ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 07

These exercises will be collected Tuesday 22th June in the mailbox n. 14 of the Mathematics department.

$$
\text { Let } \underline{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right) .
$$

1. Let $L: \mathbb{R}[\underline{\mathrm{x}}] \rightarrow \mathbb{R}$ be a linear functional, $g \in \mathbb{R}[\underline{\mathrm{x}}],\langle,\rangle_{g}: \mathbb{R}[\underline{\mathrm{x}}] \times \mathbb{R}[\underline{\mathrm{x}}] \rightarrow \mathbb{R}$ the symmetric bilinear form defined by $\langle h, k\rangle_{g}:=L(h k g)$ and S_{g} the symmetric matrix with $\alpha \beta$ entry $\left\langle\underline{\mathrm{x}}^{\alpha}, \underline{\mathrm{x}}^{\beta}\right\rangle_{g}$ for all $\alpha, \beta \in\left(\mathbb{Z}_{+}\right)^{n}$.

Show that the following are equivalent:
(i) $L(\sigma g) \geqslant 0$ for all $\sigma \in \sum \mathbb{R}[\underline{\mathrm{x}}]^{2}$.
(ii) $L\left(h^{2} g\right) \geqslant 0$ for all $h \in \mathbb{R}[\underline{\mathrm{x}}]$.
(iii) \langle,\rangle_{g} is PSD.
(iv) S_{g} is PSD.
2.(a) Suppose $n=1$. Let $L: \mathbb{R}[\mathrm{x}] \rightarrow \mathbb{R}$ be a linear functional such that

$$
L\left(\mathrm{x}^{m}\right)=0 \quad \text { for } \quad m=2 \quad \text { and } \quad \forall m \geqslant 4 .
$$

Give necessary and sufficient conditions so that there is a Borel measure μ on \mathbb{R} such that

$$
L(f)=\int_{\mathbb{R}} f d \mu \quad \forall f \in \mathbb{R}[\mathrm{x}] .
$$

(b) For $x \in \mathbb{R}$, let $L_{x}: \mathbb{R}[\mathrm{x}] \rightarrow \mathbb{R}$ be the evaluation on x, i.e. $L_{x}(f)=f(x)$ for all $f \in \mathbb{R}[\mathrm{x}]$. For which $x \in \mathbb{R}$ and $K \subseteq \mathbb{R}$ closed there is Borel measure μ on K such that

$$
L_{x}(f)=\int_{K} f d \mu \quad \forall f \in \mathbb{R}[\mathrm{x}] ?
$$

3. Let $L: \mathbb{R}[\mathrm{x}] \rightarrow \mathbb{R}$ be a linear functional and set $L\left(\mathrm{x}^{i}\right):=s_{i}$ for every $i \in \mathbb{Z}_{+}$. Show that there is a Borel measure μ on $K=[0,1] \subset \mathbb{R}$ such that

$$
L(f)=\int_{K} f d \mu \quad \forall f \in \mathbb{R}[\mathrm{x}]
$$

if and only if the following symmetric matrices are PSD:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
s_{0} & s_{1} & s_{2} & \cdots \\
s_{1} & s_{2} & \cdots \cdots \cdots \\
s_{2} & \cdots \cdots \cdots \cdots \cdots \\
\vdots & &
\end{array}\right) \\
& \left(\begin{array}{cccc}
s_{1} & s_{2} & s_{3} & \cdots \\
s_{2} & s_{3} & \cdots \cdots \cdots \\
s_{3} & \cdots \cdots \cdots \cdots \cdots \\
\vdots & &
\end{array}\right) \\
& \left(\begin{array}{cccc}
s_{0}-s_{1} & s_{1}-s_{2} & s_{2}-s_{3} & \cdots \\
s_{1}-s_{2} & s_{2}-s_{3} & \cdots \cdots \cdots \cdots \cdots \\
s_{2}-s_{3} & \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\vdots &
\end{array}\right)
\end{aligned}
$$

4. We recall that there is a natural bijection

$$
\{L: \mathbb{R}[\underline{\mathrm{x}}] \rightarrow \mathbb{R} \text { linear functional }\} \leftrightarrow\left\{\tau:\left(\mathbb{Z}_{+}\right)^{n} \rightarrow \mathbb{R}\right\}
$$

given by

$$
L\left(\underline{\mathrm{x}}^{\alpha}\right)=\tau(\alpha) \quad \forall \alpha \in\left(\mathbb{Z}_{+}\right)^{n}
$$

Let

$$
\begin{aligned}
& \Sigma:=\sum \mathbb{R}[\underline{\mathrm{x}}]^{2}, \\
& \mathcal{P}:=\left\{f \in \mathbb{R}[\underline{\mathrm{x}}] \mid f(\underline{x}) \geqslant 0 \forall \underline{x} \in \mathbb{R}^{n}\right\} .
\end{aligned}
$$

Describe Σ^{\vee} and \mathcal{P}^{\vee} in terms of conditions on multisequences.

