ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 03

These exercises will be collected Tuesday 11 in the mailbox $n .14$ of the Mathematics department.

1. Let $A=\mathbb{R}[\underline{\mathrm{x}}], S$ a finite subset of $A, T=T_{S}$ the preordering of A generated by $S, \operatorname{Sper}_{T}(A):=\{P: P$ is an ordering and $A \supset P \supset T\}$ and $K=K_{S}$ the basic closed semialgebraic subset of \mathbb{R}^{n} associated to S. Consider the following map:

$$
\begin{aligned}
P: K & \longrightarrow \operatorname{Sper}_{T}(A) \\
\underline{x} & \mapsto \quad P_{\underline{x}}:=\{f \in A: f(\underline{x}) \geqslant 0\} .
\end{aligned}
$$

Show that P is well-defined and $P(K)$ is dense in $\operatorname{Sper}_{T}(A)$ with respect to the constructible topology.
2. Let f be a homogeneous polynomial in $\mathbb{R}[\underline{x}]$. Show that if f is sum of squares then every sum of square representation of f consists of homogeneous polynomials, namely:

$$
f=f_{1}^{2}+\cdots+f_{k}^{2} \Rightarrow f_{i} \text { is homogeneous } \forall i=1, \ldots, k
$$

3. Show that:
(a) every convex polytope in \mathbb{R}^{k} is closed and bounded (so compact) in \mathbb{R}^{k} with respect to the Euclidean topology;
(b) every convex polytope is the convex hull of its vertices;
(c) any vertex of a convex polytope is an extremal point.
4. A subset \mathcal{C} of \mathbb{R}^{n} is a convex cone if it is closed under addition and under multiplication by non-negative scalars, i.e.:

$$
\begin{aligned}
\underline{x}, \underline{y} \in \mathcal{C} & \Rightarrow \underline{x}+\underline{y} \in \mathcal{C} \\
\underline{x} \in \mathcal{C}, \lambda \geqslant 0 & \Rightarrow \lambda \underline{x} \in \mathcal{C} .
\end{aligned}
$$

(i) Show that a subset of \mathbb{R}^{n} is a convex cone if and only if it contains all the non-negative linear combinations of its elements.

For $S \subseteq R^{n}$, we denote by cone (S) the set of all non-negative linear combinations of elements from S and we call it the convex cone generated by S.

Show that:
(ii) for every $S \subseteq \mathbb{R}^{n}$, cone (S) is smallest convex cone containing S;
(iii) if $S \subseteq \mathbb{R}^{n}$ is convex, then cone $(S)=\{\lambda \underline{x}: \lambda \geqslant 0, \underline{x} \in S\}$.

