ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 06

These exercises will be collected Tuesday 15th June in the mailbox n. 14 of the Mathematics department.

1. Let E / F be a field extension. Show that
(i) $S \subseteq E$ is algebraically independent over F if and only if $\forall s \in S: s$ is transcendental over $F(S \backslash\{s\})$.
(ii) $S \subseteq E$ is a transcendence base for E / F if and only if S is algebraically independent over F and E is algebraic over $F(S)$.

We recall that a ring is said to be local if it contains exactly one maximal ideal.
2. We denote by $\mathbb{R}[[\underline{x}]]$ the ring of formal power series with coefficients in \mathbb{R}.
(i) Show that $\mathbb{R}[[\underline{x}]]$ is a local ring.
(ii) Let $f \in \mathbb{R}[[\underline{\mathrm{x}}]]$,

$$
f=f_{k}+f_{k+1}+\ldots
$$

where every f_{i} is homogeneous of degree $i, f_{k} \neq 0$. Assume that f is sos in $\mathbb{R}[[\underline{\mathrm{x}}]]$. Show that k is even and f_{k} is a sum of squares of forms of degree $k / 2$.
3. Consider $K=[-1,1] \subset \mathbb{R}$. Note that $K=K_{S}=K_{S^{\prime}}$, where $S, S^{\prime} \subset \mathbb{R}[\mathrm{x}]$, $S=\{1-\mathrm{x}, 1+\mathrm{x}\}$ and $S^{\prime}=\left\{1-\mathrm{x}^{2}\right\}$.
(a) Show that T_{S} is saturated.
(b) Show that $T_{S^{\prime}}$ is saturated as well.
4. Let A be a commutative ring with 1 and let $\chi:=\operatorname{Hom}(A, \mathbb{R})=$ $\{\alpha: A \rightarrow \mathbb{R} \mid \alpha$ is a ring homomorphism $\}$. Define the map

$$
\begin{aligned}
\operatorname{Hom}(A, \mathbb{R}) & \longrightarrow \text { Sper } A \\
\alpha & \mapsto P_{\alpha}:=\alpha^{-1}\left(\mathbb{R}^{\geqslant 0}\right) .
\end{aligned}
$$

Show that

(i) the map is well-defined, i.e. $P_{\alpha} \subseteq A$ is an ordering;
(ii) it is injective, i.e. $\alpha \neq \beta \Rightarrow P_{\alpha} \neq P_{\beta}$;
(iii) $\operatorname{support}\left(P_{\alpha}\right)=\operatorname{ker} \alpha$;
(iv) for every $a \in A$ define $\hat{a}: \chi \rightarrow \mathbb{R}$ by $\hat{a}(\alpha)=\alpha(a)$ and $\mathcal{U}(\hat{a}):=\{\alpha \in$ $\chi \mid \hat{a}(\alpha)>0\} ;$ then $\mathcal{B}=\{\mathcal{U}(\hat{a}) \mid a \in A\}$ is a pre-base for a topology τ on $\chi ;$
(v) for every $a \in A$ the map $\hat{a}: \chi \rightarrow \mathbb{R}$ is continuous with the respect to the topology τ;
(vi) if τ_{1} is another topology on χ such that \hat{a} is continuous for every $a \in A$, then $\mathcal{U}(\hat{a}) \in \tau_{1}$ for every \hat{a};
(vii) the spectral topology on Sper A induces (by the map above $\chi \rightarrow$ Sper A) a topology on χ which agrees to τ.
5. Let A be a commutative ring with 1 containing \mathbb{Q}. Let T be a generating preprime and M a maximal proper T-module. Suppose M is Archimedean. Define the map

$$
\begin{aligned}
\alpha: A & \longrightarrow \mathbb{R} \\
a & \mapsto \inf \{r \in \mathbb{Q}: r-a \in M\} .
\end{aligned}
$$

Show that α is a ring homomorphism.

