Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Annalisa Conversano SS2010



## **ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME**

## BLATT 06

These exercises will be collected Tuesday 15th June in the mailbox n.14 of the Mathematics department.

- **1**. Let E/F be a field extension. Show that
  - (i)  $S \subseteq E$  is algebraically independent over F if and only if  $\forall s \in S : s$  is transcendental over  $F(S \setminus \{s\})$ .
  - (ii)  $S \subseteq E$  is a transcendence base for E/F if and only if S is algebraically independent over F and E is algebraic over F(S).

We recall that a ring is said to be **local** if it contains exactly one maximal ideal.

- **2**. We denote by  $\mathbb{R}[[\underline{x}]]$  the ring of formal power series with coefficients in  $\mathbb{R}$ .
  - (i) Show that  $\mathbb{R}[[\underline{x}]]$  is a local ring.
  - (*ii*) Let  $f \in \mathbb{R}[[\underline{\mathbf{x}}]]$ ,

$$f = f_k + f_{k+1} + \dots$$

where every  $f_i$  is homogeneous of degree  $i, f_k \neq 0$ . Assume that f is sos in  $\mathbb{R}[[\underline{x}]]$ . Show that k is even and  $f_k$  is a sum of squares of forms of degree k/2.

- **3.** Consider  $K = [-1, 1] \subset \mathbb{R}$ . Note that  $K = K_S = K_{S'}$ , where  $S, S' \subset \mathbb{R}[\mathbf{x}]$ ,  $S = \{1 \mathbf{x}, 1 + \mathbf{x}\}$  and  $S' = \{1 \mathbf{x}^2\}$ .
  - (a) Show that  $T_S$  is saturated.
  - (b) Show that  $T_{S'}$  is saturated as well.

4. Let A be a commutative ring with 1 and let  $\chi := \text{Hom}(A, \mathbb{R}) = \{\alpha : A \to \mathbb{R} \mid \alpha \text{ is a ring homomorphism}\}$ . Define the map

$$\begin{array}{rcl} \operatorname{Hom}(A,\mathbb{R}) & \longrightarrow & \operatorname{Sper} A \\ \alpha & \mapsto & P_{\alpha} := \alpha^{-1}(\mathbb{R}^{\geqslant 0}). \end{array}$$

Show that

- (i) the map is well-defined, i.e.  $P_{\alpha} \subseteq A$  is an ordering;
- (*ii*) it is injective, i.e.  $\alpha \neq \beta \Rightarrow P_{\alpha} \neq P_{\beta}$ ;
- (*iii*) support( $P_{\alpha}$ ) = ker  $\alpha$ ;
- (*iv*) for every  $a \in A$  define  $\hat{a}: \chi \to \mathbb{R}$  by  $\hat{a}(\alpha) = \alpha(a)$  and  $\mathcal{U}(\hat{a}) := \{\alpha \in \chi \mid \hat{a}(\alpha) > 0\}$ ; then  $\mathcal{B} = \{\mathcal{U}(\hat{a}) \mid a \in A\}$  is a pre-base for a topology  $\tau$  on  $\chi$ ;
- (v) for every  $a \in A$  the map  $\hat{a}: \chi \to \mathbb{R}$  is continuous with the respect to the topology  $\tau$ ;
- (vi) if  $\tau_1$  is another topology on  $\chi$  such that  $\hat{a}$  is continuous for every  $a \in A$ , then  $\mathcal{U}(\hat{a}) \in \tau_1$  for every  $\hat{a}$ ;
- (vii) the spectral topology on Sper A induces (by the map above  $\chi \rightarrow$  Sper A) a topology on  $\chi$  which agrees to  $\tau$ .
- 5. Let A be a commutative ring with 1 containing  $\mathbb{Q}$ . Let T be a generating preprime and M a maximal proper T-module. Suppose M is Archimedean. Define the map

$$\begin{array}{rcl} \alpha \colon A & \longrightarrow & \mathbb{R} \\ & a & \mapsto & \inf\{r \in \mathbb{Q} : r - a \in M\}. \end{array}$$

Show that  $\alpha$  is a ring homomorphism.