ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 02

These exercises will be collected Tuesday 4 May in the mailbox n. 14 of the Mathematics department.

1. Let A be a commutative ring with 1 . For an ordering $P \subseteq A$ let

$$
\mathrm{F}_{\mathrm{P}}:=\mathrm{ff}(A / \mathfrak{p})
$$

be the field of fractions of A / \mathfrak{p}, where $\mathfrak{p}:=-P \cap P$. For every $a \in A$ we denote by \bar{a} the equivalence class of a in A / \mathfrak{p}. Define

$$
\forall a, b \in A, b \notin \mathfrak{p} \quad \bar{a} \geqslant_{P} 0 \Leftrightarrow a b \in P .
$$

Show that:
(a) \geqslant_{P} is well-defined on F_{P},
(b) $\left(\mathrm{F}_{\mathrm{P}}, \geqslant_{P}\right)$ is an ordered field.
2. Let $n \in \mathbb{N}$. Let K be a field, $V \subseteq K^{n}$ an algebraic subset, $I \subseteq K\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$ an ideal.
(I) Show that:
(a) $\mathcal{I}(V)$ is an ideal,
(b) $\mathcal{Z}(\mathcal{I}(V))=V$,
(c) the map $V \mapsto \mathcal{I}(V)$ is an injection from the set of algebraic subsets of K^{n} into the set of ideals of $K\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$.
(II) Give an example where

$$
I \subsetneq \mathcal{I}(\mathcal{Z}(I)) .
$$

3. Let A be a commutative ring with 1 such that $1+1 \in A^{*}$ and $M \subseteq A$ a quadratic module of A. Show that:
(a) $-M \cap M$ is an ideal of A;
(b) the following are equivalent:
(i) $a \in \sqrt{-M \cap M}:=\left\{a \in A: \exists m \in \mathbb{N}\right.$ s.t. $\left.a^{m} \in-M \cap M\right\}$;
(ii) $a^{2 m} \in-M \cap M$ for some $m \in \mathbb{N}$;
(iii) $-a^{2 m} \in M$ for some $m \in \mathbb{N}$.
4. Let A be a commutative ring with 1 . Show that if M is the quadratic module (resp., preordering) of A generated by $\left\{g_{1}, \ldots, g_{s}\right\}$ and I is the ideal of A generated by $\left\{h_{1}, \ldots, h_{t}\right\}$, then

$$
M+I:=\{g+h: g \in M, h \in I\}
$$

is the quadratic module (resp., preordering) of A generated by $\left\{g_{1}, \ldots, g_{s}\right.$, $\left.h_{1},-h_{1}, \ldots, h_{t},-h_{t}\right\}$.
5. Let A be a commutative ring with 1 and $I \subseteq A$ an ideal. We recall that

- I is prime if $a b \in I \Rightarrow a \in I$ or $b \in I$.
- I is radical if $I=\sqrt{I}:=\left\{a \in A: \exists m \in \mathbb{N}\right.$ s.t. $\left.a^{m} \in I\right\}$.
- I is real if $I=\sqrt[R]{I}:=\left\{a \in A: \exists m \in \mathbb{N} \exists \sigma \in \sum A^{2}\right.$ s.t. $\left.a^{2 m}+\sigma \in I\right\}$.
(a) Show that any prime ideal is radical.
(b) Give an example of an ideal $I \subset K\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$ (for some field K and $n \in \mathbb{N}$) which is radical and it is not prime.
(c) Give an example of an ideal $I \subset K\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$ (for some field K and $n \in \mathbb{N}$) which is prime and it is not real.

