Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Annalisa Conversano SS2010

ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 03

These exercises will be collected Tuesday 11 in the mailbox n.14 of the Mathematics department.

1. Let $A = \mathbb{R}[\underline{x}]$, S a finite subset of A, $T = T_S$ the preordering of A generated by S, $\operatorname{Sper}_T(A) := \{P : P \text{ is an ordering and } A \supset P \supset T\}$ and $K = K_S$ the basic closed semialgebraic subset of \mathbb{R}^n associated to S. Consider the following map:

$$P: K \longrightarrow \operatorname{Sper}_{T}(A)$$

$$\underline{x} \mapsto P_{x} := \{f \in A : f(\underline{x}) \ge 0\}.$$

Show that P is well-defined and P(K) is dense in $\text{Sper}_T(A)$ with respect to the constructible topology.

2. Let f be a homogeneous polynomial in $\mathbb{R}[\underline{x}]$. Show that if f is sum of squares then every sum of square representation of f consists of homogeneous polynomials, namely:

$$f = f_1^2 + \dots + f_k^2 \Rightarrow f_i$$
 is homogeneous $\forall i = 1, \dots, k$.

3. Show that:

- (a) every convex polytope in \mathbb{R}^k is closed and bounded (so compact) in \mathbb{R}^k with respect to the Euclidean topology;
- (b) every convex polytope is the convex hull of its vertices;
- (c) any vertex of a convex polytope is an extremal point.

4. A subset C of \mathbb{R}^n is a **convex cone** if it is closed under addition and under multiplication by non-negative scalars, i.e.:

$$\underline{x}, \ \underline{y} \in \mathcal{C} \ \Rightarrow \ \underline{x} + \underline{y} \in \mathcal{C}$$
$$\underline{x} \in \mathcal{C}, \ \lambda \ge 0 \ \Rightarrow \ \lambda \underline{x} \in \mathcal{C}.$$

(i) Show that a subset of \mathbb{R}^n is a convex cone if and only if it contains all the non-negative linear combinations of its elements.

For $S \subseteq \mathbb{R}^n$, we denote by $\mathbf{cone}(S)$ the set of all non-negative linear combinations of elements from S and we call it **the convex cone generated** by S.

Show that:

- (*ii*) for every $S \subseteq \mathbb{R}^n$, cone(S) is smallest convex cone containing S;
- $(iii) \text{ if } S \subseteq \mathbb{R}^n \text{ is convex, then } \operatorname{cone}(S) = \{ \lambda \underline{x} : \lambda \geqslant 0, \, \underline{x} \in S \}.$