume for a contradiction that

for i = 1 x2
1F(x1, . . . , xn) =

k∑
j=1

f 2
j (x1, . . . , xn),

then L.H.S vanishes at x1 = 0, so R.H.S also vanishes at x1 = 0.

So x1| f j ∀ j, so x2
1| f

2
j ∀ i. So, R.H.S is divisible by x2

1. Dividing both sides by x2
1

we get a sos representation of F, a contradiction since F <
∑

n,m . �

So we just need to show that:
∑

3,6 ( P3,6, and
∑

4,4 ( P4,4.

Hilbert described a method (non constructive) to produce counter examples in the
2 crucial cases, but no explicit examples appeared in literature for next 80 years.
In 1967 Motzkin presented a specific example of a ternary sextic form that is
positive semidefinite but not a sum of squares.

2. THE MOTZKIN FORM

Proposition 2.1. The Motzkin form

M(x, y, z) = z6 + x4y2 + x2y4 − 3x2y2z2 ∈ P3,6 −
∑

3,6.

Proof. Using the arithmetic geometric inequality (Lemma 2.2 below) with a1 =

z6, a2 = x4y2, a3 = x2y4 and α1 = α2 = α3 =
1
3

, clearly gives M ≥ 0.

Degree arguments and exercise 3 of ÜB 6 from Real Algebraic Geometry course
(WS 2009-10) gives M is not a sum of squares �

Lemma 2.2. (Arithmetic-geometric inequality I) Let a1, a2, . . . , an ≥ 0 ; n ≥ 1.
Then
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a1 + a2 + . . . + an

n
≥ (a1a2 . . . an)

1
n .

Lemma 2.3. (Arithmetic-geometric inequality II) Let αi ≥ 0, ai ≥ 0; i =

1, . . . , n with
n∑

i=1

αi = 1.Then

α1a1 + . . . + αnan − aα1
1 . . . aαn

n ≥ 0

(with equality iff all the xi are equal).

Proof. Exercise 2 in ÜB 5.

3. ROBINSON’S METHOD (1970)

In 1970’s R. M. Robinson gave a ternary sextic based on the method described
by Hilbert, but after drastically simplifying Hilbert’s original ideas. He used it to
construct examples of forms in P4,4 −

∑
4,4 as well as forms in P3,6 −

∑
3,6 .

This method is based on the following lemma:

Lemma 3.1. A polynomial P(x, y) of degree at most 3 which vanishes at eight of
the nine points (x, y) ∈ {−1, 0, 1} × {−1, 0, 1} must also vanish at the ninth point.

Proof. Assign weights to the following nine points:

w(x, y) =


1 , if x, y = ±1

−2 , if (x = ±1, y = 0) or (x = 0, y = ±1)

4 , if x, y = 0

Define the weight of a monomial as:

w(xkyl) :=
9∑

i=1

w(qi)xkyl(qi) , for qi ∈ {−1, 0, 1} × {−1, 0, 1}

Define the weight of a polynomial P(x, y) =
∑
k,l

ck,l xkyl as:

w(P) :=
∑
k,l

ck,l w(xkyl)

Claim 1: w(xkyl) = 0 unless k and l are both strictly positive and even.

Proof of claim 1: Let us compute the monomial weights
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• if k = 0, l ≥ 0: then we have

w(xkyl) = 1 + (−1)l + 1 + (−1)l + (−2) + (−2)(−1)l = 0

• if l = 0, k ≥ 0: then similarly we have w(xkyl) = 0, and

• if k, l > 0: then we have

w(xkyl) = 1+(−1)l+(−1)k+(−1)k+l =

 0 , if either k or l is odd

4 , otherwise

� (claim 1)

Claim 2: w(P) =

9∑
i=1

w(qi)P(qi)

Proof of claim 2: w(P) :=
∑
k,l

ck,l w(xkyl) =
∑
k,l

ck,l

9∑
i=1

w(qi)xkyl(qi)

=

9∑
i=1

w(qi)
∑
k,l

ck,lxkyl(qi) =

9∑
i=1

w(qi)P(qi)

� (claim 2)

Now, claim 1 and definition of w(P) ⇒ if deg(P(x, y)) ≤ 3 then w(P) = 0.

Also, from claim 2 we get:
P(1, 1)+P(1,−1)+P(−1, 1)+P(−1,−1)+(−2)P(1, 0)+(−2)P(−1, 0)+(−2)P(0, 1)+
(−2)P(0,−1) + 4P(0, 0) = 0

Now verify that if P(x, y) = 0 for any eight (of the nine) points, then we are left
with αP(x, y) = 0 (for some α , 0, α = ±1,±2) at the ninth point. �

4. THE ROBINSON FORM

Theorem 4.1. Robinsons form R(x, y, z) = x6 +y6 + z6− (x4y2 + x4z2 +y4x2 +y4z2+

z4x2 + z4y2) + 3x2y2z2 is psd but not a sos, i.e. R ∈ P3,6 −
∑

3,6 .

Proof. Consider the polynomial

P(x, y) = (x2 + y2 − 1)(x2 − y2)2 + (x2 − 1)(y2 − 1) (2)

Note that R(x, y, z) = Ph(x, y, z) = z6P(x/z, y/z).

By our observation: Ph is psd iff P psd; Ph is sos iff P is sos,
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We shall show that P(x, y) is psd but not sos.

Multiplying both sides of (2) by (x2 + y2 − 1) and adding to (2) we get:

(x2 + y2)P(x, y) = x2(x2 − 1)2 + y2(y2 − 1)2 + (x2 + y2 − 1)2(x2 − y2)2 (3)

From (3) we see that P(x, y) ≥ 0, i.e. P(x, y) is psd.

Assume P(x, y) =
∑

j

P j(x, y)2 is sos

degP(x, y) = 6, so degP j ≤ 3 ∀ j.

By (2) it is easy to see that P(0, 0) = 1 and P(x, y) = 0 for all other eight points
(x, y) ∈ {−1, 0, 1}2 \ {(0, 0)}, therefore every P j(x, y) must also vanish at these eight
points.

Hence by Lemma 3.1 (above) it follows that: P j(0, 0) = 0 ∀ j.

So P(0, 0) = 0 , which is a contradiction. �

Proposition 4.2. The quarternary quartic Q(x, y, z,w) = w4 + x2y2 + y2z2 + x2z2 −

4xyzw is psd, but not sos, i.e., Q ∈ P4,4 −
∑

4,4 .

Proof. The arithmetic-geometric inequality (Lemma 2.3) clearly implies Q ≥ 0.

Assume now that Q =
∑

j

q2
j , q j ∈ F4,2 .

Forms in F4,2 can only have the following monomials:

x2, y2, z2,w2, xy, xz, xw, yz, yw, zw

If x2 occurs in some of the q j, then x4 occurs in q2
j with positive coefficient and

hence in
∑

q2
j with positive coefficient too, but this is not the case.

Similarly q j does not contain y2 and z2.

The only way to write x2w2 as a product of allowed monomials is x2w2 = (xw)2.

Similarly for y2w2 and z2w2.

Thus each q j involves only the monomials xy, xz, yz and w2.

But now there is no way to get the monomial xyzw from
∑

j

q2
j , hence a contra-

diction.
�
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Proposition 4.3. The ternary sextic S (x, y, z) = x4y2 + y4z2 + z4x2 − 3x2y2z2 is psd,
but not a sos, i.e., S ∈ P3,6 −

∑
3,6 .

Proof. Exercise 3 of ÜB 5. �


