Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Annalisa Conversano SS2010

ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 02

These exercises will be collected Tuesday 4 May in the mailbox n.14 of the Mathematics department.

1. Let A be a commutative ring with 1. For an ordering $P \subseteq A$ let

$$F_{P} := \mathrm{ff}(A/\mathfrak{p})$$

be the field of fractions of A/\mathfrak{p} , where $\mathfrak{p} := -P \cap P$. For every $a \in A$ we denote by \bar{a} the equivalence class of a in A/\mathfrak{p} . Define

$$\forall a, b \in A, b \notin \mathfrak{p} \qquad \frac{\overline{a}}{\overline{b}} \geq_P 0 \iff ab \in P.$$

Show that:

(a) \geq_P is well-defined on F_P ,

- (b) $(\mathbf{F}_{\mathbf{P}}, \geq_P)$ is an ordered field.
- **2**. Let $n \in \mathbb{N}$. Let K be a field, $V \subseteq K^n$ an algebraic subset, $I \subseteq K[\mathbf{x}_1, \ldots, \mathbf{x}_n]$ an ideal.
 - (I) Show that:
 - (a) $\mathcal{I}(V)$ is an ideal,
 - $(b) \ \mathcal{Z}(\mathcal{I}(V)) = V,$
 - (c) the map $V \mapsto \mathcal{I}(V)$ is an injection from the set of algebraic subsets of K^n into the set of ideals of $K[\mathbf{x}_1, \ldots, \mathbf{x}_n]$.
 - (II) Give an example where

$$I \subsetneq \mathcal{I}(\mathcal{Z}(I)).$$

- **3**. Let A be a commutative ring with 1 such that $1 + 1 \in A^*$ and $M \subseteq A$ a quadratic module of A. Show that:
 - (a) $-M \cap M$ is an ideal of A;
 - (b) the following are equivalent:

(i)
$$a \in \sqrt{-M} \cap M := \{a \in A : \exists m \in \mathbb{N} \text{ s.t. } a^m \in -M \cap M\};$$

- (*ii*) $a^{2m} \in -M \cap M$ for some $m \in \mathbb{N}$;
- (*iii*) $-a^{2m} \in M$ for some $m \in \mathbb{N}$.
- 4. Let A be a commutative ring with 1. Show that if M is the quadratic module (resp., preordering) of A generated by $\{g_1, \ldots, g_s\}$ and I is the ideal of A generated by $\{h_1, \ldots, h_t\}$, then

$$M + I := \{g + h : g \in M, h \in I\}$$

is the quadratic module (resp., preordering) of A generated by $\{g_1, \ldots, g_s, h_1, -h_1, \ldots, h_t, -h_t\}$.

- **5**. Let A be a commutative ring with 1 and $I \subseteq A$ an ideal. We recall that
 - *I* is **prime** if $ab \in I \Rightarrow a \in I$ or $b \in I$.
 - *I* is radical if $I = \sqrt{I} := \{a \in A : \exists m \in \mathbb{N} \text{ s.t. } a^m \in I\}.$
 - *I* is real if $I = \sqrt[n]{I} := \{a \in A : \exists m \in \mathbb{N} \exists \sigma \in \sum A^2 \text{ s.t. } a^{2m} + \sigma \in I\}.$
 - (a) Show that any prime ideal is radical.
 - (b) Give an example of an ideal $I \subset K[\mathbf{x}_1, \dots, \mathbf{x}_n]$ (for some field K and $n \in \mathbb{N}$) which is radical and it is not prime.
 - (c) Give an example of an ideal $I \subset K[\mathbf{x}_1, \dots, \mathbf{x}_n]$ (for some field K and $n \in \mathbb{N}$) which is prime and it is not real.

 $\mathbf{2}$