Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Annalisa Conversano SS2010

ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 01

These exercises will be collected Tuesday 27 April in the mailbox n.14 of the Mathematics department.

- **1**. Let $n \in \mathbb{N}$, $n \ge 1$. Consider $\mathbb{R}[\mathbf{x}_1, \dots, \mathbf{x}_n]$ as a vector space over \mathbb{R} .
 - (a) Let \mathcal{F}_d be the subspace of forms of degree d. Find the dimension of \mathcal{F}_d .
 - (b) Let \mathcal{V}_d be the subspace of polynomials of degree $\leq d$. Find the dimension of \mathcal{V}_d .
- **2**. Let $n \in \mathbb{N}$, $n \ge 1$. For $f \in \mathbb{R}[\mathbf{x}_1, \dots, \mathbf{x}_n]$, let

 $\mathcal{Z}(f) = \{(x_1, \dots, x_n) \in \mathbb{R}^n : f(x_1, \dots, x_n) = 0\}.$

Prove that $\mathbb{R}^n \setminus \mathcal{Z}(f)$ is dense in \mathbb{R}^n .

Is it still true replacing \mathbb{R} by any real closed field R?

3. Let $n \in \mathbb{N}$, $n \ge 1$, $f \in \mathbb{R}[\mathbf{x}_1, \dots, \mathbf{x}_n]$. Show that

 $\forall (x_1, \dots, x_n) \in \mathbb{R}^n \ f(x_1, \dots, x_n) \ge 0 \implies \deg(f) \text{ is even.}$

4. Let A be a commutative ring with 1.

We recall that
$$T \subseteq A$$
 is a **preordering** of A if

 $T+T\subseteq T, \quad T\cdot T\subseteq T, \quad a^2\cdot T\subseteq T \quad \forall \, a\in A, \quad 1\in T.$

A preordering P is an **ordering** of A if

 $A = -P \cup P$ and $-P \cap P$ is a prime ideal of A.

Let A be the ring of continuous functions $f: [0,1] \to \mathbb{R}$.

Find a preordering T and an ordering P of A such that the following conditions are satisfied:

- $(i) \ \sum A^2 \ \subset \ T \ \subset \ P,$
- (*ii*) there are infinitely many preorderings T_i with $\sum A^2 \subseteq T_i \subseteq T$,
- (*iii*) there are infinitely many preorderings T^i with $T \subsetneq T^i \subsetneq P$.

 $\mathbf{2}$