Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Annalisa Conversano SS2010

ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 04

These exercises will be collected Tuesday 25 May in the mailbox n.14 of the Mathematics department.

- **1**. Let $C \subset \mathbb{R}^n$ be a line free convex cone.
 - (i) Let $\underline{x} \in C$, $\underline{x} \neq \underline{0}$. Show that \underline{x} belongs to an extremal ray of C if and only if
 - $\underline{x} = \underline{x}_1 + \underline{x}_2, \quad \underline{x}_1, \, \underline{x}_2 \in C \; \Rightarrow \; \underline{x}_i = \lambda_i \underline{x}, \, \lambda_i > 0, \, \lambda_1 + \lambda_2 = 1.$
 - (ii) Show that the set of convex linear combinations of points in extremal rays of C is equal to the set of sum of points in extremal rays of C.
- **2**. Let $F(\mathbf{x}, \mathbf{y}) = \mathbf{x}^6 + \mathbf{x}^4 \mathbf{y}^2 + 3\mathbf{x}^2 \mathbf{y}^4 + 3\mathbf{y}^6$. Write $F(\mathbf{x}, \mathbf{y})$ as a sum of two squares.
- **3**. Let $F(x, y, z, t) = 2x^2 + 2xy + 2y^2 + 3z^2 + 2zt + 3t^2$. Write F(x, y, z, t) as a sum of four quares.
- 4. Let R be a real closed field. We denote by $\mathcal{P}_{n,m}(R)$ the set of psd forms with coefficients in R of degree m in n variables, and with $\Sigma_{n,m}(R)$ the set of forms with coefficients in R of degree m in n variables which are sums of squares. Show that :
 - (a) for every $d \in \mathbb{N}$, $\mathcal{P}_{2,2d}(R) = \Sigma_{2,2d}(R)$.
 - (b) for every $n \in \mathbb{N}$, $\mathcal{P}_{n,2}(R) = \Sigma_{n,2}(R)$.

Hilbert proved that

(*) $f \in \mathcal{P}_{3,4}(\mathbb{R}) \Rightarrow \exists f_1, f_2, f_3 \in \mathcal{F}_{3,2}(\mathbb{R})$ such that $f = f_1^2 + f_2^2 + f_3^2$. (the proof uses advanced Algebraic Geometry and we will not see it).

Assuming (*), show that:

(c) $\mathcal{P}_{3,4}(R) = \Sigma_{3,4}(R).$