POSITIVE POLYNOMIALS LECTURE NOTES
(09: 10/05/10)

SALMA KUHLMANN

Contents

1. Proof of Hilbert’s Theorem (continued)
2. The Motzkin Form

3. Robinson Method (1970)

3. The Robinson Form

L VS I S

1. PROOF OF HILBERT’S THEOREM (Continued)

Theorem 1.1. (Recall) (Hilbert) 3, ,, = Py iff
(i)n=2or
(i)m=2or
(i) (n,m) = (3,4).

And in all other cases },,, € Pum -

Note that here m is necessarily even because a psd polynomial must have even
degree (see Lemma 2.3 in lecture 6).

We have shown one direction (<) of Hilbert’s Theorem (1.1 above), i.e. if
n=2orm=2or(n,m) = (3,4), then },,, = P, To prove the other direction
we have to show that:
2onm & Pnm forall pairs (n,m) s.t. n > 3,m > 4 (m even) with (n,m) # (3, 4).

)
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Hilbert showed (using algebraic geometry) that 3,36 & P36 and Y 44 & Pas. This
is a reduction of the general problem (1), indeed we have:

Lemma 1.2. If ;¢ C P3¢ and 344 & Pagy, then
2onm & Pum foralln >3,m >4 and (n,m) # (3,4), (m even).

Proof. Clearly, given F € Py, — 3, - then F € Py 1y — 3,05, forall j > 0.
Moreover, we claim: F € Py, = Y0 = X3F € Py pioi — Dpmani Vi 20

Proof of claim: Assume for a contradiction that

k
fori=1 fo(xl,...,xn):ijz(xl,...,x,,),
=

then L.H.S vanishes at x; = 0, so R.H.S also vanishes at x; = 0.

So xi|f; VY j, so xflsz Y i. So, R:H.S is divisible by x7. Dividing both sides by x7
we get a sos representation of F, a contradiction since F' ¢ . . O

So we just need to show that: }}35 € Pz, and Dy 4 & Pas.

Hilbert described a method (non constructive) to produce counter examples in the
2 crucial cases, but no explicit examples appeared in literature for next 80 years.
In 1967 Motzkin presented a specific example of a ternary sextic form that is
positive semidefinite but not a sum of squares.

2. THE MOTZKIN FORM

Proposition 2.1. The Motzkin form
M(x,y,z) = 2+ x4y2 + x2y4 - 3x2y2z2 € P36 — 236

Proof. Using the arithmetic geometric inequality (Lemma 2.2 below) with a; =

La, =x a3 = x>y and ) = ap = a3 = 3 clearly gives M > 0.

Degree arguments and exercise 3 of UB 6 from Real Algebraic Geometry course
(WS 2009-10) gives M is not a sum of squares O

Lemma 2.2. (Arithmetic-geometric inequality I) Let a,a;,...,a, >0;n > 1.
Then
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a+a+...+a 1
> (aay...a,)".

n

Lemma 2.3. (Arithmetic-geometric inequality II) Let o; > 0, a; > 0; i =
1,...,nwicha,- = 1.Then
i=1
aay + ... +aua,—aj'.ay >0

(with equality iff all the x; are equal).

Proof. Exercise 2 in UB 5.

3. ROBINSON’S METHOD (1970)

In 1970’s R. M. Robinson gave a ternary sextic based on the method described
by Hilbert, but after drastically simplifying Hilbert’s original ideas. He used it to
construct examples of forms in Py 4 — >4 4 as well as forms in Pz — 31556 -

This method is based on the following lemma:

Lemma 3.1. A polynomial P(x,y) of degree at most 3 which vanishes at eight of
the nine points (x,y) € {—1,0, 1} X {—1,0, 1} must also vanish at the ninth point.

Proof. Assign weights to the following nine points:

1 ,ifx,y==I
w(x,y) =4 =2, if (x=+1,y=0)or (x =0,y = £1)
4 ,ifx,y=0

Define the weight of a monomial as:
9

Wy == > gy (q) . for g€ (=1,0,1} x {-1,0,1}

i=1
Define the weight of a polynomial P(x,y) = Z iy ¥y as:
el

W(P) 1= ) e wry)

k1l

Claim 1: w(x*y') = 0 unless k and [ are both strictly positive and even.

