ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 04

These exercises will be collected Tuesday 25 May in the mailbox $n .14$ of the Mathematics department.

1. Let $C \subset \mathbb{R}^{n}$ be a line free convex cone.
(i) Let $\underline{x} \in C, \underline{x} \neq \underline{0}$. Show that \underline{x} belongs to an extremal ray of C if and only if

$$
\underline{x}=\underline{x}_{1}+\underline{x}_{2}, \quad \underline{x}_{1}, \underline{x}_{2} \in C \Rightarrow \underline{x}_{i}=\lambda_{i} \underline{x}, \lambda_{i}>0, \lambda_{1}+\lambda_{2}=1 .
$$

(ii) Show that the set of convex linear combinations of points in extremal rays of C is equal to the set of sum of points in extremal rays of C.
2. Let $F(\mathrm{x}, \mathrm{y})=\mathrm{x}^{6}+\mathrm{x}^{4} \mathrm{y}^{2}+3 \mathrm{x}^{2} \mathrm{y}^{4}+3 \mathrm{y}^{6}$. Write $F(\mathrm{x}, \mathrm{y})$ as a sum of two squares.
3. Let $F(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=2 \mathrm{x}^{2}+2 \mathrm{xy}+2 \mathrm{y}^{2}+3 \mathrm{z}^{2}+2 \mathrm{zt}+3 \mathrm{t}^{2}$. Write $F(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$ as a sum of four quares.
4. Let R be a real closed field. We denote by $\mathcal{P}_{n, m}(R)$ the set of psd forms with coefficients in R of degree m in n variables, and with $\Sigma_{n, m}(R)$ the set of forms with coefficients in R of degree m in n variables which are sums of squares. Show that:
(a) for every $d \in \mathbb{N}, \mathcal{P}_{2,2 d}(R)=\Sigma_{2,2 d}(R)$.
(b) for every $n \in \mathbb{N}, \mathcal{P}_{n, 2}(R)=\Sigma_{n, 2}(R)$.

Hilbert proved that
(*) $\quad f \in \mathcal{P}_{3,4}(\mathbb{R}) \Rightarrow \exists f_{1}, f_{2}, f_{3} \in \mathcal{F}_{3,2}(\mathbb{R})$ such that $f=f_{1}^{2}+f_{2}^{2}+f_{3}^{2}$. (the proof uses advanced Algebraic Geometry and we will not see it).

Assuming (*), show that:
(c) $\mathcal{P}_{3,4}(R)=\Sigma_{3,4}(R)$.

