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These exercises will be collected Tuesday 27 April in the mailbox n.14 of the
Mathematics department.

1. Let n ∈ N, n > 1. Consider R[x1, . . . , xn] as a vector space over R.

(a) Let Fd be the subspace of forms of degree d. Find the dimension of Fd.

(b) Let Vd be the subspace of polynomials of degree 6 d. Find the dimen-
sion of Vd.

2. Let n ∈ N, n > 1. For f ∈ R[x1, . . . , xn], let

Z(f) = {(x1, . . . , xn) ∈ Rn : f(x1, . . . , xn) = 0}.

Prove that Rn \ Z(f) is dense in Rn.

Is it still true replacing R by any real closed field R?

3. Let n ∈ N, n > 1, f ∈ R[x1, . . . , xn]. Show that

∀ (x1, . . . , xn) ∈ Rn f(x1, . . . , xn) > 0 ⇒ deg(f) is even.
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4. Let A be a commutative ring with 1.

We recall that T ⊆ A is a preordering of A if

T + T ⊆ T, T · T ⊆ T, a2 · T ⊆ T ∀ a ∈ A, 1 ∈ T.

A preordering P is an ordering of A if

A = −P ∪ P and − P ∩ P is a prime ideal of A.

Let A be the ring of continuous functions f : [0,1]→ R.
Find a preordering T and an ordering P of A such that the following

conditions are satisfied:

(i)
∑

A2 ⊂ T ⊂ P,

(ii) there are infinitely many preorderings Ti with
∑

A2 ( Ti ( T ,

(iii) there are infinitely many preorderings T i with T ( T i ( P .