Proof of claim 1: Let us compute the monomial weights
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e if k =0,/ > 0: then we have

w(xkyl) =1+ (—l)l +1+ (—l)l +(=2) + (—2)(—1)1 =0
e if [ = 0,k > 0: then similarly we have w(x*y) =0, and

e if k, 1 > 0: then we have

0, if either k or / is odd

4 , otherwise

w(xy) = T+(= D!+ (=D +(= 1) = {

O (claim 1)
9
Claim 2: w(P) = Z w(g)P(q,)
i=1
9
Proof of claim 2: w(P) := Z Ch w(xkyl) = Z Ck Z w(qi)xkyl (9:)
] ] i=1
9 9
= ) w(gi) Z ey (q) = Z w(gi)P(g:)
i=1 ] i=1
O (claim 2)

Now, claim 1 and definition of w(P) = if deg(P(x,y)) <3 then w(P) = 0.

Also, from claim 2 we get:
P(1, D+P(1,-1)+P(-1, D)+P(-1,-1)+(=2)P(1,0)+(-2)P(-1,0)+(=2)P(0, 1)+
(-2)P(0,-1) +4P(0,0) =0

Now verify that if P(x,y) = O for any eight (of the nine) points, then we are left
with aP(x,y) = 0 (for some @ # 0, = 1, +2) at the ninth point. O

4. THE ROBINSON FORM

Theorem 4.1. Robinsons form R(x, y, z) = x5 +y° + 20 — (x*y? + x* 22 + y*x? + y* 22+

Z'x* + 2% + 3x%y*z% is psd but not a sos, i.e. R € P36 — D36 -

Proof. Consider the polynomial
P(x,y) = (¥ +y* = D = y*)P + (& = DO* = 1) (2)
Note that R(x,y,7) = Pu(x,y,2) = 2°P(x/2, /7).

By our observation: Py is psd iff P psd; P, is sos iff P is sos,
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We shall show that P(x, y) is psd but not sos.
Multiplying both sides of (2) by (x*> + y* — 1) and adding to (2) we get:
(2 +Y)P(x,y) = (% = 1) +y° (77 = 1)? + (6 + 7 = 1)*(x* = y?)? 3)
From (3) we see that P(x,y) > 0, i.e. P(x,y) is psd.
Assume P(x,y) = Z Pj(x, y)2 1S Sos

j
degP(x,y) = 6,s0degP; <3V j.

By (2) it is easy to see that P(0,0) = 1 and P(x,y) = O for all other eight points
(x,y) € {—1,0, 1}*\ {(0, 0)}, therefore every P i(x,y) must also vanish at these eight
points.

Hence by Lemma 3.1 (above) it follows that: P;(0,0) =0V j.
So P(0,0) = 0, which is a contradiction. O

Proposition 4.2. The quarternary quartic Q(x,y,z, w) = w* + x2y? + y>2? + x?z> —
4xyzw is psd, but not so0s, i.e., Q € Pss — Dyq -

Proof. The arithmetic-geometric inequality (Lemma 2.3) clearly implies Q > 0.

Assume now that Q = Z q? , 4 €Fan.
J

Forms in ¥4, can only have the following monomials:
2 2 2 2
x2,y%, 22, W2, XY, XZ, XW, YZ, YW, ZW
If x* occurs in some of the g, then x* occurs in g7 with positive coefficient and

hence in Z q? with positive coeflicient too, but this is not the case.

Similarly ¢; does not contain y* and z°.

The only way to write x*w? as a product of allowed monomials is x>w? = (xw)?.
Similarly for y>w? and z>w?.
Thus each g; involves only the monomials xy, xz, yz and w?.

But now there is no way to get the monomial xyzw from Z q?, hence a contra-

J
diction.
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Proposition 4.3. The ternary sextic S (x, v, z) = x*y? + y*z% + z*x* — 3x*y?z? is psd,
but not a sos, i.e., S € P36 — D36 -

Proof. Exercise 3 of UB 5. O



