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ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 04

These exercises will be collected Tuesday 25 May in the mailbox n.14 of the
Mathematics department.

1. Let C ⊂ Rn be a line free convex cone.

(i) Let x ∈ C, x 6= 0. Show that x belongs to an extremal ray of C if and
only if

x = x1 + x2, x1, x2 ∈ C ⇒ xi = λix, λi > 0, λ1 + λ2 = 1.

(ii) Show that the set of convex linear combinations of points in extremal
rays of C is equal to the set of sum of points in extremal rays of C.

2. Let F (x, y) = x6+x4y2+3x2y4+3y6. Write F (x, y) as a sum of two squares.

3. Let F (x, y, z, t) = 2x2 + 2xy+ 2y2 + 3z2 + 2zt+ 3t2. Write F (x, y, z, t) as a
sum of four quares.

4. Let R be a real closed field. We denote by Pn,m(R) the set of psd forms
with coefficients in R of degree m in n variables, and with Σn,m(R) the set
of forms with coefficients in R of degree m in n variables which are sums
of squares. Show that :

(a) for every d ∈ N, P2,2d(R) = Σ2,2d(R).

(b) for every n ∈ N, Pn,2(R) = Σn,2(R).
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Hilbert proved that

(∗) f ∈ P3,4(R) ⇒ ∃ f1,f2,f3 ∈ F3,2(R) such that f = f2
1 + f2

2 + f2
3 .

(the proof uses advanced Algebraic Geometry and we will not see it).

Assuming (∗), show that:

(c) P3,4(R) = Σ3,4(R).


